40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 209 of 341  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  9844   Wed Apr 23 23:48:30 2014 manasaUpdateLSCY end whitening board

The MON outputs of the Y end QPD whitening board were hot earlier today while pulling it out of the crate. After swapping the 4 pin lemo connector with an isolated panel mount bnc connector, I stuck the board back into the crate and this immediately kicked the ETMY suspension. Jenne and I went to the Y end to look at what was going on. We removed the board from the crate after smelling something burning. The MON output ports of the whitening board were super hot this time. There is no sign of any components melting on the board (comparing the board with its pictures that were taken earlier) and a tester board stuck into the crate lights up just fine.

So the back panel is still ok. We need to troubleshoot or replace the whitening board.

Edit, JCD:  The attached photos are from right after I replaced the "Rgain" resistor, elog 9823.  What they show is that it looks like some of the melting / burning may have already been happening before I pulled the board, and I just never noticed :(  In particular, look at the resistors on the main board above the blue "G" sticker.  There isn't a difference that I can tell between this photo from last week, and today's situation. 

 

 IMG_1378.JPG

Attachment 1: IMG_1378.JPG
IMG_1378.JPG
Attachment 2: IMG_1379.JPG
IMG_1379.JPG
  9845   Thu Apr 24 00:11:35 2014 JenneUpdateLSCYend shutter back.

Quote:

To see if perhaps the shutter was the problem, I turned off the power to the Yend green shutter, and unplugged the cable.  The cable is laying on the table, with the connector sitting on a piece of plastic to isolate it.  Removing the shutter from the system did not change anything.

 I re-plugged in the Yend shutter, and turned it on.

  9846   Thu Apr 24 02:12:05 2014 JenneUpdateLSCLocking without TRY

I tried some locking anyway tonight, even though we don't have TRY. 

The biggest conclusion is that I miss the auto-resonance-finding.  I've been roughly scanning the Y-ALS offset to find the POY zero crossing when I see the resonance on the test mass face cameras. 

The next-biggest conclusion, is that I can hold the PRFPMI close to resonance, using ALS for CARM and DARM.  I was trying to transition DARM to AS55, but I couldn't get the last bit of the way.  That is, I couldn't turn off the ALS control.  So, I think that AS55 wasn't actually holding DARM, until maybe the last moment or so.

Anyhow, here are some time series.  My average TRX value is around 40 counts, and POPDC is maybe 250 counts (just PRMI, POPDC is about 75 counts).  Obviously this is noisy as hell, but I'm not using any IR signals for the arms.  Near the end of this first time series, I am trying to switch to AS55 for DARM.

TRX_avg_40cts_POPDC_avg_200cts.png

Zooming in, my real lockloss is due to PRCL oscillating at ~350 Hz:

Lockloss_PRCL_350Hz.png

However, I also saw ~25Hz peaks in CARM and DARM on the spectra starting to show up, and I see a ~25 Hz oscillation in DARM a few moments after the PRCL lockloss.  (Plot #2 is a zoom of the ~1.1 second mark on Plot #3.)

Lockloss_DARM_20Hz.png


The locking parameters:

CARM:

Input:  Using the new CESAR matrix, -1*ALSX, +1*ALSY.  Beatnotes both move up in freq if temp sliders move up.

Servo: gain = 6, FMs 1, 2, 3, 5, 6, 7, 9 on.  Offset = 0 counts. 

Output = -1*MC2

DARM:

Input:  +1*ALSX, +1*ALSY

Servo:  gain = 4.  FMs 1, 2, 3, 5, 6, 7, 9 on.  Offset = 0 counts.

Output = -1*ETMX, +1*ETMY

PRCL:

Input:  +1*REFL33_I, Norm = +0.01*POPDC, sqrt engaged.

Servo:  acquisition easier with -0.04 or -0.06, less gain peaking at -0.02   FMs 4, 5 on; 2, 3, 6, 9 triggered with 0.5 sec delay.  Servo trigger = POPDC, up 100, down 10.  FM trigger = POPDC, up 300, down 20.

Output = +1*PRM

PRCL ASC off, PRM oplev on.

MICH:

Input:  +1*REFL33_Q, Norm = +0.01*POPDC, sqrt engaged.

Servo:  gain = 2, FMs 4, 5 on; 2, 3 triggered with 0.2 sec delay.  Servo trigger = POPDC, up 100, down 10.  FM trigger = POPDC, up 300, down 20.

Output = +0.5*BS, -0.2625*PRM

PDs:

REFL33 analog gain set to 30 dB for both I&Q.

AS55 set to 0 dB for both I&Q.  AS55 had DC normalization of 80 counts (which was the measured number for PRFPMI when TRX was about 0.1 count this evening)

 

  9847   Thu Apr 24 11:19:50 2014 KojiUpdateLSCLocking without TRY

This seems the ever best stability at the zero offset PRFPMI.

Can you look at REFLDC in this data stream too? How was it promising?

  9848   Thu Apr 24 14:00:42 2014 JenneUpdateLSCLocking without TRY

Here is 1 second of data, with REFLDC, POPDC and TRX:

REFLDC_1sec.png

Here is a zoom of the first 3 big peaks in TRX.  The weird jumps at the beginning of each TRX peak are due to the triggered switching between the Thorlabs trans PD and the QPD trans PD.  Clearly we need to work on their relative normalizations.  There are also little jumps after each peak as the triggering sends the signal back to the Thorlabs PD.

REFLDC_3peaks.png

Here is a zoom of the single big peak about halfway through the 1 second of data:

REFLDC_1peak.png

And here is a zoom of the tail of that peak.  It looks to me like we want to start thinking about using REFL DC when our transmitted powers are around 2 counts.  We could do as soon as 1 count, but 2 is a little farther into the dip.

REFLDC_1peak_zoom.png

  9849   Thu Apr 24 14:23:09 2014 not manasaUpdateLSCY end whitening board

 

 maybe the tantalum caps on the daughter board power supply lines are blown? If so, replace with 35V+ ceramic.

  9850   Thu Apr 24 16:25:31 2014 ericqUpdateLSCQuick CM servo prep

I added ~1m of cable to the LO side of the REFL11 Demodulator, which brought its PRCL demod phase to about 8 degrees. According to my simulations, PRCL and CARM have the same angle (but opposite sign) at resonance. There seems to be a severe lack of SMA cables in the lab, so I didn't tune it to be any closer. Cos(8 degrees)=.99, so I think it should be fine to use it for the CARM servo, since none of the other signals are going to be nearly as big. I plugged analog REFL 11 I back into the CARM servo IN1. 

As for IN2, I threw together a temporary setup for using REFLDC as a complementary signal. I T'd off the REFLDC signal (which is the DC signal out of REFL55), and sent it into an SR560 to subtract an offset. The offset comes from a 1Hz-passive-pomona-box-low-passed C1:IOO-TT4_LR output, since there are 8 DAC channels set up for the nonexistent tip tilts 3 and 4 actively running. The output of the SR560 is sent to the CARM servo IN2. 

I adjusted the offset by turning on only IN2 in the CARM servo MEDM screen, and looking at the CM_SLOW signal in data viewer. I adjusted gains and such to get it to look just like REFLDC with the PRC locked. There was good coherence and no appreciable phase difference from DC out to some kHz, albeit a dip in coherence to about .8-.9 from ~40 to 300Hz, for some reason. (This included turning on the unWhite FM in the REFLDC filter bank)

If this signal turns out to be useful, it will be relatively straightforward to put together a little box that does the offset subtraction nicely, but this should do for our immediate needs.

Lastly, I hung up this plot in the control room to give us information about the DC values of different signals as the CARM offset changes. This is helpful to see what our CARM offset is, based on the transmission we se, when different signals start to have length dependence, where they start/stop being linear, etc. The TRX curve is scaled to a maximum of 600, REFLDC is normalized to input power = 1, and all the rest are arbitrarily scaled to fit on the plot. I've assumed 75ppm loss on all mirrors in my simulation (PRM, BS, 2xITM, 2xETM), mostly to get some realistic profile of REFLDC. 

carmOffsetProfiles.pdf

  9852   Thu Apr 24 23:55:31 2014 KojiUpdateLSCY end whitening board

The main problem was a panel fixing bolt that caused the short circuits between power supply layers.
This burned the PCB and secondarily caused permanent short circuit between +15V/-15V/+5V layers.

Diagnosis

- The resistances between +15V, +5V, and -15V were low. The resistance between +15V and -15V is 13 Ohm.
  The one between +5V and -15V is 7Ohm. And the one between +15 and +5 is 19Ohm. So the situation is

                o -15V
                |
+15V o-(13 Ohm)-+-(9 Ohm)-o +5V

Even after removing all of the active components from the board, they remained the same.

- The tantalum caps were removed from the board and it was confirmed that they are not the cause of the issue.

- The panel was removed from the module for the component migration to a spare board (to be described in the other entry).
I found that the screw hole and the screw have burnt marks. The screw need an insulation tube to avoid short circuit.
The other screw was also bare. The spare board has the screws with the insulation tubes.

 

Attachment 1: P4245550.JPG
P4245550.JPG
  9853   Fri Apr 25 03:14:46 2014 ericqUpdateLSClocking activity

[ericq, Jenne, Zach]

We spent some time tonight trying to push our CARM locking further, to little avail. DARM/CARM loop oscillations kept sneaking up on us. We measured some MC2 motion -> REFL11 Transfer Functions to see if we could see CARM plant features; plots will come in the near future...

  9854   Fri Apr 25 10:43:57 2014 KojiUpdateLSC(Fixed) Y end whitening board

I went to WB and found the last spare module of D990399 revB. We need to thank Frank for his foresight.

The original (=broken) board had various modifications from this revB.
I had to check the schemaric diagram and the difference between the boards and migrate some of the SMD components from left to right.


Here is the deciphered features of the QPD whitening board:
- The input stage is a VGA amp (AD602). It has the internal input impedance of 100 Ohm. The series resister
  of 909 Ohm gives us 1/10 voltage division! It is more tricky as the QPD (D990272) has the output impedances of 50Ohm
  (for the both side of the differential out) and on resistance of MAX333A. So it could have been deviated by ~10% from the nominal.

- Variable gain control: The input has 1/10 voltage division. The gain is fixed at the unity. In total the gain of the variable control stage is 1/10.
  This gives us the gain range of +42dB/-22dB for +10V/-10V. The actual range is limited to be -10~30dB.

- Whitening stages. Each channel has two sets of the whitening path and the bypass path.
  They could be switched by binary control inputs but I permanently enabled the whitening by pulling the MAX333 control inputs to the ground.
  The whitening zero and pole are at 4.02Hz and 40.6Hz.

  Each bypass path has an additional cap of 220pF in parallel to 35.7kOhm (R101 and R103 for CH1), resulting in the pole at 20.2kHz.
  Each whitening paths had a 5.6nF cap (C53 and C64). This cap was replaced with 350pF, resulting in the move of the pole freq from 800Hz to 12.7kHz.

- There are two anti-aliasing stages which were designed for 2kHz sampling rate. They are identical sallen key 2nd-order LPFs with fc=766Hz and Q=0.74 (~ butterworth).
  As all of these caps were removed, they are just voltage followers now.

- The final stage (AD620) has the gain resister of 16.5k. The gain is 1+(49.4k/16.5k) = 3.99.

- The 4pin lemo connector (J8) was removed from the board. We instead installed an isolated BNC connector on the panel for the thorlabs PD serving as the high gain PD.

- There is a daughter board for the high gain PD. This seems to be the butterworth low pass filter with fc=~30kHz.
  The differential output of the daughter board is connected to pin 17 and 18 of J10 (S5 Out and Rtn).

- The input of the daughter board is differential (AD620). Therefore the LEMO connectros next to the BNC were wrapped with Kapton tapes for isolation.

Board test at the workbench.

- The test required two dual power supply as the unit requires +/-5V and +/-15V.

- The four channels were tested with the signal injection. 1kHz input yielded 20mVpp across the AD602 input. The output of the 1st whitening stage was
  60mVpp. This makes sense as the gain of the AD620 is -10dB (1/10 and 10dB). The output of the 2nd whitening stage was 600mVpp.
  Finally the output of the output stage was confirmed to be 2400mVpp. This was confirmed for four channels.

- The daughter board output was also checked. The gain is the unity and flat upto ~10kHz.

Board installation

- Jenne installed the module. This time there was no smoke.


Gain mystery

- It was not sure how the whitening gains have been given.

- The corresponding database entry was found in /cvs/cds/caltech/target/c1auxey/ETMYaux.db as

grecord(ao,"C1:ASC-QPDY_S1WhiteGain")
grecord(ao,"C1:ASC-QPDY_S2WhiteGain")
grecord(ao,"C1:ASC-QPDY_S3WhiteGain")
grecord(ao,"C1:ASC-QPDY_S4WhiteGain")

- The gains for S2-S4 were set to be 30. However, C1:ASC-QPDY_S1WhiteGain was set to be 8.62068.
And it was not writable.

- After some investigation, it was found that the database was wrong. The DAC channel was changed from S100 to S0.
The corrected entry is shown here.

grecord(ao,"C1:ASC-QPDY_S1WhiteGain")
{
        field(DESC,"Whitening gain for QPDY Seg 1")
        field(DTYP,"VMIVME-4116")
        field(OUT,"#C0 S0 @")
        field(PREC,"1")
        field(EGUF,"42")
        field(EGUL,"-22")
        field(EGU,"dB")
        field(LINR,"LINEAR")
        field(DRVH,"30")
        field(DRVL,"-10")
        field(HOPR,"30")
        field(LOPR,"-10")
}

- Once c1auxey was rebooted, the S1 whitening gain became writable. Now all of the channels were set to be +30dB (max).

 

Attachment 1: D990399-B_40m.pdf
D990399-B_40m.pdf D990399-B_40m.pdf D990399-B_40m.pdf
Attachment 2: P4245552.JPG
P4245552.JPG
Attachment 3: P4245553.JPG
P4245553.JPG
Attachment 4: P4245551.JPG
P4245551.JPG
  9855   Fri Apr 25 13:18:08 2014 Dark JamieUpdateLSClocking activity

Quote:

[ericq, Jenne, Zach]

We spent some time tonight trying to push our CARM locking further, to little avail. DARM/CARM loop oscillations kept sneaking up on us. We measured some MC2 motion -> REFL11 Transfer Functions to see if we could see CARM plant features; plots will come in the near future...

 Probably things would have worked better if you would have gotten your hair done at the same place as me.

Attachment 1: m10008_f1_bg.jpg
m10008_f1_bg.jpg
  9859   Sun Apr 27 19:53:54 2014 ericqUpdateLSCPRFP YArm Locking

Inspired by a comment by Koji the other day, I spent some time yesterday and today working on locking a (very lossy) power recycled Y-arm. ITMX was misaligned, to save myself the headache of dealing with ITMY getting a sign flip and ITMX staying the same when the arm resonates. 

My main goal was to achieve high bandwidth control with the analog CARM servo. 

TL,DR: Transisitoned 90% to REFLDC through CM_SLOW at TRY = 2.1 twice. Couldn't make it all the way over. 


PRCL settings:

  • Input: REFL165 I.
  • Actuate on PRM +1
  • Control: G=-.32 (~100Hz UGF); Acq on FM 4,5; Trig 1,2,3,6,9 (I modified the +10dB in FM1 to a 1kHz ELP)
  • Trig: POP 110 I: 1.5 up, 0 down (max was around 4 counts, very weak PRC!)

The PRC was very stable in this configuration, which doesn't surprise me due to its simplicity. I was honestly a little surprised there was enough light to lock on 3f. REFL33 didn't work. 


My efforts to bring the Y-arm into lock were very similar to the CARM procedure we've been using recently. (Which is the motivation for this exercise)

At first I was actuating on ETMY, and got to the point where I wanted to start bringing in the CARM servo slow output, then realized that I didn't want to actuate both on the ETM and MC AO. (Maybe this would be doable, but in the end, not what I'm interested in learning about in terms of overlap with CARM locking)

From then on, I only actuated YARM on MC2. (Heads up, my lock-losses will show up in the trends of the MC2 Trans addition to the WFS.)

Transitioning the arm to SqrtInv TRY control was just as straightforward as it has been for CARM. However, engaging the LSCLock FM (FM4), would sometimes work beautifully, and sometimes kick the hell out of MC2. Keeping an eye on the error signal spectrum and UGF gave no indication which outcome would happen. Once FM4 could be engaged, the transmitted power was very stable. Without FM4, reducing the offset didn't get very far without losing lock. 

I tried a few times to bring in CM_slow (set to just IN2, i.e. offset adjusted REFLDC), at arbitrary arm powers, with little success. I didn't know how much arm power to expect at resonance, and thus didn't really know where on the line width I was.

I knew I was mostly outside of the linear regime of the PDH signals, since, even though I had good coherence between, say, REFL11 I and SqrtInvTry, with an ETMY excitation on; when I would turn TRY normalization on/off, I would see the sign of the TF change. 

I then realized that I could actively keep an eye on the trend of POY11, to see when I got to the PDH "hump", which is where REFLDC starts being usable, and SqrtInv is reaching its limit. 

This brought me to a YARM offset of .115, with a steady TRY of about 2.1. I adjusted the analog offset of the REFLDC input to the CARM board, and the digital gain of the CMSLOW input filter to get 1:1 correspondence between CMSLOW and the SQRTINVY channels. Their spectra were neigh identical, with CMSLOW having slightly more high frequency noise. 

I started stepping SQRTINV down by .1, and upping CMSLOW by .1. This shifted the offset around, so I opted for taking away gain before bringing it back, because I didn't want to get so close to resonance that SQRTINV would freak out. I got to .1*SQRTINVY + .9*CMSLOW, and lost lock. TRY was getting noisier as I made the transition. 

I'm not sure what exactly was the reason for failure. I'm going to go back over some of the data to try to get an idea.. Maybe I should've loosened up some of the gain/boosts during the transition. 


So, no great success story yet, but this configuration is a lot simpler than the full PRFPMI, and I feel that I should soon be able to get it fully controlled, and figure out a systematic way to make the digital to analog transition for this PRFP cavity, and thus have a much more informed basis for doing the same for CARM control. 

  9860   Sun Apr 27 20:26:19 2014 KojiUpdateLSCPhase Tracker servo characterization

The measured open loop TF of the ALS Phase Tracker loop for each arm was characterized by an empirical model on LISO.

The model for the open loop TF has pole 1m instead of the one at DC as LISO has a difficulty to model it.
Digital time delay and the sampling effect seem to be well represented by a zero at ~8kHz and delay of  ~60us.
(cf 16kHz sampling => 61us)

The XARM phase tracker has the UGF of 1.5kHz. This is too low because
1) The phase rotation at 100Hz is visible in the plot.
2) We don't much care about the closed loop bump in the phase tracker as long as the phase tracker keeps its continuity.

So I suggest to increase the gain so that we have the UGF of 3kHz. (phase margin: 24deg)

The red curve in the plot is the closed loop response calculated by CLTF =  - OLTF / (1-OLTF).

The model results are used in the ALS servo models.

Attachment 1: ALSX_PTTF.pdf
ALSX_PTTF.pdf
Attachment 2: ALSY_PTTF.pdf
ALSY_PTTF.pdf
  9861   Sun Apr 27 21:30:59 2014 KojiUpdateLSCALS servo characterization

The measured openloop TF of the ALS servo for each was characterized by a ZPK model.

The openloop TF can be modeled by:

1) Filter TF obtained from foton
2) Actuator response with appropriate assumption
3) Phase tracker closed loop TF
4) Delay caused by the digital control
5) anything else

For 1) ZPK models of the servo filter was obtained from foton. It turned out that the TF of FM5 doesn't match with the ZPK model in foton.
Therefore the TF was exported and fitted with LISO. This seems to be related to the pole frequency (3kHz) which is too close to Nyquist frequency (8kHz).

FM(:,1)  = zero1(f,5).*pole1(f,0.001)*5000;
FM(:,2)  = zero1(f,1).*pole1(f,0.001)*1000;
FM(:,3)  = zero2(f,4.5,1.4619).*pole1(f,0.001).*pole1(f,0.001)*20.2501*1e6;
FM(:,4)  = zero2(f,35,2).*pole2(f,3,3).*zero1(f,3000).*pole1(f,1).*pole2(f,3000,1/sqrt(2)).*pole1(f,700).*zero1(f,10).*zero1(f,350).*136e1;
FM(:,5)  = zero1(f,1).*pole1(f,4.010e3).*pole2(f,17.3211e3,1.242).*zero2(f,18.865e3,100e3);
FM(:,6)  = zero2(f,3.2,0.966775).*pole2(f,3.2,30.572);
FM(:,7)  = zero2(f,16.5,2.48494).*pole2(f,16.5,78.5807).*zero2(f,24.0,2.22483).*pole2(f,24.0,7.03551);
FM(:,8)  = 1;
FM(:,9)  = zero2(f,7.50359,1.07194).*pole2(f,1.43429,0.717146)*27.5653;
FM(:,10) = 1;

dc_gain = 14;

FM1/2/3/5/6/7/9 are used for the control.

For 2), a resonant freq of 0.97 with Q of 5 was assumed.

The model for 3) was obtained by the previous entry.

Now the measured TF was divided by the known part of the model 1) ~ 3) and empirically fitted in LISO.

### XARM ###
pole 392.5021429051 698.1992431753m
zero 42.3128869460k 31.0954443799m
pole 589.2716424428 2.8325268375
factor 8.3430140244
delay 34.7536691023p

### YARM ###
pole 416.2463334253 743.2196174175m
zero 97.9161062704M 114.6703921876m
pole 626.0463515310 2.7671041771

factor 9.0045911761
delay 34.0945727358p

These compensation TF have weird TF. Probably the frequency response of the delay and the analog AA/AI filters without the high frequency data
led the LISO make up this. I'm requesting Masayuki to provide the AA/AI data to make the estimation more reasonable.
For the servo modeling, this is sufficient and we'll go a head.

The results of the OLTF modeling are attached.

Attachment 1: ALSX_OLTF.pdf
ALSX_OLTF.pdf
Attachment 2: ALSY_OLTF.pdf
ALSY_OLTF.pdf
  9862   Mon Apr 28 10:24:10 2014 KojiUpdateLSCerror signal characterization

As we now have the loop model, we can characterize the error signals.

We have the following data:

1) Free-running ALS error signals (i.e. phase tracker output) calibrated in Hz (for 532nm) (blue)
2) Controlled ALS error signals calibrated in Hz (for 532nm) (red)
3) ALS error signals measured with X and Y arm locked with the IR PDH. (black)
    This is likely to represent the sensing noise of the beatnote detection

from 2) we can derive the similar quantity as 1)
4) Estimated free-running ALS error signals from the controlled signals (green)

Remarks:

- From 1) and 4) we can see that the phase tracker is not perfectly linear. It seems that fast fringing of the phase tracker is causing upconversion.

- From 2) and 3) the servo loops don't have enough gain between 3Hz and 20Hz. On the other hand they have too much gain bekow 3Hz.

Attachment 1: ALSX_SPE.pdf
ALSX_SPE.pdf
Attachment 2: ALSY_SPE.pdf
ALSY_SPE.pdf
  9863   Mon Apr 28 10:34:51 2014 KojiUpdateLSCnew ALS servo design

Based on the evaluation of the error signals, the new servo was designed.

Concept:
- Don't touch the locking filters. (i.e. FM5)
- Sacrifice some phase at 150Hz to increase the gain between 3-20Hz.
- As resonant gains costs the phase without increasing the LF gains, replace them with a poles for the integrators.


FM(:,1) = zero2(f,.5,.7).*pole2(f,0.001,.7)*(0.5/0.001)^2;
FM(:,2) = zero2(f,5,2).*pole2(f,3,3).*pole1(f,1).*zero1(f,5)*5*(5/3)^2;
FM(:,3) = zero2(f,25,.7).*pole2(f,3.2,10)*(25/3.2)^2; % Zero crossing
FM(:,4) = zero2(f,35,2).*pole2(f,3,3).*zero1(f,3000).*pole1(f,1).*pole2(f,3000,1/sqrt(2)).*pole1(f,700).*zero1(f,10).*zero1(f,350).*136e1;
FM(:,5) = zero1(f,1).*pole1(f,4010).*pole2(f,17.3211e3,1.242).*zero2(f,18.865e3,100e3);
FM(:,6) = zero2(f,5,2).*pole2(f,10,2).*pole2(f,16.5,30).*zero2(f,30,2);
FM(:,7) = 1;
FM(:,8) = 1;
FM(:,9) = 1;
FM(:,10) = 1;
dc_gain = 14;

FM1/2/3/5/6 are expected to be used for the control.


FM1: Boost below 0.5Hz. This does not cost the phase margin.
FM2: Increase the gain below 5Hz. This hardly cost the phase margin.
FM3: Boost below 25Hz. This is the main phase cost at UGF. This has a complex pole pair at 3Hz with Q=10 to supress the stack motion.
FM6: zero-pole-pole-zero combination to boost the gain between 5 to 30Hz. This eats the phase margin a little.

Note that the phase tracker gain for the X arm was increased by factor of 2.5.

Attachment 1: ALSX_OLTF_new2.pdf
ALSX_OLTF_new2.pdf
Attachment 2: ALSY_OLTF_new2.pdf
ALSY_OLTF_new2.pdf
  9864   Mon Apr 28 10:48:48 2014 KojiUpdateLSCnew ALS servo design: comparison

Comparison of the new and old servo OLTF
The new servo has the same UGF, slightly less phase margin, and more gain between 1.5 and 25Hz.

Attachment 1: ALSX_OLTF_new.pdf
ALSX_OLTF_new.pdf
Attachment 2: ALSY_OLTF_new.pdf
ALSY_OLTF_new.pdf
  9865   Mon Apr 28 10:59:54 2014 KojiUpdateLSCNew ALS servo design: expected error signals

The expected error signals derived from the estimated free running error signals of the ALS.

1) Previously estimated free-running noise (blue)
2) Previous in-loop ALS error signal (red)
3) Estimated error signal with the new servo (green)
4) Out-of-loop noise of the ALS with the arm controlled with the IR PDH (black)

Now the error signal (green) is expected to be very white.
The suppressed noise between 3 to 20Hz are below the sensing noise level.
There seems a little excess at 24.5Hz and 28Hz. If it is limiting the RMS, we need to take care of them.

Attachment 1: ALSX_SPE_new.pdf
ALSX_SPE_new.pdf
Attachment 2: ALSY_SPE_new.pdf
ALSY_SPE_new.pdf
  9866   Mon Apr 28 11:03:57 2014 KojiConfigurationLSCNew ALS servo implemented for the X arm

The new ALS/LSC servo was implemented for the X arm.

I'll upload more data later but here I make quick remarks:

- We need to give the gain of 12 to have correct UGF with the ALS.

- With this servo, the Xarm PDH lock oscillates with the gain of 0.02. We need to lower the gain to 0.015.
  Also FM trigger should be changed not to trigger unused FMs (FM7/8)

  9867   Mon Apr 28 11:08:11 2014 KojiUpdateLSCNew ALS servo design: expected error signals

Here are the MATLAB scripts and LISO codes for all of these servo analyses

Attachment 1: 140421_ALS_servo.zip
  9868   Mon Apr 28 13:18:18 2014 JenneUpdateLSCLSC offsets script modified

Quote:

The weird jumps at the beginning of each TRX peak are due to the triggered switching between the Thorlabs trans PD and the QPD trans PD.  Clearly we need to work on their relative normalizations.  There are also little jumps after each peak as the triggering sends the signal back to the Thorlabs PD.

 I was unhappy with the discontinuities between the Thorlabs and QPD versions of our transmitted light powers.  I realized that in the olden days, we just used the Thorlabs PD, and we set the no-light offset in the LSC version of the TR[x,y] filter banks.  However, now that we have brought the QPDs back, we are setting the dark offsets in the end suspension models, so that the signal chosen by the trigger already has its offset taken care of before we send it to the LSC model. 

Anyhow, having the offsets script try to put a value in the C1:LSC-TR[x,y]_OFFSET was giving us an extra offset and then when we did the normalizations, the numbers came out all wrong.  So.  I have removed the C1:LSC-TR[x,y] filter banks from the offset list, since they were made redundant. 

I have redone the normalizations for both arms (after running the ASS scripts).  I checked by watching the _OUT16 versions of the Thorlabs and QPD diodes before the triggering happens, and as I put offsets into the LSC servos to change the transmitted power, the diodes both change in the same way.  So, we'll have to see if this holds true for more than just values 0-1 the next time we lock, but hopefully it won't need changing for a while.

  9872   Mon Apr 28 23:05:03 2014 JenneUpdateLSCALS CARM and DARM settings

[Jenne, Koji]

The IFO is being uncooperative tonight, and I have an early morning meeting, so I'm calling it a night. 

Koji's filter module changes have been propagated from the Xarm to the Yarm, to CARM and to DARM.  (Actually, Q overwrote the changes to Xarm on Sunday accidentally, so first he reverted those for us, and then we propagated the changes). 

Today, with careful measuring, we find that for X and Y arms individually locked with the ALS, we want the gains to be +17 for the Yarm, and -17 for the Xarm (with the beatnote up-is-up convention).  This puts the UGFs at 150 Hz. 

We then switched over to CARM and DARM locking.  We guessed that the gains should be a factor of 2 lower since we're pushing on both ETMs for DARM, and the MC2 actuator is roughly the same strength as the sum of the ETMs.  In the end, after measuring the CARM and DARM loops, we find that the gains should be +7.5 for CARM, and +8.0 for DARM to set the UGFs at 150 Hz.  The servo is a little bit delicate, so having too low of gain is not okay. 

For some reason, we seem to be utilizing more actuator range with the new setup, so the limiters in the filter banks have been set to 11,000 (previously were 8,000), and the ALS watch script (ALSdown.py) threshold has been increased to 10,000 (previously 7,000). 

When finding the IR resonances with the new scheme, we are having trouble holding lock throughout the scan.  I have set the tramp for the coarse part of the scan to be 0.05 seconds (previously 0.01 seconds), which is an increase of a factor of 5 in the ramp time.  This helps, but may still not be enough, since we don't always hold lock until both IR resonances are found.

Probably the most annoying thing from tonight is the fact that ETMY keeps drifting off, particularly in yaw, when locked.  I don't have an explanation of why this is happening, but you can watch it happen sometimes, and the lock will be lost shortly thereafter.  Definitely when we lose lock and the ETM gets kicked, it is far enough away in yaw alignment that I have to completely redo the Yarm alignment.  This happens whether or not the ETMY oplevs are on.

To summarize, 3 scripts have been modified:

(1) ALSdown - threshold increased  (Modification from last week - turns off the slow temp servos for the end lasers, clears histories)

(2) ALSfindIRresonance - increase ramp time

(3) Lock_ALS_CARMandDARM - final gain values set to 7.5 for CARM and 8 for DARM, no filters come on until gains all the way up, turns on new set of Koji filters. (Modification from last week - turns on the slow temperature servos for the end lasers)

  9874   Tue Apr 29 01:10:16 2014 KojiConfigurationLSCNew ALS servo implemented for the X arm

New ALS servo performance

Attachment 1:

Comparison between the old (orange) and new (red). The new error signal (red) is suppressed like a white noise as expected.

Comparison between the out-of-loop evaluation (black) and the in-loop signal (red). Below 50Hz the out-of-loop is limited by the sensor-noise like something.
This out-of-loop stability was measured with the ALS stayed at the top of the resonance and calibrated the POX11 error signal.

Attachment 2:

New ALS servo with the LSC PDH signal. When the PDH signal is used for the control, FM4 is additionally used.
In this condition, the error signal was measured and calibrated into frequncy noise (Hz/sqrtHz).

By comparing the POX (with the new servo) and POY (with the old servo) signals, one can see that the new servo has better supression below 30Hz with almost no cost at ~100Hz.

Attachment 1: ALSX_SPE.pdf
ALSX_SPE.pdf
Attachment 2: ALSX_PDH_SPE.pdf
ALSX_PDH_SPE.pdf
  9877   Wed Apr 30 00:40:55 2014 manasaConfigurationLSCY arm IR lock troubleshooting

[Koji, Manasa]

The Y arm locks stably for IR PDH now.  

The reason for ETMY getting kicked during lock acquisition was finally found to be related to the limiter value set in the Y arm servo. We reduced the limiter value unintentionally and found that the lock acquisition stayed smooth. The limiter value was stepped in 1000s from 7000 and eventually found that the ETMY suspension was kicked when we try to acquire lock with the limiter value was set at 11000. 

 

The limiter for X arm at 11000 is not causing any trouble at the moment.

In the process, we did a bunch of things through the evening to troubleshoot IR locking of the Y arm.

Earlier today running the IFO configure script did not restore the arms to lock and both the ETMs needed to be aligned to lock the arms. The arms stayed locked for 15 minutes and the Y arm lost lock eventually leaving the ETMY in a misaligned state. 

The state of the Y arm was similar to what Jenne has explained in ELOG where the ETMY was kicked during lock acquisition and would move to a misaligned state.

To trouble shoot, there were several things that were done. A few of them might not have any direct correlation to the locking issue but could just be a coincidence.  

1.  The trigger time for the filters in the arm filter modules were set such that they switch on after the SUS violin filters. Arm FM trigger time = 3 s (previously set at 0.1s) and SUS violin trigger time = 1s. This reduced the number of lock loss events.

2. There was some drop in transmission when the bounce filter of Y arm (FM6) turned ON. This was fixed by changing its ramp time (initially set at 1s). The filter has been modified to turn on immediately upon arm lock acquisition before the other triggered filters in the filter module turn on.

3. The QPD and SUS signal cables running to the rack were checked to be intact. Koji found some of them to be loose. But this had no evident correlation with the arm locking problem.

4.The oplev and PD alignment was checked at the Y end. The high gain trans PD for Y arm was checked for good alignment by looking at TRY. It was found that the EXIT light at the Y end is injecting some noise to the transmission PD. 

5. The ETMY was given offsets in PIT, YAW and POS and the OSEM sensor values were checked to see if the suspension is behaving well. It was behaving well.

  9880   Wed Apr 30 16:07:59 2014 manasaUpdateLSCALS X noise post servo modification

I. The Y arm stayed stable through last night and I have saved the arm lock settings to IFOconfigure.

II. ALS X arm noise measurements

I looked at the before and after noise of ALSX.

Settings:
Phase tracker gain = 85
Xarm servo gain = -17

The rms in loop noise has dropped from 3KHz to 500 Hz.

Attachment 1: Phase tracker OLTF

Attachment 2: Free running noise and in loop noise

Attachment 3: Out of loop noise (measured with arms locked using PDH for IR)

Attachment 4: ALS arm servo OLTF

xml data files can be found in /users/manasa/data/140430/

Attachment 1: ALSX_PToltf.jpg
ALSX_PToltf.jpg
Attachment 2: ALSX_FreeInloop.jpg
ALSX_FreeInloop.jpg
Attachment 3: ALSX_ool.jpg
ALSX_ool.jpg
Attachment 4: ALSX_OLTF.jpg
ALSX_OLTF.jpg
  9884   Wed Apr 30 21:16:42 2014 ranaUpdateLSCMC2 Strad

bettsreplica.jpg

I found the YARM LSC feedback going to MC2 and the MC2 violin mode (at 644.69 Hz) rung up. The existing notch was just a second order Twin-T style notch (so not a good idea) and also not turned on, since it was in the FM4 spot of LSC-MC2 and the vio triggers are ganged between all mirrors and don't touch FM4.

I copied the PRM vio bandstop into FM2 of this bank, deleted the old notch, and tuned the bandstop frequencies a little to get the violin peak into one of the zeros of the elliptic bandstop. Attached are the Y-arm / MCF spectrum with the mode rung up as well as the new filter's TF compared with the old notch.

P.S. I installed http://en.wikipedia.org/wiki/Midnight_Commander on pianosa.

Attachment 2: MC_Y_vio.pdf
MC_Y_vio.pdf
Attachment 3: MC2_vio.pdf
MC2_vio.pdf
  9887   Thu May 1 00:13:21 2014 KojiUpdateLSCALS X beat setup aligned

I saw big misalignment on the GTRX camera, I went to the PSL table and aligned the beat beams.

I disconnected the RF out of the X beat PD and  connect an oscilloscope.
The beat amplitude was 15mVpp at the beginning and is 60mVpp right now.
I checked the alignment on this RF PD and the DC PD as well as the spot on the CCD.

The RF cable was connected again.

Jenne and I ran the ALS and scanned the arm cavity. We had the impression that the noise level of the ALS improved,
but I don't have correctly calibrated measurement. Let's do it tomorrow in the day time.

The Yarm beat alignment look awful. We should align this too.

  9888   Thu May 1 03:15:03 2014 JenneUpdateLSCYarm locking with CM board

[Rana, EricQ, Jenne]

We locked the Yarm by using the CM board this evening. 

POY is going from its demod board to the CM board, and then the slow output of that is going to the POY channel of the whitening, and then on to the ADC.  So, with no AO path engaged, this is basically like regular Yarm locking. 

First of all, Den and Koji back in December were concerned that they were seeing some EOM saturation in the fast path, but we don't think that's an issue.  We looked at the FSS PCDRIVE while we increased the AO gain.  In fact, it looks like the offset is coming from the MC board's IN2 slider.  Even with no input on that slider, increasing its value puts an offset into the MC.  To fix this, I am going to put a 6.8uF cap in series with R30 in the MC board, which is part of the crossbar switch where the IN1 and IN2 get summed.  This should AC-couple the output of the IN2 slider before the summing node.

We aren't sure which sign to use for the AO path of the CM board...Eric is doing some modelling to see if he can figure it out.  He's going to try to see which spectra (below) his model matches.

For the spectra, we have a reference trace with no AO path, a trace with "Plus" polarity on the CM board which started to show a peak when the value of the MC IN2 slider was at about -6 dB, and a trace with "Minus" polarity, which started to show a peak when the value of the MC IN2 slider was at about -16 dB. 

Yarm_CMlocking_spectra_30Apr2014_copy.pdf

We took loop measurements for each of the Plus and Minus cases. Something that seems a little weird is how shallow of a slope we have in both cases near our UGF.

Yarm_CMlocking_TFs_30Apr2014_copy.pdf

 

  9889   Thu May 1 03:23:07 2014 ericqUpdateLSCYarm locking with CM board

Quote:

POY is going from its demod board to the CM board, and then the slow output of that is going to the POY channel of the whitening, and then on to the ADC.  So, with no AO path engaged, this is basically like regular Yarm locking.  

Just to be clear, the normal POY signals are not currently present, so the restore POY script will not result in the arm locking. POY11_I is turned off, POY11_Q is the output of the CM board, which can be used to lock the arm, as we did tonight. 

The POY digital demos angle went -56 -> 90, to get all of POY11_Q_IN1 to POY11_I_ERR

Miscellaneous things:

  • Right now, the cable from CM board ->MC board is a BNC. There appeared to be a differential 2-pin lemo hanging around for this purpose, but it didn't seem to be transmitting the signal. However, we will want something better than a BNC to keep this signal clean. 
  • I took SR785 TFs of the CM board from IN to the slow and fast outs. They looked reasonable, and will be posted in time. 
  • We enabled the 79:1.6k filter in the CM screen (though it is unclear if these are the actual values...), and put in its inverse in the digital path. I.e. we only want this shape in the AO path, to give it 1/f shape in the vicinity of the crossover. This is only necessary in the uncoupled cavity case. 
  9891   Thu May 1 13:03:34 2014 JenneUpdateLSCMC board pulled for AC coupling

Quote:

To fix this, I am going to put a 6.8uF cap in series with R30 in the MC board, which is part of the crossbar switch where the IN1 and IN2 get summed.  This should AC-couple the output of the IN2 slider before the summing node.

 MC board is out, so don't be surprised that the MC isn't locking.

  9892   Thu May 1 14:45:44 2014 JenneUpdateLSCMC board back in

Quote:

Quote:

To fix this, I am going to put a 6.8uF cap in series with R30 in the MC board, which is part of the crossbar switch where the IN1 and IN2 get summed.  This should AC-couple the output of the IN2 slider before the summing node.

 MC board is out, so don't be surprised that the MC isn't locking.

 MC board is back in place, MC is locked.

If I disable all of the AO path bits of the CM servo (disable switch, and also gain slider to -32dB), and then move the MC IN2 slider around, the MC does not get an offset anymore (as seen by reduced transmission and increased reflected power), so I think the DC coupling is working.  I do lose lock of the MC if the slider goes above ~22 dB in this situation, but I don't see any effect before then, whereas we were able to see a steady increase in the reflected power as we moved the slider around last night.  So, it seems like things are good with the DC coupling of the IN2 slider.

Here are some photos from before I modified the board (front, back, and zoom of the area I was working in):

IMG_1394.JPG

IMG_1395.JPG

IMG_1398.JPG

And here is my modification, putting the 6.8uF cap in series with (a new) 2k thin film resistor, in the spot for R30:

IMG_1402.JPG

The board is https://dcc.ligo.org/DocDB/0004/D040180/001/D040180-C.pdf

[Edit, 20140721: It looks like this is actually D040180 rev B, not rev C. —Evan]

  9893   Thu May 1 16:41:35 2014 ericqUpdateLSCYarm locking with CM board

 (Edited this post; Forgot to account for the FMs other than 4 and 5... it now agrees better!)

I did some quick MATLAB simulation of the relevant loops to try and understand what was going on. I put the digital UGF around 200Hz, and then brought in the AO path with both signs. 

In these plots, blue is digital only, green is AO+digital with the crossover happening at the UGF, and red is the AO gain set to five times of what it was in the green curve. 

 AOsignsSame.pdfAOsignsOpposite.pdf

Based on the phase curves in the loop measurements, I would be inclined to say the pink -AO case corresponds to the opposite sign plot, and the +AO case to the same sign plot. 

This correspondence also holds for the appearance of the peaks in the noise curves, the Opposite sign case has a dip in loop gain at ~50Hz (pink curve, -AO), same sign around ~30Hz (brown curve, +AO). 

However, both of these look like they become unstable at some point in the transition! This agrees with our experience last night...

I'll fiddle around and try to come up with some compensating digital filter that will make the Opposite sign scenario work. 

The MATLAB code I used to make these plots is attached. 

Attachment 3: loopModeling.m
clear all

cycleT = 60e-6;

% AI, AA shapes from http://nodus.ligo.caltech.edu:8080/40m/8555
[z,p,k] = ellip(4,4,60,2*pi*7570,'s');
AI = zpk(z,p,k*10^(4/20)) * zpk([],-2*pi*13e3,2*pi*13e3);
AI.OutputDelay = 1*cycleT;

[z,p,k] = ellip(8,0.001,80,2*pi*7570,'s');
... 58 more lines ...
  9894   Thu May 1 17:00:05 2014 ranaUpdateLSCYarm locking with CM board

 I think that's about halfway there. Since this needs to be a precise comparison, we cannot use so many approximations.

We've got to include the digital AA and AI filters as well as the true, measured, time delay in the system. Also the measured/fitted TF of the CM board with the 79:1.6k filter engaged. We want an overall phase accuracy between Jenne's measured TF from last night and this model (i.e. on the same plot with the residual plotted).

Is there a cavity pole in the model? Should be at ~1.6 kHz.

  9899   Fri May 2 03:51:29 2014 ranaUpdateLSCfarther into CM

Rana, Q

After some more matlab loopology (see Qlog), we turned on the AO path successfully. The key was to turn on the 300:80 filter in the MCL path so that it could cross stably with the AO. Then we ramp up the AO gain via the newly AC coupled AO path into the MC servo board.

The POY11 signal looks nice and smooth. For the final smoothness after the overall common gain is ramped up, I turned on a FM7 pole at 300 Hz so that the MC path would keep falling like 1/f^2 and not interfere with the AO path around 1 kHz.

There's not enough gain yet to be able to turn on the Boost. PCDRIVE is ~3 V. Earlier tonight we were seeing the EOM saturation effect maybe, but we re-allocated the gain more to the front end and its all fine now. I think we can get another ~10-15 dB of gain by using the POY whitening gain slider + the CM AO slider. Then we can get the Boost on and take some TFs with the SR785 (as long GPIB allows).

Good Settings:

CM REFL1 = +31 dB, AO = +16 dB, MC IN2 = +16 dB. SUS-MC2_LSC = FM6, FM& ON

 

** Everything has been pretty stable tonight except some occasional MC/EOM locking oscillations. This means that its been easy to keep trying some different CM steps since the Y-Arm relocks using MCL within seconds.

Attachment 1: MCkicked.png
MCkicked.png
  9904   Fri May 2 13:03:30 2014 JenneUpdateLSCALS Y beat setup aligned

I touched up the alignment of the Ygreen on the PSL table.

  9905   Fri May 2 14:31:26 2014 KojiUpdateLSCALS Y beat setup aligned

Please check the X&Y ALS out-of-loop stability. Use fine resolution (BW0.01). Calibrate the POX/POY in Hz.

  9906   Fri May 2 19:03:13 2014 JenneUpdateLSCALS out of loop spectra

I have taken out of loop spectra for both arms, by looking at POX/POY while the arms were controlled with ALS.

To do this, I put the POY11 Q signal directly to the whitening board, which meant that I removed the cable coming from the common mode board.  (Now that we're doing CM stuff again, I have put it back, so POY is still in the slightly weird "going through the CM slow path" situation). 

For the locking, both arms had FMs 1, 2, 3, 5, 6 engaged.  Yarm had a gain of +17, Xarm had a gain of -17. 

Y beatnote was 98.6MHz with a peak height of -22 dBm.  X beatnote was 45.0MHz with a peak height -11 dBm.

I drove ITMY at 503.1 Hz with 100 counts.  I drove ITMX at 521.1 Hz with 25 cnt. 

Koji helped me match up the peak heights between the FINE_PHASE_OUT_HZ calibrated signals and the PDH signals. 

The out of loop noise is definitely below 1kHz rms now, which is better than it was!  Hooray!

ALS_OutOfLoop2_2May2014.pdf

  9908   Sun May 4 22:28:54 2014 ericqUpdateLSCfarther into CM

 [Rana, ericq]

Today, we got a ~2kHz bandwidth lock of the YARM with the AO path. We weren't able to turn any boosts on, due to POY noise. 

Rana and Koji have written scripts (/scripts/PRFPMI/cm_step and cm_down) that work very reliably. 

Here is an OLTF. (Violin filter was off, the crap around 600Hz goes away with them on)

 OLTF.png

My MATLAB modeling was useful is predicting the features of the loop shape, and the dependence on AO gain/crossover. Still, I need to check it out, because there is nonzero discrepancy between reality and my model (this may be hiding in the non flat MC AO response, i.e. the bump at ~35kHz. Alternatively, the crossover frequency is a free parameter...)

In any case, we have confidence that the CM board is mostly working predictably. We presume that our current obstacle is the very noisy nature of POY, and thus it's not worth spending more time in this configuration. 

Upcoming plans:

  • Use the CM board to control the Y arm coupled with the PRM. ("PRY"?)
  • Determine the game plane for high BW control of CARM. 

Next steps:

  • Check CM board boosts turn on politely (Transients, TFs)
  • Use fast spectrum analyzer to check MC loop gain out to a few MHz. (The bump in the tens of kHz should be fixed / moved higher)
  • Think about noise performance of, say, REFLDC, ASDC, RF AS signals, etc. in the PRY case, figure out which one to use first. 
  • We may want to first focus on directly locking the arm on an RF signal, figure out gains etc. and then figure out how to do DC->RF handoff nicely, or if high bandwidth DC signal control is even feasible. 

RXA: we should also use AS45 instead of POY11. It has better SNR and I think our whole problem is too little light on POY.

  9909   Mon May 5 19:26:43 2014 JenneUpdateLSCOverride ability for whitening triggering

 Today I finally implemented a feature in the whitening triggering that I should have a long time ago:  an override button.

Now, on each RFPD's phase rotation screen, there is a button to either allow triggering for that PD (both quads) or to be in manual mode.  

If you are allowing triggering, they will behave as they have for the last ~year.....if any degree of freedom is using either quadrant of that PD, and that degree of freedom is triggered, then engage analog whitening and digital de-whitening.

If you chose manual mode, then you can engage or disengage the whitening as you please.  (The analog whitening and digital de-whitening are still tied together).

  9912   Tue May 6 02:48:50 2014 JenneUpdateLSCAO path engaged with AS55 as error signal for Yarm locking

[Rana, Jenne]

This evening, we were able to lock the Yarm through the common mode board, using AS55 as our error signal.  Our final UGF is about 5kHz, with 60 degrees of phase margin.

Before dinner, Rana switched the input of the CM board's REFL1 input to be AS55I rather than POY11Q, in the hopes that it would have better SNR.  Demod phase of AS55 was measured to be 14 deg for optimum Yarm->I-phase and has been set to 0 degrees.  Since the POY demod phase had been 90 degrees, which puts in a minus sign, and now we're using 0 deg which doesn't have a minus sign, we're using the plus (instead of minus) polarity of the CM board.

We re-allocated gains to help lower the overall noise by moving 15dB from the CM board AO gain slider to the MC IN2 gain slider, so we weren't attenuating signals.

We see, by taking loop measurements even before engaging the AO path (so, just the digital loop portion) that we've gained something like 20 degrees of phase margin!  We think that about 5 degrees is some LSC loop re-shaping of the boost filter.  We weren't sure why there was a hump of extra gain in the boost filter, so we've created a new (FM8) boost filter which is just a usual resonant gain:  resgain(16.5,7,50)

The cm_down and cm_step scripts in ..../scripts/PRFPMI/ were modified to reflect the settings below, and their current states are included in the tarball attached.

Also, throughout our endeavors this evening, the PC fast rms has stayed nice and low, so we don't suspect any EOM saturation issues.


Now our Yarm digital servo has a gain of -0.0013, with FMs 2, 4, 5, 7, 8 engaged (2, 7, 8 are triggered). 

Our final CM board settings are: 

REFL1 gain = +22dB

offset = -2.898V

Boost = enable

Super Boost = 0

option = disable

1.6k:79 coupled cavity compensator = enabled

polarity = plus

option = disable

AO gain = 15dB

limiter = enable

MC board:  IN1 gain = 18dB, IN2 gain = 0dB.


Here is a measurement of the Common Mode MCL/AO crossover.  The purple/orange trace here is after/before the boost was engaged.

out.pdf

We also have a measurement of the total loop gain, measured with the SR785.  The parameter file, as well as the python script to get the data, are in the tarball attached.  Noteably, the excitation amplitude was 500mV, whereas Q and Rana yesterday were using 5 or 8 mV.  We aren't sure why the big change was necessary to get a reasonable measurement out.  This measurement is with the boost enabled.

TF3_5May2014_BoostON_UGF5kHz.png

Finally, here is a measurement of the MC error point spectra, with the CM boost on, after we reallocated the gains.  There's a giant bump at several tens of kHz.  We need to actually go out with the fast analyzer and tune up the MC loop.

CM_TP2A_140506_boostON_realloc.png

Attachment 2: zipped.tgz
  9913   Tue May 6 03:17:15 2014 ranaUpdateLSCfarther into CM

Yes, we still need to do these things, day team. Please tune up the MC loop first, before anything else.

Quote:

Next steps:

  • Check CM board boosts turn on politely (Transients, TFs)
  • Use fast spectrum analyzer to check MC loop gain out to a few MHz. (The bump in the tens of kHz should be fixed / moved higher)
  • Think about noise performance of, say, REFLDC, ASDC, RF AS signals, etc. in the PRY case, figure out which one to use first. 
  • We may want to first focus on directly locking the arm on an RF signal, figure out gains etc. and then figure out how to do DC->RF handoff nicely, or if high bandwidth DC signal control is even feasible.  

  9917   Tue May 6 17:58:44 2014 ericqUpdateLSCfarther into CM

 I took a look at the MC OLTF and AO path TFs with the fast agilent analyzer. 

I played with the relative gain of the EOM and PZT, but couldn't really change the MC OLTF shape much without making the PC Drive RMS angry. 

However, it turns out we have plenty of phase headroom to up the MC UGF from ~100kHz to ~180, with about 40 degrees of phase margin and ~7dB of gain margin. As I write this, PC drive RMS is around 1.1, and FSS Fast at 5.6, so I think the extra gain is fine for now. 

This pushes up and smoothens out the gain peaking in the AO path; see this figure:

AOTFs.pdf

(why does ELOG hate my python plots?! argggg)

Rana's rule of thumb was "We need at least +3dB MC loop gain at our CM servo UGF," so it looks like high tens of kHz bandwidth may be doable from the AO standpoint.

RXA: No, no, no, no, no, noooo. Rana said we need a gain of 3-10 at the CM UGF, not +3 dB.

  9918   Tue May 6 18:32:14 2014 steveUpdateLSCTRY 60Hz noise hunt

This is an effort to get rid of our ground loops  by isolating the electronic components from the optical table.

Aluminum mounting base plates of Thorlabs BA2 and Newport B-2 were replaced by plates or post made out of delrin material.

This is an insulator. DELRIN base plates were installed 6 places. The oplev-qpd has Nylon base plate.

The NPRO and HE/NE lasers are not isolated from the table. S8 and S9

I'm not sure about the doubling oven S10 

The optical table is grounded at G11  through  ~1 Mohms to the ETMY chamber.

Alignment touch up needed   at all D-marked component!

 

Attachment 1: ETMY-ISCT_EISOL.jpg
ETMY-ISCT_EISOL.jpg
  9919   Tue May 6 19:38:13 2014 JenneUpdateLSCSet up for PRFPMI CM locking

To get ready for the PRFPMI CM trials tonight, I put AS55's cables back to their nominal state, and now have REFL11 I going to IN1 of the CM board.  The OUT1 of the CM board goes to the REFL11I whitening channel.

REFLDC was not disconnected in the last few days, so it is still set up for IN2 of the CM board, with an external offset adjust.

  9920   Wed May 7 04:01:44 2014 rana, jenneUpdateLSCPRFPMI: Common Mode servo using REFL_DC ON, CARM offset still non-zero
  1. With REFL_DC coupled into the CM board through an SR560 (with an offset subtractor), we were able to transition to use it as the CARM error signal.
  2. We reduced the CARM offset until the arm powers went up to ~13.
  3. We had the AO path turned on and the MCL/AO crossover was ~150 Hz.
  4. We saw the double cavity pole come in from HF down to ~1-2 kHz. The lock stayed stable like this.
  5. We've set the IMC overall gain higher by +4dB in the mcup script. That's -4 dB from Eric's max gain earlier today.
  6. We have some scripts now for this scripts/PRFPMI/ :   camr_cm_down.sh and carm_cm_up.sh
  7. The sequence was ALS -> SqrtInv while digital with CARM -> MC2. Then we digital transition to REFL_DC using the CM board switch to put REFL_DC into the REFL11_I socket.
  8. REFL_DC is noisy, so we upped the SR560 gain by 10 and compensated.

Also, we found the PRM OL off and turned it back on. The ETMY was swinging a lot after lock loss, so we set its SUSPOS damping gain to match the ETMX and it stopped swinging so much.

Next up: more of the same, make this sequence more stable, turn on CARM OSC and watch the LOCKI outputs while we slowly ramp between signals.

Also, what should be the sign of the CARM offset ???

  9921   Wed May 7 14:01:36 2014 steveUpdateLSCTRY 60Hz noise hunt

Quote:

This is an effort to get rid of our ground loops  by isolating the electronic components from the optical table.

Aluminum mounting base plates of Thorlabs BA2 and Newport B-2 were replaced by plates or post made out of delrin material.

This is an insulator. DELRIN base plates were installed 6 places. The oplev-qpd has Nylon base plate.

The NPRO and HE/NE lasers are not isolated from the table. S8 and S9

I'm not sure about the doubling oven S10 

The optical table is grounded at G11  through  ~1 Mohms to the ETMY chamber.

Alignment touch up needed   at all D-marked component!

 

 Attachment appendix:

 

D: component delrin isolated

N: component nylon isolated ( or Delrin )

S: component shell is shorting to optical table (except oven)

G:  optical table ground

 

I failed to maximize TRY the pds.

  9927   Thu May 8 00:40:39 2014 ericqUpdateLSCBNC vs. 2pin LEMO for AO

 I've checked that the 2pin lemo connector that was run some time ago from the LSC rack to the MC board does indeed transmit signals. To try and evaluate its suitability I did the following:

  • Generated a 5mVpp 1.3kHz signal with an SR785 and fed that into CM board In1, all boosts off, 0dB AO gain. 
  • Both BNC and LEMO connected to CM servo out
  • One of BNC or LEMO connected to IN2 of MC servo, input gain of 30dB but disabled, OUT2 switched to AO and fed to Agilent spectrum analyzer. 
  • Terminated MC IN2 for comparison. 

No real difference was seen between the two cases. The signal peak was the same height, width. 60Hz and harmonics were of the same amplitude. Here are the spectra out to 200k, they are very similar. 

AOcablesWide.pdf

Mode cleaner was locked during this whole thing. This may interfere with the measurement, but is similar to the use case for the AO path. If ground loop / spurious noise issues keep occurring, it will be worthwhile to examine the noise of the CM and MC servo paths, inputs and outputs more carefully. 

  9932   Thu May 8 17:00:56 2014 rana, QSummaryLSCREFL_DC handoff didn't work last night

Last night after checking cabling and turning on ISS, we tried several times to handoff to REFL_DC but it didn't work at all.

Some issues:

  1. The ISS was injecting a lot of very low frequency power fluctuations because of bad AC coupling.
  2. The SR560 @ LSC rack was saturating a lot with the x10 gain that Jenne and Rana put in; we turned it back to G = 1.
  3. The ISS was also saturating a lot. We turned it off around 4 AM, but still no success.
  4. The ALS sequence for finding the Red Resonance takes too long (~2 minutes), so we're trying a faster scheme tonight.
  9933   Thu May 8 17:25:17 2014 steveUpdateLSCTRY 60Hz noise hunt

 I worked at the ETMY-ISCT this morning and late afternoon.  I will continue the 60 Hz noise hunt tomorrow. 

  9935   Fri May 9 04:09:39 2014 JenneUpdateLSCCM board boost turn-on checkout

As part of checking the common mode board before we get too carried away with using it, I looked at the time series of the AO servo output when I turned on various boosts, or changed gain values.  As it turns out, basically anything that I did caused glitches.  Oooops.

I plugged a function generator to the IN1 port of the CM board, with a freq of 400Hz, and a voltage of 10mVpp (which is the smallest value that it would allow).  I plugged the BNC version of the servo output into a 300MHz 'scope.

First I looked at "boost" and "super boost", and then I looked at various steps of the AO gain slider.  For all of the button presses that gave me glitches, I saved .png's of the 'scope screen (on a floppy, so I'll have to fetch the data tomorrow...).

Both enabling, and disabling the "Boost" button gave me glitches.

For "Super Boost", I saw glitches for all of the steps, 0->1, 1->2, 2->3. 

For the AO path, I only started at 0dB, and only captured screenshots of glitches when I increased the gain, since presumably that's when we'll care the most during acquisition.  I found that going down in gain caused glitches at every step!  For increasing the gain, steps from an odd number of dBs to an even number consistently caused glitches.  Steps from an even number to an odd number occasionally caused glitches, but they weren't very common.  For the steps that did cause glitches, some were worse than others (7dB to 8dB, 15 dB to 16 dB, and 23 dB to 24 dB seemed the worst.)

After my work, I put all of the cables back, so that we should be ready to utilize the CM board for locking this evening.


For posterity, here are the notes that I took while I was working - I'll make them more coherent when I fold them in with my images tomorrow.  The "first .png, next, etc." are because the 'scope numbers them in order as a default.

1st png = boost enable, then disable
2nd png = super boost, start at 0, then 1, then 2, then 3
3rd png = AO gain from 1 to 0
4th is AO gain from 0 to 1 (happens less often than 1->0, which is every time I get a glitch)
Next is AO gain 1->2, got 2 glitches!
3->2 glitch often, 2->3 much less often
next is 2->3
next png is 3->4, 2 glitches with weird dip
4->5, rare
next png is 5->6
6->7 is rare
next png is 7->8, which is nasty!!
8->9 is rare
png 9->10
10->11 is rare
png 11-> 12, 3 glitches
 12->13 rare
png 13->14, 2 glitches
14->15, rare
png 15->16, kind of nasty
png 17->18, 2 glitches
png 19->20, 3 glitches
png 21->22, 2 glitches
png 23->24, kind of nasty
png 25->26, 2 glitches
png 27->28, 3 glitches, at least
png 29->30, 2 glitches

 

Somehow, the images got put into a whole new entry, even though I thought I was editing this one.  Anyhow, please see elog 9938.

ELOG V3.1.3-