40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 231 of 339  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  7909   Wed Jan 16 20:27:16 2013 ranaUpdateLockingExpected PRC gains

Why would we use such a bad optic in our recycling cavity? Is 1.5% the spec for these mirrors? Is this the requirement that Kiwamu calculated somehow? Did anyone confirm this measurement?

I can't believe that we'll have low noise performance in a RC where we dump so much power.

  7910   Thu Jan 17 00:17:31 2013 JenneUpdateLockingExpected PRC gains

Quote:

Why would we use such a bad optic in our recycling cavity? Is 1.5% the spec for these mirrors? Is this the requirement that Kiwamu calculated somehow? Did anyone confirm this measurement?

I can't believe that we'll have low noise performance in a RC where we dump so much power.

 Yeah, Koji mentioned in response to Raji's measurements several months ago that the LaserOptic mirros were pretty far out of spec. We should probably redo the measurement to confirm.

  7913   Thu Jan 17 15:48:21 2013 JenneUpdateLockingPRM - Flat mirror cavity

 

 2" G&H mirror is installed on a DLC mount just in front of the BS.  I had to remove one of the 4 BS dog clamps, so we must put it back when we are finished with this test.

I aligned the G&H mirror such that the reflected beam is overlapped with the incident beam, and I aligned the PRM such that the regular REFL beam is retro-reflected.  This is the same as getting the beam bouncing off the PRM back to the G&H to be overlapped.

I then saw flashes of the cavity, when I held a card with a hole in the cavity, so the beam was going through a small aperture in the card, but I still saw flashes.  I was not able to see flashes on the IR card transmitted through the G&H mirror.

I also cannot see any flashes or scattered light on the face of PR2 camera.

I do, however, see flashes on the face of the PRM.  Movie saved, will post soonly.

Light is coming out of REFL on the AS table, but it's clipped somewhere....needs investigation/work before we can lock.

I also didn't see anything at the POP port with a card, but I'm hopeful that perhaps with a camera I'll see something.

  7916   Fri Jan 18 00:41:34 2013 JenneUpdateLockingDust?

I was thinking tonight about more possible reasons that our PRC sucks, and I wonder if dust on the BS could create the problem.

Historically, Kiwamu and I found a few dust particle scattering centers every time we inspected the test masses before drag wiping. Sometimes, there would be one frustratingly close to the center of the optic. I'm not sure if we ever made note of how many we saw and where they were, except out loud to the assembled crowd.

Anyhow, the BS is the only IFO optic that was not replaced, so I'm not sure how long it has been since it was cleaned. If the PR-flat cavity looks okay and we take out the BS to do a PRM-ITMY cavity, we should inspect the beam splitter.

Also, the PRM could need cleaning, but at least it has been drag wiped within recent memory.

My question is, could a few scattering centers cause the behavior that we are seeing?

 

EDIT:  List o' elogs....

 

Elog 5301 - Some details on dust seen on ITMs and ETMs, Aug 2011.

Elog 4084 - Kiwamu's in-situ drag wiping how-to, with details on some of the dust we saw. Dec 2010.

Elog 3736 - PRM drag wiped before suspension (Oct 2010)

Elog 3111 - June 2010, BS drag wiped.

  7917   Fri Jan 18 09:54:18 2013 JenneUpdateLockingPRM - Flat mirror cavity

Quote:

I do, however, see flashes on the face of the PRM.  Movie saved, will post soonly.

 Dang it.  I didn't confirm that the movie was good, just that it was there.  It's corrupted or something, and won't play.  I'll just have to make a new movie today after I realign the cavity.

  7918   Fri Jan 18 12:08:08 2013 KojiUpdateLockingDust?

No

Quote:

My question is, could a few scattering centers cause the behavior that we are seeing?

 

  7928   Tue Jan 22 19:53:01 2013 JenneUpdateLockingPR-flat cavity status - not locked

The PR-flat cavity is flashing, although not locked.  I am too hungry to continue right now.

I put the FI_Back camera on a tripod, looking at the back of the Faraday.  The beam that Jamie and I were working with on Friday was clipped going back through the Faraday.  I twiddled the TT2 and PRM pointing such that the beam is retroreflecting, and getting back through the Faraday, and the cavity is still flashing.  I then redid the REFL path on the AS table a little bit.  The beam is currently going to the REFL camera, as well as REFL11 and REFL55. 

Some notes about the AS table:  The Y1 separating the main REFL beam from the REFL camera beam was mounted 90 degrees (rotated about the beam's axis) from what it should be.  I fixed it, so that the straight-through beam that goes to the camera is not clipped by the edge of the mount.  The reason (I think) this mirror was mounted backwards is that when mounted correctly, the back of the mount and the knobs interfere with the AS beam path.  I solved this by rotating the first out-of-vac REFL mirror a small amount so that the REFL and AS beams are slightly more separated. 

I am not seeing any nice PDH signal on dataviewer, so I went to check the signal path for the PDs.  The 11MHz marconi is on and providing RF, the EOM is plugged in to 11, 55 and 29.5 signals (no aux cavity scan cables are plugged in).  Both of the RF Alberto boxes are on.  I measured the RF output of both REFL11 and REFL55, although after the fact I realized that I was BAD, and had not found a 'scope that lets me change the input impedance to 50 ohms.  BAD grad student.  However, since I have numbers, I will post them, despite their being not quite correct:

284mVpp at 11MHz out of REFL11.  This is -6.9dBm

2mVpp at 55MHz out of REFL55, measured by 'scope

So, I can clearly see the 11MHz on the 'scope, and can see a very noisy, small 55MHz signal on the 'scope.  I need to think over dinner about what level of signal we should be sending to the demod boards, and whether or not I need more power coming out of the RFPDs.  There is a wave plate and PBS before beam goes to any of the REFL PDs, presumably to ensure that none of them get fried when we're at high power.  If I need more signal, I suspect I can rotate the wave plate and let more light go to the diodes.

  7931   Wed Jan 23 19:05:16 2013 JenneUpdateLockingPR-flat cavity status - locks!

Status update

I (with help from Q) have redone the POP path on the ITMX table.  1" iris is a little too small, so I took it out.  2" lens moved to be centered on POP beam.  2" Y1 didn't need moving.  Straight refl from the 2" Y1 was aligned on to a PDA10CS (set to 70dB). This PD is blocking the usual POP55 diode.  BS which sends beam to camera was moved to allow room for the new temp DC PD.  Refl from this BS goes to the POP camera, which was moved so that the POP beam takes up most of the camera.  BS that would normally take half of the camera's beam and send it to POP22 (Thorlabs PD) is removed, so no beam to POP22.

Also, I have taken the output of the PDA10CS and hijacked the "POP110" heliax cable.  This was connected to this Thorlabs PD which is used as POP22.  (Kiwamu and I had long-term borrowed the 110 demod board for an AS 110 diode, so the "POP110" heliax was really only serving POP22.) There are yellow labels on the new temp and old regular cables, so we can undo my hack.  Similarly, on the other end of the heliax at the LSC rack, I have taken the heliax's output and sent it to the POPDC input on the whitening board.  Thus, the regular POPDC SMA cable is unplugged, but labeled again with big yellow labels.

In other news - the PR-flat cavity locks!!! 

Koji and I coarsely rotated the REFL11 phase such that the signal is predominantly in the I phase.  We set the LSC input matrix to use REFL11I for PRCL, and the output matrix is set to actuate on PRM.  Then we set the gain to -0.005, and it locked!!!!

 

EDIT:  I turned back on the PRM oplev (after Manasa aligned it and redid the out-of-vac oplev layout a bit), and the motion of the cavity is slightly reduced, although there's still a lot going on.  The cavity is vaguely well aligned, although it's time to go make sure that the beams are still on the REFL and TRANS PDs.  However, it's dinner time.

  7934   Wed Jan 23 20:46:46 2013 Zen MasterUpdateLockingPR-flat cavity status - locks!

Quote:

I (with help from Q)

 Two quadratures working in harmony.

yinYang.png

  7945   Mon Jan 28 17:01:19 2013 DenUpdateLockingVideo of PRM-flat test cavity

What mode will you get if lock the cavity PRM - ITMY/ITMX/TEST MIRROR without PR2, PR3 and BS?

Is it possible to skip MC1, MC3 and lock the laser to this test cavity to make sure that this is not actuator/electronics noise?

  7951   Tue Jan 29 10:50:02 2013 JenneUpdateLockingVideo of PRM-flat test cavity

 

I think Den accidentally edited and overwrote my entry, rather than replying, so I'm going to recreate it from memory:

I aligned the PRM-flat test cavity (although not as well as Jamie and Koji did later in the evening) and took some videos. Note that these may not be as relevant any more, since Jamie and Koji improved things after I left.

 

Also, before doing anything with the cavity, I tuned up the PMC since the pitch input alignment wasn't perfect (we were getting ~0.7 transmission), and also tuned up the MC alignment and remeasured the MC spot positions, to maintain a record.

  7957   Tue Jan 29 19:50:49 2013 JenneUpdateLockingBetter POP layout, no extra PRM motion with locked cavity

[Jenne, Jamie, Manasa]

Today's activities focused on getting the POP layout improved, so that we could get clean data for the mode scan measurement. 

As Jamie and Koji pointed out yesterday, the beam was still a little too big on the POP DC PD, and was falling off the diode when the beam moved a small amount.  We have fixed things so that the PD is now at the focus of the lens, and the camera is at a place where the beam takes up most of the area on the TVs.  The beam no longer falls off the PD with cavity fluctuations.  A key point of this work was also to use an extra 2" optic to steer the beam down the length of the POP table, and then do the 50/50 beam splitting later with a 1" optic.  The 1" BS that we had been using (including with the "real" POP beam) is too small.  We could not find a 2" 50/50 BS, so we opted to do the splitting closer to the focal point.  Also, the BS that was splitting the beam between the PD and the camera was a 33% reflector, but now is a 50/50 BS. When we put back the 'real' POP path, we need to consider using larger optics, or a faster lens. The POP path is now good, hopefully for the duration of the half cavity test.

After getting the POP path taken care of, and tweaking up the cavity alignment a little bit, the transmitted power on POP DC is ~22,000 counts, with occasional fluctuations as high as 25,000 counts. 

Jamie looked at the REFL path, and things look sensible there.  The unlocked REFL power is ~36 counts, and the locked power is ~20 counts.  I'm not sure what the 160 counts that Koji mentioned in his edits to elog 7949 is about.

I looked at the PRM oplev with the cavity locked and unlocked, and with today's alignment, there seems to be no difference in the amount of PRM motion when the cavity is locked vs unlocked. 

HalfPRCL_PRM-flatMirror_RefsAreLocked_OthersUnlocked.png

 It still looks like we might be seeing some clipping in the in-vac POP steering mirrors - we haven't gotten to them yet.

Jamie is currently modifying Yuta's mode scan analysis script to look at the data that we have of the cavity.

 


We need more 2" optics.  There are no mounted 2" spares in the various optic "graveyards" (which, PS, we should consolidate all into the cabinet with doors near the optics bench), and the options for boxes in the drawers is slim pickin's.  We have some S-pol stuff, but no Y1s or BS-50s for P-pol.  Since POP, POX, POY, IPANG, TRX and TRY all come out of the vacuum with large beams, we should have some options for these laying around for this kind occasional temporary thing.  We also need to choose, then purchase better 2" lenses for the pickoffs.

Attachment 1: HalfPRCL_PRM-flatMirror_RefsAreLocked_OthersUnlocked.pdf
HalfPRCL_PRM-flatMirror_RefsAreLocked_OthersUnlocked.pdf
  7959   Tue Jan 29 21:07:48 2013 JenneUpdateLockingPRM coils need diagonalizing

 

 [Jenne, Jamie]

We tried actuating on PRM so that we go through fringes in a known, linear way.  We used C1:SUS-PRM_LSC_EXC and awggui.  It seems that we get a lot of angular motion when we actuate....we need to look into this tomorrow.

EDIT/UPDATE:  Last night we tried several combinations of frequency and amplitude, but just for an idea,  we were using 2Hz, 1000cts.  Using Kiwamu's calibration in elog 5583 for the PRM actuator of 2e-8/f^2 m/cts, this means that we were pushing ~5nm.  But when we pushed much harder (larger amplitude) than that, we saw angular fringing. 

  7961   Wed Jan 30 11:16:32 2013 JenneUpdateLockingMode spacing calc

[Jenne, Jamie]

We did a few pen and paper calculations yesterday to confirm for ourselves that the half PRC should have nicely separated modes.  The half cavity is L=4.34m long, assuming flat mirror is 3.5 inches in front of BS.  That 3.5" is a guess, not a measurement.

Finesse

F = ( pi * sqrt(r1 * r2) ) / (1 - r1*r2) = 111.

Full width at half max

FWHM = c / (2 * L * F) = 311 kHz

FWHM in meters = FWHM * L/f = L*1064nm/c = 4.8 nm

Free spectral range

nu_fsr = F * FWHM = 34.5 MHz

Mode Spacing (eq 19.23 from Siegman)

omega = (n + m) * arccos(\pm sqrt(g1*g2)) / pi     *   (2*pi*c)/(2L)

For our half cavity, g1*g2 = 0.96

For the 01 or 10 modes, n+m = 1

omega = 13.7e6 rad/sec

mode spacing between 00 and 01 = 2.2 MHz

Thus, the modes should be well separated

=>  spacing is 2.2 MHz while FWHM is 0.311 MHz  (cavity fsr = 34.5 MHz)

 

EDIT JCD 31Jan2013:  Fixed mode spacing eqn to be diff between TEM00 mode and HOM, not plane wave and HOM.  Then fixed the factor of 2 error in the mode spacing numbers.

  7966   Wed Jan 30 15:45:09 2013 ZachUpdateLockingMode spacing calc

Quote:

Thus, the modes should be well separated

=>  spacing is 4.3 MHz while FWHM is 0.311 MHz  (cavity fsr = 34.5 MHz)

Something looks fishy. I calculate a transverse mode spacing of 2.21 MHz---is there a factor of two missing somewhere in your analytical calculation?

delta_f = (1/2/pi) * w01 - w00 = (1/2/pi) * acos(±sqrt(0.96)) /pi *2 * pi * c /2 /L = 2.21 MHz

I guess that's still OK, but if you are using 11-MHz sidebands, there is a n+m=5 mode within one linewidth of resonance. Can you use 55?

-------------

May I suggest my arbcav() tool for things like this? I think it's pretty handy for just this sort of calculations. I'm actually hoping to revamp the I/O to make it much cleaner and more intuitive.

>> T = [0.055 20e-6];

>> L = [4.34 4.34];

>> RoC = [115.5 1e10];

>> theta = [0 0];

>> fmod = 11e6;

>> lambda = 1064e-9;

>> num_pts = 1000;

>> loss = 50e-6;

>> [fin,coefs,df] = arbcav(T,L,RoC,theta,fmod,loss,lambda,num_pts);

>> fmod = 55e6;

>> [fin,coefs,df] = arbcav(T,L,RoC,theta,fmod,loss,lambda,num_pts);

 

HOM11.png HOM55.png

  7968   Wed Jan 30 19:30:21 2013 JenneUpdateLockingPOP in-vac improved

Quote:

It still looks like we might be seeing some clipping in the in-vac POP steering mirrors - we haven't gotten to them yet.

 [Jenne, Jamie]

We fixed up, as best we can, the in-vac POP alignment.  We are entirely limited in yaw by the aperture size of the 2" 45deg mirror launching the beam out of the vacuum.  The main centroid of the beam is well centered, but the inflated weird part of the beam is totally clipped.  There's nothing we can do about it except use a much larger mirror, install a fast lens inside the chamber, or just fix the damn PRC.  I vote for the third option there.

How did we work our magic? 

We put a green laser pointer where the POP DC PD was, and injected it into the vacuum, just like we normally do.  However, this time, we made sure the green laser was centered on all of the out of vacuum mirrors, so that there was no real work to do once we turned off the laser pointer. We locked the cavity, and confirmed that we are well centered on all of the in and out of vacuum mirrors, and discovered our aperture problem with the last in-vac mirror.

Here is a snapshot of the POP camera:

HalfPRCL_PRM-flatMirror_POPtrans_30Jan2013.jpg

  7969   Wed Jan 30 19:34:17 2013 JenneUpdateLockingPRM coils need diagonalizing

[Koji, Jamie, Jenne]

Koji did this, while we actuated on PRM in pos, and watched the oplev.  Empirically, he found the following values for the POS column of the output matrix:

UL = 1.020

UR = 0.990

LL = 1.000

LR = 0.970

SD = 0.000

(The nominal values are all +1, except for Side, which is 0). 

Actuation of PRM was through C1:SUS-PRM_LSC_EXC, f=0.1Hz, A=100 counts.

 

Ed by KA:
This means UL and UR are increased by 2% and UR and LR are decreased by 3%. More precisely UR should be 1.02*0.97.
This is just a quick hack which works only for the DC.

  7973   Thu Jan 31 14:30:50 2013 JenneUpdateLockingMode spacing calc

I have calculated (using Zach's sweet software) the expected mode content for the various possible PRCs that we can make. 

Also, Zach was right about the factor of 2.  I see now that I was calculating the mode spacing between a plane wave and a HOM, so the guoy phase had a factor of (n+m+1).  The right thing to do is to get the spacing between the 00 mode and HOMs, so the guoy phase just has (n+m).  Switching from n+m+1=2 to n+m=1, that fixes the factor of 2 problem.

 I attach my results as a pdf, since I'm listing out 5 configurations.  Each config has a cartoon, with a small (hard to read) HOM plot, and then at the end, each HOM plot is shown again, but larger.  Also, "TM" is the "test mirror", the flat G&H that we're using as the cavity end mirror.

Attachment 1: Half_PRC_Configs.pdf
Half_PRC_Configs.pdf Half_PRC_Configs.pdf Half_PRC_Configs.pdf Half_PRC_Configs.pdf Half_PRC_Configs.pdf Half_PRC_Configs.pdf Half_PRC_Configs.pdf Half_PRC_Configs.pdf
  7975   Thu Jan 31 15:20:46 2013 ZachUpdateLockingMode spacing calc

I should mention that I just found a bug in how it treats odd-mirror-number cavities. For such cavities, HG modes with odd horizontal indices should receive an extra roundtrip phase of pi/2 (due to the rotation by the cavity). Because of a numbering convention issue, arbcav actually used to apply this phase shift to even-order modes. Essentially, the only difference is that the fundamental mode was shifted to anti-resonance. Everywhere else, there are modes at both corresponding locations in frequency space, and so it does not back a big difference in terms of cavity design.

Thanks to this IMC modeling we are doing at the workshop, I caught it! It has been fixed in the SVN.

Quote:

I have calculated (using Zach's sweet software) the expected mode content for the various possible PRCs that we can make. 

Also, Zach was right about the factor of 2.  I see now that I was calculating the mode spacing between a plane wave and a HOM, so the guoy phase had a factor of (n+m+1).  The right thing to do is to get the spacing between the 00 mode and HOMs, so the guoy phase just has (n+m).  Switching from n+m+1=2 to n+m=1, that fixes the factor of 2 problem.

 I attach my results as a pdf, since I'm listing out 5 configurations.  Each config has a cartoon, with a small (hard to read) HOM plot, and then at the end, each HOM plot is shown again, but larger.  Also, "TM" is the "test mirror", the flat G&H that we're using as the cavity end mirror.

 

  7978   Thu Jan 31 20:06:22 2013 EvanUpdateLockingPRM/PR2 cavity

[Jenne, Evan]

Tonight we made a non-folded cavity between the PRM and PR2 as follows. I put down two dog clamps to constrain the original position of the PR2 mount. I then loosened the dog clamps holding the mount to the table and nudged the mount until we saw a few reasonably well-aligned bounces in the cavity. I then dogged down the mount.

We played with the PRM and TT2 steering until we saw flashes of TEM00. However, the resonance is not clean so we couldn't lock.

Since we changed the PRM alignment, we had to redo the last bit of steering for the PRM oplev into the photodiode. We also put a few ND filters on the POP camera.

  7980   Thu Jan 31 23:48:45 2013 KojiUpdateLockingPRM/PR2 cavity

Wow! What's happened?

As the video showed good quality of resonances, I stopped by at the 40m on the way back home.

I looked at the error signals and found that they indicate high finesse and clear resonance of the sidebands.
The lock was immediate once the gain is set to be -0.004 (previous 0.05ish). This implies the optical gain is ~10 times larger than the previous configration.
The alignment was not easy as POPDC was saturated at ~27000I leave this as a daytime job.

As I misaligned the PRM, I could see that the lock hopped into the next higher order. i.e .from TEM00 to TEM01, from TEM01 to TEM02, etc
This means that the modes are closely located each other, but sufficiently separated to sustain each mode.

I definitely certify that cavity scans will give us meaningful information about the cavity.

  7981   Fri Feb 1 09:33:11 2013 JamieUpdateLockingPRM/PR2 cavity

I replaced the BS1 between the POPDC PD and the camera with a 98 reflector, and moved the 50 up before the BS to dump half the light.  Still saturating POPDC, but hopefully the ratio between POPDC and the camera should be better.  We just need to dump more of the power before we get there.  I'll come back to this after C&D if no one else has already gotten to it.

I don't know why I didn't pay more attention last night, but things look way WAY better.  The beams are much cleaner and the power level is much much higher.

  7985   Fri Feb 1 15:12:53 2013 JenneUpdateLockingPRM/PR2 cavity

 After Jamie did all the work this morning on the POP table, I was able to get the cavity to lock.  It's not very stable until I engage the boost filters in the PRCL loop.  After locking, I tuned up the alignment a bit more.  Now we're taking mode scan data.  Look for results hopefully shortly after Journal Club!

  7986   Fri Feb 1 19:55:33 2013 JenneUpdateLockingPRM/PR2 cavity

[Jamie, Koji, Jenne]

We are looking at the mode scan data, and have some preliminary results!  We have data from when the cavity was aligned, when it was slightly misaligned in pitch, and slightly misaligned in yaw.

Inverting the equation for transverse mode spacing, we infer (for pitch misalignment) a cavity g-factor of 0.99, and from there (assuming the G&H mirror is flat and so has a g-factor of 1), we infer a PRM radius of curvature of 168 meters which is ~50% longer than we expected.

 

More results to come over the weekend from Jamie.

  7987   Fri Feb 1 23:12:42 2013 KojiUpdateLockingPRM/PR2 cavity

During the scanning we were riddled by the fact the PDH error and the transmission peaks do not happen simultaneously.

After a little investigation, it was found that "LP100^2" filter is left on in the POPDC filter.

Moreover, it was also found that the whitening filter switches for the POPDC does not switch the analog counterpart.

These were the culprit why we never saw accidental hitting of the max transmission by the peaks when the cavity was not locked.

 

I know that the most of the whitening filter in the RF paths were checked before (by Keiko?), but the similar failure still exists in the POX path.
We should check for the whitening filters in the DC path as well and fix everything at once. I can offer assistance on the fixing part.

  7988   Fri Feb 1 23:52:59 2013 ranaUpdateLockingPRM/PR2 cavity

 Very exciting result, if true. I suppose we should try to reconfirm this result by doing another phase map of PRM03.

Is it possible that PR2 is not flat? How would we test to see if the tip-tilt frame screw gives it a curvature? Perhaps we can check with COMSOL.

  8007   Wed Feb 6 11:59:12 2013 JenneUpdateLockingPRC cavity gains

EDIT:  These numbers are for a perfect, non-lossy arm cavity.  So, a half real, half imaginary world.

Carrier uses arm cavity reflectivity for perfectly resonant case.

PRC carrier gain, flipped PR2, PR3 = 61

PRC carrier gain, regular PR2, PR3 = 68  (same value, within errors, for no folding at all).

Carrier gain loss = (68-61)/68 = 10%

 

SB uses arm cavity reflectivity for perfectly anti-resonant case.

PRC SB gain, flipped PR2, PR3 = 21

PRC SB gain, regular PR2, PR3 = 22 (same value, within errors, for no folding at all). <--- yes, this this "regular PR2, PR3 = 22..."

SB % gain loss = (22-21)/22 = 4.5%

 

I claim that we will be fine, recycling gain-wise, if we flip the folding mirrors.  If we do as Yuta suggests and flip only one folding mirror, we'll fall somewhere in the middle.

  8014   Wed Feb 6 18:39:08 2013 JenneUpdateLockingPRC cavity gains

[Yuta, Jenne]

We have both calculated, and agree on the numbers for, the PRC gain for carrier and sideband.

We are using the measured arm cavity (power) loss of 150ppm....see elog 5359.

We get a PRC gain for the CARRIER (non-flipped folding) of 21, and PRC gain (flipped folding) of 20This is a 4.7% loss of carrier buildup.

We get a PRC gain for the SIDEBANDS (non-flipped folding) of 69, and PRC gain (flipped folding) of 62This is an 8.8% loss of sideband buildup.

The only difference between the "flipped" and "non-flipped" cases are the L_PR# values - for "non-flipped", I assume no loss of PR2 or PR3, but for the "flipped" case, I assume 1500ppm, as in Rana's email.  Also, all of these cases assume perfect mode matching.  We should see what the effect of poor mode matching is, once Jamie finishes up his calculation.

Why, one might ask, are we getting cavity buildup of ~20, when Kiwamu always quoted ~40?  Good question!  The answer seems, as far as Yuta and I can tell, to be that Kiwamu was always using the reflectivity of the ITM, not the reflectivity of the arm cavity.  The other alternative that makes the math work out is that he's assuming a loss of 25ppm, which we have never measured our arms to be so good.

 

For those interested in making sure we haven't done anything dumb:


ppm = 1e-6;

% ||      |      |        ||            ||
% PRM    PR2    PR3      ITM           ETM

T_PRM = 0.05637;
t_PRM = sqrt(T_PRM);
L_PRM = 0 *ppm;
R_PRM = 1 - T_PRM - L_PRM;
r_PRM = sqrt(R_PRM);

T_PR2 = 20 *ppm;
t_PR2 = sqrt(T_PR2);
L_PR2 = 1500 *ppm;
R_PR2 = 1 - T_PR2 - L_PR2;
r_PR2 = sqrt(R_PR2);

T_PR3 = 47 *ppm;
t_PR3 = sqrt(T_PR3);
L_PR3 = 1500 *ppm;
R_PR3 = 1 - T_PR3 - L_PR3;
r_PR3 = sqrt(R_PR3);

T_ITM = 0.01384;
t_ITM = sqrt(T_ITM);
L_ITM = 0;%100 *ppm;
R_ITM = 1 - T_ITM - L_ITM;
r_ITM = sqrt(R_ITM);

T_ETM = 15 *ppm;
t_ETM = sqrt(T_ETM);
L_ETM = 0 *ppm;
R_ETM = 1 - T_ETM - L_ETM;
r_ETM = sqrt(R_ETM);

rtl = 150*ppm;  % measured POWER round trip loss of arm cavities.
rtl = rtl/2;     %    because we need the sqrt of the exp() for ampl loss....see Siegman pg414.

eIkx_r = exp(-1i*2*pi);
r_cav_res = -r_ITM + (t_ITM^2 * r_ETM * eIkx_r * exp(-rtl)) / (1 - r_ITM*r_ETM * eIkx_r * exp(-rtl) );

eIkx_ar = exp(-1i*pi);
r_cav_antires = -r_ITM + (t_ITM^2 * r_ETM * eIkx_ar * exp(-rtl)) / (1 - r_ITM*r_ETM * eIkx_ar * exp(-rtl) );


%% PRC buildup gain

g_antires = t_PRM*eIkx_ar / (1-r_PRM*r_PR2*r_PR3*r_cav_antires*eIkx_ar);
G_ar = g_antires^2;
G_ar = abs(G_ar)  % Just to get rid of the imag part that matlab is keeping around.

g_res = t_PRM*eIkx_r / (1-r_PRM*r_PR2*r_PR3*r_cav_res*eIkx_r);
G_r = g_res^2;
G_r = abs(G_r)

  8015   Wed Feb 6 19:59:35 2013 ranaUpdateLockingPRC cavity gains

  Getting closer, but need to use the real measured AR reflectivity values, not the 1500 ppm guess. These should be measured at the correct angles and pol, using an NPRO.

  8017   Wed Feb 6 20:03:50 2013 ManasaUpdateLockingPRC cavity gains

Quote:

  Getting closer, but need to use the real measured AR reflectivity values, not the 1500 ppm guess. These should be measured at the correct angles and pol, using an NPRO.

 I'm still on that!

  8024   Thu Feb 7 15:46:42 2013 JenneUpdateLockingPR2 flipped

More correctly, a different G&H mirror (which we have a phase map for) was put into the PR2 TT, backwards.

Order of operations:

* Retrieve flat test G&H from BS chamber.  Put 4th dog clamp back on BS optic's base.

* Remove flat G&H from the DLC mount, put the original BS that was in that mount back.  Notes:  That BS had been stored in the G&H's clean optic box.  The DLC mount is engraved with the info for that BS, so it makes sense to put it back.  The DLC mount with BS is now back in a clean storage box.

* Remove PR2 TT from ITMX chamber.

* Remove suspension mounting block from TT frame, lay out flat, magnets up, on lint-free cloth on top of foil.

* Remove former PR2 G&H optic.

* Put what was the flat G&H test optic into the PR2 optic holder, with AR surface at the front.

* Put PR2 suspension block back onto TT frame.

* Put PR2 assembly back in the chamber, solidly against the placement reference blocks that Evan put in last Thursday.

* Close up, clean up, put labels on all the boxes so we know what optic is where.

 

Why the switcho-changeo?  We have a phase map for the G&H that is the new PR2, and a measured RoC of -706m, surface rms of 8.7nm.  Now, we can measure the former PR2 and see how it compares to our estimate of the RoC from the cavity measurements we've taken recently.

  8030   Fri Feb 8 02:12:14 2013 JenneUpdateLockingPRMI work

[Jenne, Yuta]

Lots of work, no solid conclusions yet.  In-vac, we aligned MICH and the PRM.  Out of vac, we got beam on AS and REFL paths.  We can lock MICH, but we're not as happy with PRCL.

 

In-vac alignment: 

To get the beam centered on TT2 in yaw, Koji helped us out and moved TT1 with the sliders a little bit. Then to get the beam centered on PRM and PR2, Koji moved the TT2 sliders a little bit.

Yuta and I then moved PR2 forward a few mm, to keep the optical path length of the PRC approximately (within ~1mm, hopefully) the same as always.  After my PR2 optic swapping earlier, the pitch alignment was no longer good.  I loosened the screws holding the wire clamp to the optic holder, and tapped it back and forth until the alignment was good.  Of course, the screw-tightening / pitch-checking is a stochastic process, but eventually we got it.  A small amount of yaw adjustment by twisting the PR2 TT was also done, but not much was needed.

Beam was a little off in pitch at ITMY, so Yuta poked the top of PR3, and that one single poke was perfect, and the beam was very nicely centered on the ITMY target.  Beam was getting through BS target just fine.  We checked at ITMX, and the beam looked pretty centered, although we didn't put in a target.  We didn't do anything to BS while we were in-vac, since it was already good.

We aligned the ITMs so that their beams were retroreflecting back to the BS.  After this, we saw nice MICH fringes.

We aligned the PRM so that its beam was retroreflecting.

We checked that we were getting REFL and AS beams out of the vacuum, which we were (a small amount of adjustment was done to AS path steering mirrors).

AS table alignment:

We did a bit of tweaking of the REFL path, and lots of small stuff to the AS path. 

The AS beam was coming out of vac at a slightly different place in yaw, so we moved the first out of vac AS steering mirror so the beam hit the center, rather than ~1/3 of the way to the edge.  We then aligned the beam through the lens, to the camera, and to AS55.  Most significantly, we removed the BS that was just before AS55.  This was sending beam to a dump, but it is in place to send beam over to AS110, once we get back to real locking.  We measured ~30 microwatts of power going to the AS55 PD, while MICH fringes were fringing.

The REFL path didn't need much, although we had never been going through the center of the HWP and PBS that are used to reduce the power before going to the PDs, so we translated them a millimeter or two.

We see signal on dataviewer for all of the channels that we're interested in....AS55 I&Q, ASDC, REFL11 I&Q, REFLDC (which comes from REFL55). 

Locking:

Locking MICH was very easy, after we rotated the phase of AS55 to get all the good MICH signal in the Q phase.  Part of the criteria for this was that the AS55_Q_ERR signal should cross zero when ASDC went to 0.  This was done very coarsely, so we need to do it properly, but it was enough to get us locked.  We changed the phase from 24.5 to 90 deg.

PRCL has been more of a challenge, although we're still working on it.

On the back face of the Faraday, we see the michelson fringes, but they are not getting through the Faraday's aperture.  This implies that we have a poorly aligned michelson, in that the interference between the returning beams from the ITMs is happening at a different place than the original beam splitting.  Yuta is working on getting a better MICH right now.  EDIT, 10 minutes later....   This seems to be fixed, and the MICH fringes enter the back aperture of the FI, but there is still the PRM refl problem (next paragraph).

Also, when we get the most bright REFL beam, we see that there is some very obvious clipping in the back of the Faraday aperture, and this is matched by a clipped-looking REFL beam on the AS table.  We must understand what we have done wrong, such that when the beam is actually going through the Faraday, we see a much dimmer beam.  It's possible that there is some clipping happening at that time with the in-vac REFL path....we need to check this.  It's not a clipping problem on the AS table - I checked, and the beams are still reasonably  well centered on all of the mirrors.

We think that the MICH / REFL beam problems may be that the input pointing is close, but not perfect.  We have not confirmed today that the beam is centered on ETMY.  We should do this as part of our final alignment procedure before putting on doors.

Plans for tomorrow:

Get POP aligned, especially the camera, so we can see what our intracavity mode really looks like in the PRC.  This is probably (in part, at least) due to our having moved PR2 around, so the transmitted beams aren't in exactly the same place.

We think that it's more useful in the short term to check out the PRC, and since the clipping problem with the REFL beam is likely an imperfect input pointing, we want to use the other measured G&H mirror, and do another half-PRC test, with the test mirror in front of the BS.  This requires much less perfection in the input pointing, so it should be very quick to set up.

Confirm that PRM oplev is still aligned (turn laser back on first).

Plans for next week:

Perfect the input pointing, by checking the beam position at ETMY.  Recheck all corner alignment.

Try again locking PRMI in air.  First, confirm ITM and BS oplevs are all aligned.

  8031   Fri Feb 8 02:38:04 2013 KojiUpdateLockingPRMI work

I feel it's too hasty to use the PRMI.
I support the idea of the half-PRC test, to make an apple-to-apple comparison.

Make haste slowly.

  8032   Fri Feb 8 11:01:18 2013 JamieUpdateLockingPRMI work

I completely agree with Koji.  We definitely should have locked the half PRC first.  We were all set up for that.  Why go through all this work to align MICH when we haven't confirmed with the half PRC that the flipping is helping us?  The first rule of debugging is to only make one change at a time.  We have measurements from the half PRC, so we could have made a direct comparison with those to see how things have changed.  If we jump the gun we're going to end up wasting more time when we have to back-track.

Also, we never talked about moving PR2 to adjust optical path length, although I can understand why we would think that should be done.  My calculations were all done assuming the free-space separation between PRM/PR2 and PR2/PR3 were unchanged.  It's possible changing the position is better, but again, it's more work and it changes multiple things at one.  I can redo my calculations for this new scenario, but we need to update our drawings with this new configuration.  Please note precisely where PR2 has moved to.

We should have just flipped PR2 and that's it.  Then we could have run the exact same measurements we had previously.  Only then, once we understood this new simple cavity, should we have done further adjustments.

  8034   Fri Feb 8 12:39:32 2013 yutaUpdateLockingPRMI work

Half-PRC at this time already have two changes from the previous half-PRC; PR2 replaced/flipped and different TM before BS.
PRMI has only one change from the previous PRMI; PR2 replaced/flipped.
This is why I wanted to try PRMI first. But we now recognized that MI alignment (including REFL and AS alignment) is tough without using the arms, I agree that we should try half-PRC first.

I don't exactly know what the situation in the Jamie's calculation, but to make the optical path length the same before and after flipping, PR2 holder have to move about n*t, where n is the substrate refractive index and t is the thickness of the mirror, towards PRM/PR3.

Quote:

The first rule of debugging is to only make one change at a time.

Also, we never talked about moving PR2 to adjust optical path length,

  8037   Fri Feb 8 15:53:48 2013 JenneUpdateLockingPRMI work

Quote:

I completely agree with Koji.  We definitely should have locked the half PRC first.  We were all set up for that. 

 I reminded Jamie this morning that we were not, in fact, set up yesterday for a half PRC.  I had extracted what was the flat test mirror, to put in as PR2.  The test mirror was the better of the 2 G&Hs that we had measurements for, so I had used it as the flat test mirror, but then also wanted it to be the more permanent PR2.  After doing the PR2 flip, the IFO was naturally all aligned for PRMI, which is part of why we just did that.

Anyhow, Jamie used his tallness to put the other measured G&H mirror into the mount, and put that in front of the BS.  He aligned things such that he saw fringes in the half PRC. 

I then aligned POP onto the camera, and onto the PD.  Yuta is confirming that we're maximally on the REFL PDs.

We're starting locking in 5 min.

  8039   Fri Feb 8 17:41:34 2013 JenneUpdateLockingPRMI work

 

 [Yuta, Jenne]

After much tweaking of the alignment using TT1, TT2 and PRM sliders, we were able to get a TEM00 mode locked with the half PRC!

PRCL gain is -0.010

FM4, 5 are always on.  FM2,3,6 (boosts and stack res-gains) are triggered to come on after the cavity is locked.

We see a little clipping of POPDC, even though there are 2 BSs in the beam path, to dump 50% and then 67% of the beam.  But it's not so much that we can't align. 

REFLDC goes from 28.5 to 24.5, so we don't have great visibility.

Please watch our awesome video of the cavity, where we demonstrate that the half cavity is stable:

The cavity is flashing for the 1st 15 sec, then locks.  Upper right is REFL, Lower right is POP, Upper left is back of the Faraday, Lower left is MC2F.   Note that we definitely see some not so beautiful modes flashing, but most of that is due to the half cavity length and thus greater degeneracy of modes.  Jamie is posting a HOM plot presently.

BEAM MOTION:

The beam is moving way more than it should be.  Right now the PRM oplev is not coming out of the vacuum, since the flat test mirror mount is obstructing it.  However, as we saw with other half-cavity tests, turning on the PRM oplev helps, but does not completely eliminate the beam motion.  We should consider putting oplevs on one of the passive TTs, at least temporarily, so we know what kind of motion is coming from where.

  8042   Fri Feb 8 19:39:02 2013 KojiUpdateLockingPRMI work

It seems that the cavity trans looks much better than before. Cool.

At least the optical gain is ~x5 of the previous value. This means what we did was something good.

Looking forward to seeing the further analysis of the caivty...

  8043   Fri Feb 8 20:05:15 2013 JenneUpdateLockingPRMI work

I fixed up the POP path so that there is no clipping, so that Yuta can take a cavity mode scan.

  8049   Fri Feb 8 23:59:42 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

I did mode scan of PR2-flipped half-PRC to see if it behaves as we expect.
Measured finesse was 107 +/- 5 and g-factor is 0.98997 +/- 0.00006.
g-factor is 0.9800 +/- 0.0001.  (Edited by YM; see elog #8056)

 
Finesse tells you that we didn't get large loss from flipped PR2.
Since we have convex TM in front of BS, PRC will be more stable than this half-PRC.

Method:
 1. Aligned half-PRC using input TT1 and TT2 by maximizing POP DC during lock. It was not so easy because POP DC fluctuates much at ~ 3 Hz with amplitude of ~ 30 % of the maximum value because of the beam motion (movie on  elog #8039).

 2. Unlocked half-PRC and took POP DC and PRC error signal data;

> /opt/rtcds/caltech/c1/scripts/general/getdata -d 1 -o /users/yuta/scripts/PRCmodescan C1:LSC-POPDC_OUT C1:LSC-REFL11_I_ERR

  Ran again and again until I get sufficiently linear swing through upper/lower sidebands.

 3. Ran modescan analyzing scripts (elog #8012).

Result:
 Below is the plot of POP DC and PRCL error signal (REFL11_I).
halfPRCmodescan.png

 By averaging 5 sets of peaks around TEM00;

Time between TEM00 and sideband  0.0347989  pm  0.00292257322372  sec
Calibration factor is  317.995971137  pm  26.7067783894  MHz/sec
FSR is  34.5383016129  MHz
FWHM is  0.323979022488  pm  0.0145486106353  MHz
TMS is  1.55827297374  pm  0.00439737672808  MHz
Finesse is  106.606598624  pm  4.78727876459
Cavity g-factor is  0.989971692098  pm  5.65040851566e-05
Cavity g-factor is  0.980043951156  pm  0.000111874889586

Discussion:
 Measured finesse is similar to measured PRM-PR2 cavity finesse(108 +/- 3, see elog #8012). This means loss from flipped PR2 and beam path from PR2 to TM is small.

 I'm a little suspicious about measured g-factor because it is hard to tell which peak is which from the mode scan data. Since half-PRC was not aligned well, high HOMs may contribute to POP DC. Astigmatism also splits HOM peaks.

 PRC 3 Hz beam motion was there for long time (see, for example, elog #6954). BS is unlikely to be the cause because we see this motion in half-PRC, too.
 Also, beam spot motion was not obvious in the PRM-PR2 cavity. My hypothesis is; stack resonance at 3 Hz makes PR2/PR3 angular motion and folding by PR2/PR3 makes the beam spot motion.

Next things to do:
 * PRC g-factor
   - Calculate expected half-PRC g-factor with real measured curvatures, with error bar obtained from RoC error and length error (JAMIE)
   - Calculate expected PRC g-factor using measured half-PRC g-factor (JAMIE)
 * PRC 3 Hz beam motion
   - Do we have space to put oplevs for PR2/PR3?
   - Can we fix PR2/PR3 temporarily?
 * PRMI
   - Align incident beam, BS, REFL, AS, and MI using arms as reference
   - lock PRMI
   - PRC mode scan

  8050   Sat Feb 9 11:25:35 2013 KojiUpdateLockingPR2-flipped half-PRC mode scan

Don't  Shouldn't you apply a small misalignment to the input beam? Isn't that why the peak for the 1st-order is such small?

Quote:

Method
 1. Aligned half-PRC using input TT1 and TT2 by maximizing POP DC during lock. It was not so easy because POP DC fluctuates much at ~ 3 Hz with amplitude of ~ 30 % of the maximum value because of the beam motion (movie on  elog #8039).

 2. Unlocked half-PRC and took POP DC and PRC error signal data;

> /opt/rtcds/caltech/c1/scripts/general/getdata -d 1 -o /users/yuta/scripts/PRCmodescan C1:LSC-POPDC_OUT C1:LSC-REFL11_I_ERR

  Ran again and again until I get sufficiently linear swing through upper/lower sidebands.

 

  8052   Sun Feb 10 17:30:39 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

I redid half-PRC mode scan by applying mislignment to PRM.
Half-PRC's sagittal g-factor is 0.9837 +/- 0.0006 and tangential g-factor is 0.9929 +/- 0.0005.
sagittal g-factor is 0.968 +/- 0.001 and tangential g-factor is 0.986 +/- 0.001. (Edited by YM; see elog #8056)

Method:
 1. Same as elog #8049, but with small misalignment to PRM.

 2. Algined half-PRC, and misaligned PRM in pitch to get sagittal g-factor.

 3. Restored pitch alignment and misaligned PRM in yaw to get tangential g-factor.

Result:
 Below left is the plot of POP DC and PRCL error signal (REFL11_I) when PRM is misaligned in pitch. Below left is the same plot when misaliged in yaw.
left:modescan_pitmisalign.png    right:modescan_yawmisalign.png

 By averaging 5 sets of peaks around TEM00, I get sagittal/tangential g-factors written above.

Discussion:
  The fact that tangential g-factor is larger than sagittal g-factor comes from astigmatism mainly from PR3. Effective PR3 curvature is

sagittal Re = R/cos(theta) = -930 m
tangential Re = R*cos(theta) = -530 m   (where R = -700 m , theta = 41 deg)

so, PR3 is more convex in tangential plane and this makes half-PRC close to unstable. This is opposite of Jamie's calculation(elog #8022). I'm confused.

  I first thought I don't need to misalign PRM because alignment was not so good - it was hard to align when beam motion is large. Also, this motion makes angular misalignment, so I thought free swinging is enough to make higher order modes. However, misaligning PRM intentionally made it easier to resolve higher order modes. I could even distinguish (10,01) and (20,11,02), as you can see from the plot.

Next:
  We have to compare with expected g-factor before moving on to PRMI.

  8056   Mon Feb 11 13:15:16 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

I found a mistake in my code (thanks Jamie!).
I forgot to square the g-factor.
I corrected the following elogs;

PRM-PR2 cavity
  elog #7994 : g-factor will be 0.9889 +/- 0.0004
  elog #8012 : g-factor is 0.988812630228 pm 0.000453751681357

half-PRC g-factor
  elog #8040 : g-factor is 0.9800 +/- 0.0001
  elog #8052 : sagittal g-factor is 0.968 +/- 0.001 and tangential g-factor is 0.986 +/- 0.001

I checked that I was correct in July 2012 (elog #6922)

Cavity g-factor formula:
  gm = ( cos(pi*nu_TMS/nu_FSR) )**2

  8058   Mon Feb 11 16:29:33 2013 JenneUpdateLockingTemp oplev for PR2; ITMX temporarily has no oplev

[Yuta, Jenne]

In an effort to see what is going on with the beam spot motion, and to investigate whether or not it might be caused by passive TT motion, Yuta and I installed some oplev mirrors in-vac, to make a PR2 oplev.

Yuta did not move either of the in-vac oplev mirrors that are for ITMX.  Instead, he took the incident red beam as it was, and put a spare in-vac oplev mirror there.  Then he used another spare oplev mirror to get the beam out, and on to the one out-of-vac steering mirror before the QPD.  I then steered the out of vac mirror to center the beam on the QPD.

This means (1) that ITMX cannot have an oplev right now, although the HeNe was off anyway, and (2) that as soon as we take these spare oplev mirrors out, we should immediately have ITMX oplev back (may need to steer out of vac mirror to get beam onto QPD).

Yuta is currently taking measurements to see if PR2 motion has high coherence with the intracavity motion.

  8064   Mon Feb 11 21:03:15 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

To estimate the systematic effects to the g-factor measurement, I changed how to analyze the data in multiple ways.
From the estimation, I get the following g-factors for half-PRC;
  tangential: 0.986 +/- 0.001(stat.) +/- 0.008(sys.)
    sagittal: 0.968 +/- 0.001(stat.) +/- 0.003(sys.)


The a la mode/arbcav calculation is not so far from the measurement(elog #8059). So, mirror curvatures and lengths are not far from what we expect.

Method:
  Method I used to analyze the mode scan data is as follows;

  1. Use the spacing between upper sideband and lower sideband to calibrate the data.
  2. Measure the position of 00, 1st, 2nd and 3rd mode.
  3. Used the following formula to get TMS

  nu_TMS = sum((n_i-n)*(nu_i-nu)) / sum((n_i-n)^2)

  where n_i is the order of transverse mode, n is average of n_i's, nu_i is the frequency if i-th order mode and nu is average of nu_i's. This is just a linear fitting.

  But since it is hard to resolve where the higher order mode is, it is maybe better to use only 00, 1st, and 2nd mode. Also, since cavity sweep is not linear enough, it is maybe better to use spacing between 00 and lower sideband (sideband closer to HOMs) to calibrate the data. Changing the analysis will give us information about the effect of peak choosing and linearity.

How the result differ:
  Below are the plots of order of tranverse mode vs measured relative frequency difference from 00 mode. 5 plots on left are when PRM is misaligned in pitch and right are same in yaw. From the plot, you can see using 3rd order mode tend to give larger TMS. Did I picked the wrong one??
left:modespacing_pit.png    right:modespacing_yaw.png

Results:
  Below table is the result when I changed the analyzing method;

PRM misaligned in pitch
  calibration    how many HOMs    measured g-factor
  upper-lower    up to 3rd    0.968
  upper-lower    up to 2nd    0.974
  upper-lower    up to 1st    0.975
  00-lower       up to 3rd    0.952
  00-lower       up to 2nd    0.962
  00-lower       up to 1st    0.963


PRM misaligned in yaw
  calibration    how many HOMs    measured g-factor
  upper-lower    up to 3rd    0.986
  upper-lower    up to 2nd    0.989
  upper-lower    up to 1st    0.991
  00-lower       up to 3rd    0.964
  00-lower       up to 2nd    0.988
  00-lower       up to 1st    0.991


  Using 00-lower calibration tend to give us smaller g-factor. Using less higer order-mode tend to give us higher g-factor.
  By taking standard deviation of these, I roughly estimated the systematic error as above.

Discussion:
  I think it is OK to move on to PRMI now.
  But I wonder how much astigmatism is needed to get this measurement data. If astigmatism is not so crazy, it's OK. But if it's not, I think it is better to do more measurement like PRM-PR2-TM cavity.

  8065   Tue Feb 12 00:14:00 2013 yutaUpdateLockingPRM coil balancing

We tried to lock half-PRC tonight, but we couldn't. Why?? I could lock yesterday.
It locks for ~ 1 sec, but it beam spot motion freaks out mainly in yaw.
I tried to balance PRM coils, but oplev beam was clipped by MMT1......

What I did:
  1. Found elog #5392 and found F2P_LOCKIN.py

  2. Modified F2P_LOCKIN.py because LOCKIN channel names are some how changed like this;

LOCKIN1_I -> LOCKIN1_DEMOD_I
LOCKIN1_Q -> LOCKIN1_DEMOD_Q
LOCKIN1_SIG -> LOCKIN1_DEMOD_SIG

  3. Running

/opt/rtcds/caltech/c1/scripts/SUS/F2P_LOCKIN.py -o PRM

  should adjust (UL|UR|LR|LL)COIL_GAINs by putting some gain imbalance and shaking the mirror in different frequencies. It uses LOCKIN to OL(PIT|YAW).

  4. Since there was no PRM oplev beam coming out from the vacuum, I quickly looked into BS-PRM chamber. Oplev beam was clipped by MMT1. If I adjust PRM slider values to avoid clipping, the beam will be clipped by mirrors on oplev table. What happened to the PRM oplev?

  5. I also made bunch of /opt/rtcds/userapps/trunk/sus/c1/medm/templates/SUS_SINGLE_LOCKIN(1|2)_DEMOD_(I|Q|SIG).adl because there were missing screens.

Next:
 We need to restore the PRM oplev and balance the coils. See, also, elog #7679

  8066   Tue Feb 12 00:50:08 2013 yutaUpdateLockingPR2 oplev spectra

I wanted to see if PR2 motion makes PRC beam motion or not, using temporary oplev to PR2.
I could not measure the coherence between beam motion and PR2 motion, because I couldn't lock half-PRC today.
But I took spectra of PR2 oplev anyway.

Result:

  Below are the spectra of PR2 oplev outputs (taken using C1:SUS-ITMX_OL(PIT|YAW)_IN1). Bottom plot is POP DC during half-PRC locked yesterday.
PR2oplev.png

Discussion:
  We see bump in PR2 oplev output at ~ 2-3 Hz. But we cannot say this is a evidence for PR2 motion making PRC beam motion because no coherence measurement was done. Also, oplev might be just seeing the ITMX stack motion.

  Resonant frequency of TTs measured were at ~ 1.8-1.9 Hz (elog #8054), but we cannot clearly see these peaks in oplev outputs. Did resonant frequency shifted because of different damping condition?

  8076   Wed Feb 13 14:21:19 2013 JenneUpdateLockingPRC cavity gains

Quote:

With 1500ppm loss on both PR2 and PR3, 150ppm arm cavity loss:

We get a PRC gain for the CARRIER (non-flipped folding) of 21, and PRC gain (flipped folding) of 20.  This is a 4.7% loss of carrier buildup.

We get a PRC gain for the SIDEBANDS (non-flipped folding) of 69, and PRC gain (flipped folding) of 62.  This is an 8.8% loss of sideband buildup.

 With a PR2 loss of 896ppm (from the plot on the wiki), but no loss from PR3 because we didn't flip it, and the same 150ppm round trip arm cavity loss, I get:

Carrier gain = 21.0

Sideband gain = 66.7

(No loss case, with an extra sig-fig, so you can see that the numbers are different:  Carrier = 21.4, Sideband = 68.8 .)

So, this is 1.6% loss of carrier buildup and 3.1% loss of sideband buildup.  Moral of the story - G&H's measured AR reflectivity is less than Rana's guess, and we didn't flip PR3, so we should have even less of a power recycling gain effect than previously calculated.

  8133   Thu Feb 21 19:55:02 2013 ManasaUpdateLockingGreen locking in arms

[Yuta, Manasa]

We have aligned the Y-arm to lock in green. The green beams at the PSL table were clipping at the attenuation optics we installed for the vent (HWP-PBS-HWP). We had to move the polarization changing wave plate to get the green beam on the steering mirror. We installed the GRNT camera on the PSL table and aligned the arms to get TEM00 flashing. Green TRX PD was then installed and the trans power was brought to a maximum of 210uW.
We will use this to align the IR to the arm when we are back in full power tomorrow.

Attachment 1: ETMYF_1045540570.png
ETMYF_1045540570.png
  8142   Sat Feb 23 00:36:52 2013 ManasaSummaryLockingMC locked

[Yuta, Manasa, Sendhil, Rana]

With MC REFL PD fixed, we aligned MC in high power enabling a fully functional MC autolocker.
We then unlocked MC and aligned the PD and WFS QPDs. Also we checked the MC demodulator and found a ~20% leakage between the Q-phase and I-phase. This must be fixed later by changing the cable length.

We adjusted MC offsets using /opt/rtcds/caltech/c1/scripts/MC/WFS/WFS_FilterBank_offsets.
We then measured the MC spot positions using  /opt/rtcds/caltech/c1/scripts/ASS/MC/mcassMCdecenter
Spot positions seem to have shifted by 2mm in yaw.

We will proceed with aligning the arms now.

Attachment 1: MCdecenter_23Feb2013.png
MCdecenter_23Feb2013.png
ELOG V3.1.3-