40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 48 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  8968   Mon Aug 5 19:10:01 2013 KojiUpdateCDSChoosing LO Amplitudes and Frequencies

- I suppose the green transmission paths were thoroughly inspected and aligned in prior to the measurement

- Of course it is a BAD idea to use 60Hz as the LO frequency.

- Power spectra should be plotted as "RIN (relative intensity noise)" as the DC of 1 and 100 gives you 100 times different power spectra for the same beam.
  Don't forget to subtract the offset from your DC values.

  8972   Tue Aug 6 16:36:51 2013 gautamUpdateCDSChoosing LO Amplitudes and Frequencies-revised

I redid the power spectrum measurement for the X-arm green transmission after aligning the arm to green using the ITMX/ETMX Pitch and Yaw sliders on IFOalign.

The Y-axis now reflects the relative intensity noise (RIN), which I obtained by taking the average value of the X-arm green transmission using tdsavg. Based on this measurement, I have now picked four new frequencies at which to try and modulate the PZT mirrors: 10, 19, 34 and 39 Hz. Bandpass filters in the LIA stage have been appropriately modified. 

Power Spectrum:

powerSpec0806.pdf

  9229   Thu Oct 10 08:25:07 2013 SteveUpdatesafetyChris received safety training

Chris Couste, our new undergrad help received 40m specific, basic safety training yesterday.

  10329   Mon Aug 4 17:30:00 2014 ericqUpdateGeneralChronic Suspension Problems

TRX and TRY communication were recovered by doing a simultaneous reboot of all of the frontends.

Working with the interferometer has been extremely frustrating today. Having transmission values let us lock and ASS, but that has been less helpful than you would hope.

Saving the ASS offsets has repeatedly resulted in an overall bad change in alignment, moving the TTs and other things off randomly.

ITMX continues to be kicked. ITMY intermittently wanders away. It has not been possible to maintain IFO alignment for a reasonable length of time.

Also, the wall IOO striptool shows the MC2 Trans QPD Yaw having large step-function features. The MC is having an ok duty cycle, but this just may mean that the WFS are able to absorb what is happening to the MC suspensions.

The suspensions are really misbehaving. We need to get to the bottom of this, or else we are going to keep losing time to alignment.

  10330   Mon Aug 4 18:25:46 2014 JenneUpdateGeneralChronic Suspension Problems

Q is working on fixing the "save offsets" script for the ASS, because that has lost me my alignment two more times in the last few hours.  But, right now I have both arms locked with transmitted powers of about 0.9!  To get this, I ran the ASS scripts, and hand-tweaked the bias sliders of some of the optics to relieve the ASS outputs.  Then I turned the ASS gain to zero, and by-hand turned off the oscillators.  So, the ASS outputs are just frozen. 

I haven't seen IMTX suspension kicks, I think since Q did the front end reboot earlier. There has been ITMY activity, however. I think I'm going to be bold, and try locking ALS.

  14824   Fri Aug 2 16:46:09 2019 KruthiUpdateCamerasClean up

I've put the analog camera back and disconnected the 151 unit GigE. But I ran out of time and wasn't able to replace the beamsplitter. I've put all the equipments back to the place where I took them from. The chopper and beam dump mount, that Koji had got me for the scatterometer, are kept outside, on the table I was working on earlier, in the control room. The camera lenses, additional GigEs, wedge beamsplitter, 1050nm LED and all related equipments are kept in the GigE box. This box was put back into CCD cameras' cabinet near the X arm.

Note: To clean stuff up, I had entered the lab around 9.30pm on Monday. This might have affected Yehonathan's loss measurement readings (until then around 57 readings had been recorded).

Sorry for the late update.

  5451   Sun Sep 18 16:42:00 2011 KojiBureaucracyEnvironmentClean up your mess

Mess in the lab is increasing. Kiwamu and I had to clean up some stuffs to continue our work.
(i.e. some components were disturbing to open the lid of the tables.)

Basically the tools/equipments/component/cables/digital cameras/lens caps/IR viewers
you have used for the day should be cleaned up at the end of the day.

If one likes to leave a temporary stuff, leave a note to indicate by whom, for what, how long
it will be kept like that, and when one is going to back there with contact info like the cell phone #.

  3953   Fri Nov 19 04:23:12 2010 SureshUpdateSUSCleaned and stuck magnets to dumbbells

To clean the glue off the magnets and dumbbells I soaked them in Acetone for about an hour and then scrubbed the ends clean with a lint free tissue soaked in Acetone. 

I then examined the ends under a microscope and found that while the flat faces were clean some of the grooves were still filled with glue.

 

Top Bottom

dumbells_before_ultrasonic_bath_2.jpg

dumbells_before_Ultrasonic_wash_1.jpg
 magnets_after_scrub.jpg magnets_after_scrub.jpg


While examining the magnets I found some small magnetic fibers stuck to the magnets.  Rana had mentioned these before as potential trouble makers which could degrade the high frequency performance of the OSEMs.

 Magnetic_Hair.jpg

 

To try and get the glue out of the grooves I put the dumbells through an ultrasonic bath for ten mins.  Most of the glue has been removed from the grooves.  Pics below

 

dumbells_after_ultrasonic_wash_1.jpg

dumbells_after_ultrasonic_wash_2.jpg

 

I proceeded try and recover the lost time by sticking the magnets back to the dumbbells.  Increased the quantity of the glue to a slightly larger amount than usual.  It should definitely squish out a bit now.  We will know tomorrow when we open the gluing fixture.

 

 

 

  9833   Sun Apr 20 18:15:37 2014 ericqUpdateIOOCleaner Cleanup

Came in, and the PMC and MC needed aligning. 

PMC Trans .74->.83

I wasn't able to move the MC1&3 the right way in pitch without having a terrible MC2 position... using the move MC2 scripts to bring it back threw off the other spots.

  12089   Tue Apr 26 15:22:35 2016 SteveUpdateendtable upgradeCleaning ETMX vacuum dirty window

Gautom is progressing with the layout nicely. The X-arm transmission window have not seen cleaning for decades. This should be the time to do it. Here is picture of dirtiness.

It is not that simple... How much effort should we put in it? The hole table with 1W inno laser plus... set up now about ~500 lbs  We can pull it off carefully, but it is not risk free.

We should look at our other signal port windows! Gautom's long reach able him to do the first contact cleaning without moving anything. It is great!
 

Attachment 1: ETMX-Tvp.jpg
ETMX-Tvp.jpg
Attachment 2: ETMX-TvpDetail.jpg
ETMX-TvpDetail.jpg
  12094   Wed Apr 27 15:04:47 2016 SteveUpdateendtable upgradeCleaning ETMX vacuum dirty window

It looks very promising.

 

Attachment 1: 1cETMX-Tcmp.jpg
1cETMX-Tcmp.jpg
  12100   Fri Apr 29 16:05:23 2016 gautamUpdateendtable upgradeCleaning ETMX vacuum dirty window

After a second round of F.C. application, I think the window is clean enough and there are no residual F.C. pieces anywhere near the central parts of the window (indeed I think we got most of it off). So I am going to go ahead and install the Oplev. 

Quote:

It looks very promising.

 

 

Attachment 1: IMG_0755.JPG
IMG_0755.JPG
  3975   Tue Nov 23 11:20:30 2010 josephbUpdateCDSCleaning up old target directory

Winter Cleaning:

I cleaned up the /cvs/cds/caltech/target/ directory of all the random models we had built over the last year, in preparation for the move of the old /cvs/cds/caltech/target slow control machine code into the new /opt/rtcds/caltech/c1/target directories.

I basically deleted all the directories generated by the RCG code that were put there, including things like c1tst, c1tstepics, c1x00, c1x00epics, and so forth.  Pre-RCG era code was left untouched.

  8223   Mon Mar 4 18:11:10 2013 JamieUpdateSUSCleaning up suspension POS inputs

I did a little bit of cleanup of the suspension POS inputs today, both in model and MEDM land.

model

sus_single_control.mdl was simplified such that now there are just two position inputs:

  • POS: with LSC filter
  • ALTPOS: unfiltered

The regular LSC inputs go into POS, and any optic-specific extra pos inputs go into ALTPOS after being properly filtered and summed.

So for instance, MC2_MCL and MC2_ALS are filtered and summed then go into MC2 ALTPOS.  The ETM ALS inputs go into ALTPOS.

I modified the GLOBAL DAMPING outputs so that they are filtered in the GLOBAL block before being sent to be summed before going into ALTPOS for {I,E}TM{X,Y}.

All suspension models were rebuilt/installed/restarted.

MEDM

The SUS_SINGLE.adl template screen was modified such that the POS button now points to optic-specific POS filter screens at:

/opt/rtcds/caltech/c1/medm/master/sus/SUS_$(OPTIC)_POS.adl

For MC1, MC3, PRM, BS, SRM these are links to SUS_SINGLE_POS.adl.  The rest of the suspensions (MC2, {I,E}TM{X,Y}) now have custom screens that are variations of SUS_SINGLE_POS but with their extra filter screens added in.  For instance, here is the new SUS_ETMX_POS.adl:

SUS_ETMX_POS.png

This gets rid of all the white screen crap that was in here before.

All of this has been committed to the SVN.  NOTE: symlinks were heavily used when sorting this stuff out, so check for symlinks when modifying in the future.

  4443   Fri Mar 25 08:58:38 2011 AidanUpdateTreasureCleared stuff off SP table

I tidied up some of the stuff that was on the SP table. The ISS box that has been sitting on there for months is now underneath the X-arm on top of the spare Marconi which is stored there.

 

 

Attachment 1: ISS_box.JPG
ISS_box.JPG
  6968   Thu Jul 12 15:25:24 2012 JenneUpdateSUSClearing test points

Somehow we got an excitation going on BS OpLevs, and even though Yuta thought he might have accidentally started it, he couldn't find where, so we couldn't stop it.

Since we don't have anything written on the wiki, I ended up calling Joe to remind me how to clear test points:

controls@allegra:~ 0$ diag -l -z
diag> tp clear * *
test point cleared
diag> awg clear 21.*
reset succeeded

The tp clear clears all test points everywhere.  The awg clear wouldn't let me do a universal clear, so I just did #21, which is the SUS model.  So if you want to kill excitations on a specific model, you must find it's DCU ID (it's in the top right corner of the GDS status screens for each model). 

  12555   Wed Oct 12 22:51:26 2016 KojiUpdateGeneralClipping could not be improved by the PZTs - NEED ANOTHER VENT

[Gautam Koji]

We engaged the HV driver to the output port PZTs, hoping to mitigate the AS port clipping. Basically, the range of the PZT is not enough to make the beam look clean. Also, our observation suggested there are possible multiple clipping in the chamber. We need another vent to make the things clearly right. Eric came in the lab and preparing the IFO for it.


1. Before the test, the test masses have been aligned with the dither servo.

2. We looked at the beam shape on the AS camera with a single bounce beam. We confirmed that the beam is hard-clipped at the upper and left sides of the beam on the video display. This clipping is not happening outside of the chamber.

3. We brought an HV power supply to the short OMC rack. There is a power supply cable with two spades. The red and black wires are +150V and GND respectively.

4. The voltage of +/-10V was applied on each of the four PZT drive inputs. We found that the motion of the beam on the camera is tiny and in any case, we could not improve the beam shape.

5. We wondered that if we are observing ANY improvement of the clipping. For this purpose, we aligned AS110 sensor every time we gave the misalignment with the PZTs. Basically, we are at the alignment to have the best power we can get. We thought this was weird.

6. Then we moved the AS port spot with the ITMX. We could clearly make the spot more round. However, this reduced the power at the AS port reduced by ~15%. When the beam was further clipped, the power went down again. Basically, the initial alignment gave us the max power we could get. As the max power was given with the clipped beam, we get confused and feel safer to check the situation with the chambers open.

During this investigation, we moved the AS port opitcs and the AS camera. So they are not too precise reference of the alignment. The PZT HV setup has been removed.

  6690   Sat May 26 01:28:58 2012 KojiUpdateGeneralClipping improvement

The beam at the dark port was largely clipped.
The arm transmissions (TRX/TRY) were ~0.6 no matter how you try to align.

The PZT1/2 X was scanned and TRX/TRY are now both ~0.9.
This means that the beam was mostly clipped in or after the mode mathing optics.

FPMI contrast is (2.45-0.02)/(2.45+0.02) = 98%
Not so bad although it does not tell anything about clipping before the IFO.

In the next opportunity, we should try to "pin" the beam axis on the arm mirrors using A2L.

1. I am not sure exactly where the clipping was. It means that a small clipping might still be there.

2. I am afraid that the beam is still clipped in the faraday. The beam can be scanned using the steering on the PSL table.

 

Attachment 1: Untitled.png
Untitled.png
  4788   Mon Jun 6 17:22:09 2011 valeraConfigurationLSCClipping in the X arm 1064 um trans path

I changed optics in the ETMX transmon path to remove clipping (which made a false QPD signal).

During the weekend I found that there was an offset in X arm c1ass pitch servo, which derives the signal by demodulating the arm cavity power, coming from the beam clipping in the transmon path.

The clipping was on the pair of the 1" mirrors that steer the beam after the 2" lens (see attached picture). The beam is about 5-6 mm in diameter at this distance from the lens and was not well centered.

I moved the steering mirrors downstream by about 8" where the beam is about 2-3 mm (the attached picture shows the mirrors in the new location). The Y arm layout is different from X arm and I didn't find any obvious clipping in transmon path.

The max X arm buildup went up from 1.3 to 1.5. I changed the TRX gain from -0.003 to -0.002 to obtain the normalized X arm power of 1 in this state. The MC refl DC is 1.6 out of 4.9 V and the Y arm buildup is ~0.9 so the TRX(Y) gains will have to be adjusted once the MC visibility is maximized.

Attachment 1: XarmTransMon.pdf
XarmTransMon.pdf
  8965   Mon Aug 5 18:02:34 2013 manasaUpdateGeneralClose up list checked
  •  
  • Center beam on all AS optics
  • GET CAMERA IMAGES OF EVERYTHING

    • We must get images right before closing, right after closing, etc.
  • Make sure REFL is clear
    • dither PRM, see motion on AP tables
  • Make sure AS is clear
    • dither BS/ITM, see motion on AP tables
  • Using IPANG/POS pick-off mirrors, center beams on:
    • IPPOS
    • IPANG (aligned low in pitch)
  • Check green alignment in the arms and make sure the transmitted green reaches the PSL table.
  • Check all OpLevs centered, in and out of vacuum

    [Jenne, Manasa]

    IPANG needed to be re-aligned today. Heavy doors are in place and bolts tight (torque 25 & 45).

    Steve! We are ready for pump down!

    I will check the IFO alignment once again early tomorrow morning before Steve starts pumping down.

     

     

     

     

     

  10512   Wed Sep 17 01:40:55 2014 JenneUpdateLSCCloser to REFL DC? Maybe?

I tried a bunch of times to reduce my CARM offset so I could jump to REFLDC digitally, but I think I'm maybe being a little ambitious with the arm power I'm trying to get to.

I have modified the carm_cm_up script so that it does my new procedure.  Everything is the same through locking the PRCL and MICH on 3f.  Then it reduces the CARM offset to 1.5 nm.  This is where we *used* to transition to sqrtInvTrans.  Now I have it going a bit farther to 0.5 nm, and arm powers of about 1 before doing that transition.  Also, before it transitions it lowers the CARM gain and engages the 1kHz lowpass in FM9.  A gain of about 4 is fine to keep the gain peaking in the CARM loop to only about 10dB, and sets a UGF of 100Hz which is the peak of the phase bubble with the lowpass engaged. 

Once I got to this point (several times tonight), I turned on CARM and DARM oscillations and looked at the transfer functions between (CARM and REFLDC) and (DARM and AS55Q). I have 2 DTT templates setup for this, in /users/Templates/PRFPMI.  These templates assume that you have your new DARM signal (AS55) going to SRCL_IN1 and your new CARM signal (REFLDC, which is actually REFL11I coming through the CM board) going to MC_IN1. 

I'm not sure why I'm losing lock. I don't see anything terribly telling on the time series plots, in particular none of the loops look like they are oscillating.  Here is one of the better examples from this evening:

Zoom_TRXTRYupto25_1094967592.png

Other notes:

* I realigned the Xgreen on the PSL table (again) to maximize the beatnote amplitude.  Y was fine, but X was very poorly overlapped on the camera.

* I put the SR785 back by the LSC rack and plugged it into the CM board for transfer functions.  Didn't take any tonight.

* We have a small wishlist for scripting things:  (1) DRMI restore script should reset REFL11 to "normal" REFL11.  (2) CARM/DARM acquisition restore script should reset REFL11 to REFLDC.  (3) CARM/DARM acquisition restore should also set PRMI parameters (as Q noted last week).

  12749   Tue Jan 24 07:36:56 2017 Max IsiUpdateSummary PagesCluster maintenance
System-wide CIT LDAS cluster maintenance may cause disruptions to summary pages today. 
  12752   Wed Jan 25 09:00:39 2017 Max IsiUpdateSummary PagesCluster maintenance
LDAS has not recovered from maintenance causing the pages to remain unavailable until further notice.

> System-wide CIT LDAS cluster maintenance may cause disruptions to summary pages today. 
  12787   Thu Feb 2 11:25:45 2017 Max IsiUpdateSummary PagesCluster maintenance
FYI this issue has still not been solved, but the pages are working because I got the software running on an
alternative headnode (pcdev2). This may cause unexpected behavior (or not).

> LDAS has not recovered from maintenance causing the pages to remain unavailable until further notice.
> 
> > System-wide CIT LDAS cluster maintenance may cause disruptions to summary pages today. 
  15823   Fri Feb 19 15:17:51 2021 JordanUpdateSUSCoM Range on 3"->2" Adapter Ring for SOS

Adjusting the thickness of the cylindrical hole for the mirror on the 2" optic sleeve, from .6875" to .61" thick, moves the CoM to 0.0003" out of plane from the suspension wire. This is with the dumbell at its neutral point.

How close to zero do we need this to be? More fine tuning of that thickness can get it to zero, but this would require much tighter machining tolerance on that hole depth.

Moving the dumbell towards the back of the SOS assembly (noted as negative direction, with origin at the plane formed by the wires), moves the CoM to -0.002" from the plane.

Moving the dumbell towards the front of the SoS assmebly (positive direction wrt the plane formed by the suspension wire), moves the CoM to +0.0022" from the plane.

So the total adjustment range with the dumbell is -0.002"to 0.0022", with the plane formed by the wires as the origin.

See Attachments

Attachment 1: Neutral_Point.png
Neutral_Point.png
Attachment 2: Dumbell_Max_Negative_Travel.png
Dumbell_Max_Negative_Travel.png
Attachment 3: Dumbell_Max_Positive_Travel.png
Dumbell_Max_Positive_Travel.png
  15824   Fri Feb 19 16:06:01 2021 KojiUpdateSUSCoM Range on 3"->2" Adapter Ring for SOS

We want to move the CoM with the adjustment range so that the residual deviation is adjusted by the bottom dumbbell. 0.0003" is well within the range and good enough.

 

  15825   Fri Feb 19 16:14:16 2021 gautamUpdateSUSCoM Range on 3"->2" Adapter Ring for SOS

I briefly talked with Jordan about this. This suspension will have OSEMs right? With 400ohm series resistance for the coil drivers, we will have ~+/-20mrad actuation range. Of course we'd like to use as much of this for interferometry and not static pitch alignment correction (possibly even increase the series resistance to relax the dewhitening requirements). But what is the target adjustability range in mrad with the dumbell/screw config? My target in the linked elog is 500urad (not any systematic optimum, but will allow us to use most of the DAC range for interferometry). Are these numbers in inches commensurate with this 500urad?

On a related note - are there grooves for the wires to sit in on the side of the sleeve? We looked at the solidworks drawing, and noticed that the groove doesn't extend all the way to the top of the clamp. Also, the material of both the clamping piece and the piece onto which the wire is pressed onto is SS. Don't we want them to be Aluminium (or something softer than the wire) so that the wire makes a groove when the clamp is tightened?

Quote:

We want to move the CoM with the adjustment range so that the residual deviation is adjusted by the bottom dumbbell. 0.0003" is well within the range and good enough.

  15826   Fri Feb 19 16:55:26 2021 KojiUpdateSUSCoM Range on 3"->2" Adapter Ring for SOS

Jordan's screenshot actually shows that the vertical distance (Y) is 0.0000". We want to have the vertical distance of CoM from the wire clamping point to be 0.9mm in the nominal SOS design (this might need to be adjusted to have a similar pitch resonant freq for the different inertia of moment). Let's say it is ~mm ish.

The full range of the bottom dumbbell adjustment gives us the CoM adjustment range of +/-0.002” = +/-50um. This corresponds to an alignment range of +/-50mrad. And we want to set it within +/-500urad.
So we need to adjust the dumbbell position with the precision of 1/100 of the full range (precision of 0.5um).

The groove does not extend to the top of the clamp. The groove shallower than the wire diameter cause the hysteresis of the alignment. Also, the material of the pieces should be stainless steel. Al clamp is softer than the wire and will cause the groove to be dug on the material, causing increased bending friction and hysteresis again.

Saying, all of our suspended masses with Al stand-offs are suffering this issue to some extent. That was the reason to buy the ruby standoffs.

  15806   Fri Feb 12 15:03:48 2021 JordanUpdateSUSCoM on 3"->2" Adapter Ring for SOS

As it currently stands the Center of Mass of the Adapter Ring/Optic assembly is 0.0175" out of the plane formed by the suspension wire. See Attachments. The side plate, along with the EQ stops are hidden to show the CoM and the plane.

Note: The changes discussed in the meeting with Calum have not been added and are a work in progress. These changes include:

- Adding a 45 deg chamfer to the both parallel faces of the adapter ring. This along with a modified bracket for the EQ stops will allow for easier adjustment of the screws. 

- Potentially changing material of adapter ring to stainless stell to more accurately emulate the mass of a 3" optic.

- Different adjustment mechanism of the "dumbell" at bottom of adapter ring to something similar to the VOPO suspension (will need to consult Calum further)

Attachment 1: Screenshot_(1).png
Screenshot_(1).png
Attachment 2: Screenshot_(3).png
Screenshot_(3).png
Attachment 3: CoM.PNG
CoM.PNG
  15813   Wed Feb 17 13:59:43 2021 KojiUpdateSUSCoM on 3"->2" Adapter Ring for SOS

Note from today's meeting:

1. Can we adjust the thickness of the cylindrical hole for the mirror to move the COM in the plane of the wires. (We should be able to do that)

and

2. Please check how much we can displace the COM by the bottom dumbbell.

  16004   Wed Apr 7 13:07:03 2021 JordanUpdateSUSCoM on 3"->2" Adapter Ring for SOS

Adding the chamfer around the edge of the optic ring did not change the center of mass relative to the plane from the suspension wires.

The CoM was .0003" away from the plane. Adding the chamfer moved it closer by .0001". See the attached photo.

I've also attached the list of the Moments of Inertia of the SOS Assembly.

Attachment 1: CoM_with_Chamfer.png
CoM_with_Chamfer.png
Attachment 2: Moments_of_Inertia.PNG
Moments_of_Inertia.PNG
  16165   Thu May 27 14:11:15 2021 JordanUpdateSUSCoM to Clamping Point Measurement for 3" Adapter Ring

The current vertical distance between the CoM and the wire clamping point on the 3" Ring assembly is 0.33mm. That is the CoM is .33 mm below the clamping point of the wire. I took the clamping point to be the top edge of the wire clamp piece. see the below attachments.

I am now modifying the dumbell mechanism at the bottom of the ring to move the CoM to the target distance of 1.1mm.

Attachment 1: CoM_to_Clamp.PNG
CoM_to_Clamp.PNG
Attachment 2: CoM_to_Clamp_2.PNG
CoM_to_Clamp_2.PNG
  16169   Tue Jun 1 14:26:23 2021 JordanUpdateSUSCoM to Clamping Point Measurement for 3" Adapter Ring

After changing the material of the Balance Mass from 6061 Al to 304 Steel, and changing the thickness to 0.21" from 0.25". The CoM is now 1.11mm below the clamping point.

Koji expected a mass change of ~ 4g to move the mass to 1.1mm. The 6061 mass weighed ~1.31g and the 304 mass weighs 4.1g.

A potential issue with this is the screw used the adjust the position of these balance masses, threads through both the aluminum ring and this now 304 steel mass. A non silver plated screw could cold weld at the mass, but a silver plated screw will gall in the aluminum threads.

Quote:

The current vertical distance between the CoM and the wire clamping point on the 3" Ring assembly is 0.33mm. That is the CoM is .33 mm below the clamping point of the wire. I took the clamping point to be the top edge of the wire clamp piece. see the below attachments.

I am now modifying the dumbell mechanism at the bottom of the ring to move the CoM to the target distance of 1.1mm.

 

Attachment 1: CoM_to_Clamp_Updated.PNG
CoM_to_Clamp_Updated.PNG
  16173   Wed Jun 2 01:08:57 2021 KojiUpdateSUSCoM to Clamping Point Measurement for 3" Adapter Ring

How about to use the non-Ag coated threaded shaft + the end SS masses with helicoils inserted? Does this save the masses to get stuck?

 

  8877   Thu Jul 18 23:34:40 2013 gautamConfigurationendtable upgradeCoarse adjustment of PZT axes orientation in mount

 I have managed to orient the PZT in the mount such that its axes are approximately aligned with the vertical and the horizontal. 

In the process, I discovered that the 4 screws on the back face of the PZT correspond to the location of the piezoelectric stacks beneath the tip-tilt platform. The PZT can therefore be oriented during the mounting process itself, before the mirror is glued onto the tip-tilt platform.

In order to verify that the pitch and yaw motion of the mirror have indeed been roughly decoupled, I centred the spot on the QPD, fed to the 'pitch' input of the PZT driver board (connected to channel 1 of the PZT) a 10 Vpp, 1 Hz sine wave from the SR function generator (having turned all the other relevant electronics, HV power supply etc ON. The oscilloscope trace of the output observed on the QPD is shown. The residual fluctuation in the Y-coordinate (blue trace) is I believe due to the tilt in the QPD, and also due to the fact that the PZT isnt perfectly oriented in the mount.

It looks like moving the tip-tilt through its full range of motion takes us outside the linear regime of the QPD calibration. I may have to rethink the calibration setup to keep the spot on the QPD in the linear range if the full range is to be calibrated, possibly decrease the distance between the mirror and the QPD. Also, in the current orientation, CH1 on the PZT controls YAW motion, while CH2 controls pitch.

Oscilloscope Trace:

Yellow: X-coordinate

Blue: Y-coordinate

PZT_out_waveform.jpg

  14444   Fri Feb 8 20:35:57 2019 gautamSummaryTip-TIltCoating spec

[Attachment #1]: Computed spectral power transmissivity (according to my model) for the coating design at a few angles of incidence. Behavior lines up well with what FNO measured, although I get a transmission that is slightly lower than measured at 45 degrees. I suspect this is because of slight changes in the dispersion relation assumed and what was used for the coating in reality.

[Attachment #2]: Similar information as Attachment #1, but with the angle of incidence as the independent parameter in a continuous sweep. 

Conclusion: The coating behaves in a way that is in reasonable agreement with our model. At 41.1 degrees, which is what the PR3 angle of incidence will be, T<50 ppm, which was what we specified. The larger range of angles was included because originally, we thought of using this optic as a substitute for SR3 as well. But I claim that for the shorter SRC (signal recycling as opposed to RSE), we will not end up using the new optic, but rather go for the G&H mirror. In any case, as Koji pointed out, ~50 ppm extra loss in the RC will not severely limit the recycling gain. Such large variation was not seen in the MC analysis because we only varied the angle of incidence by +/- 0.5 degrees about the nominal design value of 41.1 degrees.

Attachment 1: specRefl.pdf
specRefl.pdf
Attachment 2: AoIscan.pdf
AoIscan.pdf
  7259   Thu Aug 23 17:17:49 2012 MashaSummaryComputersCode Folder Status

I cleaned up my directory (/users/masha) today. A lot of the files are just code that I experimented with, but the important files for training the classification neural network are in "neural_network_classification". The "EarthquakeData" subdirectory contains my entire dataset. Files of the form "GenerateRNNInput" are used to create input vector sets to the network, while files of the "*NeuralNetworkClassification* actually run the code that generates the neural network vectors for the classification code block in the c1pem model.

Also, the folder "feed_c", which can also be found in Den's directory, contains the neural network controller code we played around with.

  13866   Fri May 18 19:10:48 2018 keerthanaUpdateGeneralCode for adjusting the oscillator frequency remotly

Target: Phase locking can be acheived by giving a scan to the oscilator frequency. This frequency is now controlled using the knobe on the AM/FM signal generator 2023B. But we need to control it remotely by giving the inputs of start frequency, end frequency and the steps.

The frequency oscilator and the computer is connected with the help of GPIB Ethernet converter. The IP address of the converter I used is '192.168.113.109' and its GPIB address is 10.

I could change the oscilator frequency by changing the input frequency with the help of the code I made (Inorder to check this code, I have changed the oscilator frequency multiple times. I hope it didn't create trouble to anyone). Now I am trying to make this code better by adding certain features like numpy, argument parse etc, which I will be able complete by next week. I am also considering to develop the code to have a sliding system to control the oscillatory frequency.

For record: The maximum limit of frequency which i changed upto is 100MHz.

 

Attachment 1: frequency_set.jpg
frequency_set.jpg
  12870   Mon Mar 6 14:47:49 2017 gautamUpdateSummary PagesCode status check script modified

For a few days now, the "code status" page has been telling us that the summary pages are DEAD, even though the pages themselves seemed to be generating plots. I logged into the 40m shared account on the cluster and checked the status of the condor job (with condor_q), and did not find anything odd there. I decided to consult Max, who pointed out that the script that checks the code status (/home/40m/DetectorChar/bin/checkstatus) was looking for a particular string in the log files ("gw_daily_summary"), while the recent change in the default output of condor_q meant that the string actually being written to the log files was "gw_daily_summa". This script has now been modified to look for instances of "gw_daily" instead, and so the code status indicator seems to be working again...

The execution of the summary page scripts has also been moved back to pcdev1 (from pcdev2, where it was moved to temporarily because of some technical problems with pcdev1).

  279   Mon Jan 28 12:42:48 2008 DmassBureaucracyTMICoffee
There is tea in the coffee carafe @ the 40m. It is sitting as though it were fresh coffee. There is also nothing on the post it.
  229   Wed Jan 9 20:29:47 2008 DmassAoGTMICoffee Carafe
If you have been using the coffee machine in the 40m, you may have noticed small brown flecks in your coffee mug. The carafe in the 40m has accumulated a layer of what is presumed to be old dried up coffee. When a small amount of water is swirled around in the bottom, flecks of the brown layer come off. Pictures below are of the inside of the carafe.

But does it provide adequate protection from 1064 light?
Attachment 1: DSC_0363.JPG
DSC_0363.JPG
Attachment 2: DSC_0365.JPG
DSC_0365.JPG
Attachment 3: DSC_0368.JPG
DSC_0368.JPG
  5810   Fri Nov 4 14:18:24 2011 MIrkoUpdateAdaptive FilteringCoherence between seismometers and MC length

Looking into the coherence between the seismometers and IMC length (MC_F):

FIrst with the seismometers only AC filtered at around 0.003 Hz and AA30Hz:
Coherence_without_compensation.pngWith_Pend_compensation.mat

Ignore the increase in coherence at very low frequencies. That is an artefact.

Then with an additional filter single complex pole @1Hz Q=1000 (giving 20dB per decade in attenuation above 1Hz) , only for GUR1X:
Coherence_with_compensation.png

  5190   Thu Aug 11 13:41:36 2011 Ishwita, ManuelUpdatePEMCoherence of Guralp1 and STS2(Bacardi, Serial NR 100151)

Following is the coherence plot obtained when Guralp1 and STS2(Bacardi, Serial NR 100151) are placed very close to each other (but they aren't touching each other):

coher_gur1_sts1_near.png

The seismometers were placed as shown in the picture below:

coherence_pic.JPG

They are placed below the center of the mode cleaner vacuum tube.

  5201   Fri Aug 12 00:18:30 2011 Ishwita, ManuelUpdatePEMCoherence of Guralp1 and STS2(Bacardi, Serial NR 100151)

 

 We moved the seismometer STS2(Bacardi, Serial NR 100151) as we told in this Elog Entry, so the distance between Guralp1 and STS2 is 31.1m. Following is the coherence plot for this case:

coher_gur1_sts1_31m.png

then we also moved the Guralp1 under the BS and plugged it with the Guralp2 cable (at 7:35pm PDT), so now the distance between the two seismometers is 38.5m. Following is the coherence plot for this case:

coher_gur1_sts1_38.png

  11457   Wed Jul 29 10:34:42 2015 IgnacioSummaryLSCCoherence of arms and seismometers

Jessica and I took 45 mins  (GPS times from 1122099200 to 1122101950) worth of data from the following channels:

C1:IOO-MC_L_DQ (mode cleaner)
C1:LSC-XARM_IN1_DQ (X arm length)
C1:LSC-YARM_IN1_DQ (Y arm length)

and for the STS, GUR1, and GUR2 seismometer signals.

The PSD for MCL and the arm length signals is shown below,

I looked at the coherence between the arm length and each of the three seismometers, plot overload incoming below,

For the coherence between STS and XARM and YARM,

  

For GUR1,

  

Finally for GUR2,

 

A few remarks:

1) From the coherence plots, we can see that the arm length signals are coherent with the seismometer signals the most from 0.5 - 50 Hz. This is most evident in the coherence with STS. I think subtraction will be most useful in this range. This agrees with what we see in the PSD of the arm length signals, the magnitude of the PSD starts increasing from 1 Hz and reaches a maximum at about 30 Hz. This is indicative of which frequencies most of the noise is present.

2) Eric did not remember which of  GUR1 and GUR2 corresponded to the ends of XARM and YARM. So, I went to the end of XARM, and jumped for a couple seconds to disturb whatever Gurald was in there. Using dataviewer I determined it was GUR1. Anyways, my point is, why is GUR1 less coherent with both arms and not just XARM?  Since it is at the end of XARM, I was expecting GUR1 to be more coherent with XARM. Is it because, though different arms, the PSD's of both arms are roughly the same? 

3) Similarly, GUR2 shows about the same levels of coherence for both arms, but it is more coherent. Is GUR2 noisier because of its location?

Code: ARMS_COH.m.zip

Attachment 1: PSD_ARMS_MCL.png
PSD_ARMS_MCL.png
Attachment 2: XARM_STS_COH.png
XARM_STS_COH.png
Attachment 3: YARM_STS_COH.png
YARM_STS_COH.png
Attachment 4: XARM_GUR1_COH.png
XARM_GUR1_COH.png
Attachment 5: YARM_GUR1_COH.png
YARM_GUR1_COH.png
Attachment 6: XARM_GUR2_COH.png
XARM_GUR2_COH.png
Attachment 7: YARM_GUR2_COH.png
YARM_GUR2_COH.png
Attachment 8: ARMS_COH.m.zip
  1723   Wed Jul 8 12:36:15 2009 ClaraUpdatePEMCoherences and things

After setting up the microphones last week, I modified the Wiener filtering programs so as to include the microphone signals. They didn't seem to do much of anything to reduce the MC_L signal, so I looked at coherences. The microphones don't seem to have much coherence with the MC_L signal at all. I tried moving Bonnie to near the optical table next to the PSL (which isn't in a vacuum, and thus would, presumably, be more affected by acoustic noise), but that didn't seem to make much of a difference. Eventually, I'd like to put a mic in the PSL itself, but I need to work out how to mount it first.

DSC_0564.JPG

Bonnie's new location.

You can see in bonnie_butch.pdf that none of the mic signals are giving very good coherence, although they all seem to have a peak at 24 Hz. (In fact, everything seems to have a peak there. Must be a resonant frequency of something in the mode cleaner.)

I've also attached plots of the coherences for all six accelerometers and the three Guralp seismometer axes. I plotted the most coherent traces together in the last pdf: the y-axes of the MC2 accelerometer and the two seismometers (the Ranger measures ONLY y) and, interestingly, the z-axis of the MC2 accelerometer. Unsurprisingly, the seismometers are most coherent at the low frequencies, and the MC2-Y accelerometer seems to be coherent at very similar frequencies. The MC2-Z accelerometer, on the other hand, seems to be coherent at the higher frequencies, and is highly complementary to the others. I am not really sure why this would be...

Finally, I was curious about how the noise varies throughout the day, because I didn't want to mistakenly decide that some particular configuration of accelerometers/seismometers/whatever was better than another b/c I picked the wrong time of day to collect the data. So, here is a plot of Wiener filters (using only accelerometer data) taken over 2-hour intervals throughout the entirety of July 6, 2009 (midnight-midnight local).

2hr_allday_1.png

It's a little bit confusing, and I should probably try to select some representative curves and eliminate the rest to simplify things, but I don't have time to do that before the meeting, so this will have to suffice for now.

Attachment 2: bonnie_butch.pdf
bonnie_butch.pdf
Attachment 3: Gseis_100.pdf
Gseis_100.pdf
Attachment 4: mc1_xyz.pdf
mc1_xyz.pdf
Attachment 5: mc2_xyz.pdf
mc2_xyz.pdf
Attachment 6: most_coherent.pdf
most_coherent.pdf
  2863   Sun May 2 13:04:51 2010 KojiSummarySUSCoil Actuator Balancing and Spot Position

I liked to know quantitatively where the spot is on a mirror.

With an interferometer and A2L scripts, one can make the balance of the coil actuators
so that the angle actuation does not couple to the longitudinal motion.
i.e. node of the rotation is on the spot

Suppose you have actuator balancing (1+α) f and (1-α) f.

=> d = 0.016 x α [m]

Full Imbalance   α = 1      -> d = 15 [mm]
10% Imbalance α = 0.1   -> d = 1.5 [mm]
1% Imbalance   α = 0.01 -> d = 0.15 [mm]


Eq of Motion:

I ω2 θ =  2 R f 
(correction) - I ω2 θ =  D f cos(arctan(L/2/D))
(re-correction on Sep 26, 2017) - I ω2 θ =  D f

m ω2 x = 2 α f ,
(correction) - m ω2 x = 2 α f ,

where R is the radius of the mirror, and D is the distance of the magnets. (kinda D=sqrt(2) R)

d, position of the node distant from the center, is given by

d = x/θ = α I / (m R) = 2 α β / D,

where β is the ratio of I and m. Putting R=37.5 [mm], L=25 [mm], β = 4.04 10-4 [m2], D~R Sqrt(2)

i.e. d = 0.015 α [m]

Attachment 1: coil_balance.png
coil_balance.png
  2865   Sun May 2 15:38:12 2010 ranaSummarySUSCoil Actuator Balancing and Spot Position

 

Oh, but it gets even better: in order to trust the A2L script in this regard you have to know that the coil driver - coil - magnet gain is the same for each channel. Which you can't.

But we have these handy f2pRatio scripts that Vuk and Dan Busby worked on. They use the optical levers to balance the actuators at high frequency so that the A2L gives you a true spot readout.

But wait! We have 4 coils and the optical lever only gives us 2 signal readouts...

  2866   Sun May 2 16:52:44 2010 KojiSummarySUSCoil Actuator Balancing and Spot Position

Yes, of course. But so far I am trusting that the coils are inheretly balanced.
Probably you are talking about the dependence of the nodal position on the frequency...I need to check if 18Hz is sufficiently high or not for 0.1mm precision.

Also I am practicing myself to understand how I can adjust them by which screws as we probably have to do this adjustement many times.
(i.e. removal of the MZ, move of the table, PSL renewal and so on)

For the actuator calibration, we may be able to calibrate actuator responses by shaking them one by one while reading the OPLEV P/Y signals.

 

Quote:

 Oh, but it gets even better: in order to trust the A2L script in this regard you have to know that the coil driver - coil - magnet gain is the same for each channel. Which you can't.

But we have these handy f2pRatio scripts that Vuk and Dan Busby worked on. They use the optical levers to balance the actuators at high frequency so that the A2L gives you a true spot readout.

But wait! We have 4 coils and the optical lever only gives us 2 signal readouts...

 

  16814   Wed Apr 27 10:05:55 2022 JCUpdateCoil DriversCoil Drivers Update

18 (9 pairs) Coil Drivers have been modified. Namely ETMX/ITMX/ITMY/BS/PRM/SRM/MC1/MC2/MC3.

 

ETMX Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3        S2100624                     ETMX Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100631

ITMX Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3         S2100620                      IMTX Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100633

ITMY Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3         S2100623                   ITMY Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100632

BS Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3            S2100625                     BS Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100649

PRM Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3         S2100627                      PRM Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100650

SRM Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3         S2100626                        SRM Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100648

MC1 Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3         S2100628                        MC1 Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3      S2100651

MC2 Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3       S2100629                        MC2 Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3         S2100652

MC3 Coil Driver 1 (UL/LL/UR)now has R=100 // 1.2k ~ 92Ohm for CH1/2/3        S2100630                        MC3 Coil Driver 2 (LR/SD)now has R=100 // 1.2k ~ 92Ohm for CH3         S2100653

 

 

Will be updating this linking each coil driver to the DCC

ELOG V3.1.3-