40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 304 of 348  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  7548   Mon Oct 15 14:51:16 2012 JenneUpdateSUSSUS were kicked hard as a result

Quote:

Apparently all of the ION pump valves (VIPEE, VIPEV, VIPSV, VIPSE) opened, which vented the main volume up to 62 mTorr.  All of the annulus valves (VAVSE, VAVSV, VAVBS, VAVEV, VAVEE) also appeared to be open.  One of the roughing pumps was also turned on.  Other stuff we didn't notice?  Bad. 

 Several of the suspensions were kicked pretty hard (600+ mV on some sensors) as a result of this quick vent wind.  All of the suspensions are damped now, so it doesn't look like we suffered any damage to suspensions.

  7551   Mon Oct 15 22:16:09 2012 JenneUpdateSUSAll oplev gains turned to 0

Steve has promised to fix up all of the oplevs, but it hasn't happened yet, so I've turned all of the oplev gains to zero, so that when the optics are restored we don't have to quickly click them off.

Oplev values that were changed to zero:

PRM P=0.15, Y=-0.3

SRM P=-2.0, Y=2.0

BS P=0.2, Y=-0.2

ITMY P=2.1, Y=-2.0

ITMX P=1.0, Y=-0.5

ETMX P=-0.2, Y=-0.2

ETMY P=0.5, Y=0.6

Also, PRCL was changed in the LSC input matrix from REFL33I to AS55I, since there is no REFL beam out of the IFO :(

  7566   Wed Oct 17 08:30:49 2012 SteveUpdateSUS PTICH damping needed

Quote:

Quote:

  [Koji, Steve, Den]

TT alignment is fine, yaw damping is satisfactory, pitch damping is slow. We might want to add magnets to the mirror and attach blades to the frame for pitch edge current damping.

We are moving towards electronics testing.

Atm1,  TT 1.5" high adaptor base will be back from the shop in 10 days.

Atm2,  There is no PITCH damping, YAW edie current damping works well at 0.5 mm gap

Atm3,  Adjustable Al -disc that contains a small magnet is purely designed.

We have to come up with a solution to have damping in PITCH

 Pitch damping solution needed! It should be in the machine shop already.

  7568   Wed Oct 17 11:15:05 2012 DenUpdateSUS PITCH damping needed

Quote:

 

 Pitch damping solution needed! It should be in the machine shop already.

I think we can put ø2mm × 10mm long magnetic material inside 4 holes with actuation magnets. Then magnetic field on the other side of the mirror will be close to one produced by actuation magnet. Magnetic cylinder center of inertia will be in the vertical plane where mirror's center of inertia is. So this should not change alignment significantly. Eddy current dumping will be applied to the end of the magnetic cylinder opposite to the magnet using aluminium disks, we have them in the clean room.

pitch_damping.png

  7571   Thu Oct 18 02:42:38 2012 DenUpdateSUS PITCH damping needed

Quote:

 

I think we can put ø2mm × 10mm long magnetic material inside 4 holes with actuation magnets. Then magnetic field on the other side of the mirror will be close to one produced by actuation magnet. Magnetic cylinder center of inertia will be in the vertical plane where mirror's center of inertia is. So this should not change alignment significantly. Eddy current dumping will be applied to the end of the magnetic cylinder opposite to the magnet using aluminium disks, we have them in the clean room.

 I've tested this approach. As we do not have required cylinders with high magnetic permittivity, I replaced them with magnets simular to actuator magnets ø2mm × 3mm long. Using them and aluminium disks from other TT I've made a "pitch dumping" construction.

DSC_4759.JPG

Pitch Q reduced but not that much as I could expect. I did a ringdown test. 

Plots:

yaw ringdown using original construction     |  yaw ringdown with added pitch damping

------------------------------------------------------------------------------------------------------------------------

pitch ringdown using original construction   |  pitch ringdown with added pitch damping

    yaw_nodamp_20.JPG   yaw_damped_13.JPG

pitch_nodamp_30.JPG     pitch_damped_10.JPG

 

 From this data I've estimated Q factor for yaw (135 vs 88) and pitch (192 vs 77) (original vs added pitch damping). Thess results diverges with the ones obtained by designes. They measured Q~40-50 for original construction. Pitch and yaw have 2 close resonances so this time domain method can not be very precise. I've measured the same with SR785.

yaw.pngpitch.png

In these comparison plots excitation was not the same as coils are not plugged in yet, but resonance Q factors can be compared.

 

  7583   Fri Oct 19 18:30:07 2012 DenUpdateSUS PITCH damping needed

CQuote:

 

 From this data I've estimated Q factor for yaw (135 vs 88) and pitch (192 vs 77) (original vs added pitch damping).

 I've made a more precise measurement of pitch damping using spectrum analyzer.

damp.png   pitch.png

Measurements confirm that damping using small actuation magnets reduces pitch Q by a factor of 4 and is not enough.

  7585   Sat Oct 20 01:23:56 2012 DenUpdateSUS PITCH damping needed

Quote:

Measurements confirm that damping using small actuation magnets reduces pitch Q by a factor of 4 and is not enough.

 I've tested the idea to use coils as eddy current dampers. I terminated them with a wire and measured Q factor during the ringdown test. Sadly, I did not see any significant damping and Q was ~150. We need stronger magnets if we want eddy current dumping down to Q~1.

P1010059.jpg      P1010060.jpg    P1010058.jpg

  7586   Sat Oct 20 20:37:55 2012 DenUpdateSUS PITCH damping needed

Quote:

 

 We need stronger magnets if we want eddy current dumping down to Q~1.

 I've inserted 10mm * 10mm magnets to the 4 corner holes on the front side of the mirror frame according to actuation magnets polarity. I realigned TT and measured Q factor for pitch and yaw, it was 5-10.

DSC_4778.JPG     pitch.JPG   yaw.JPG

 

I was able to do it for 1 TT only, because others have smaller (~0.1 mm) hole diameter and magnets can't go inside. I tried to warm holes up to 850 F but still was not able to insert a magnet.

DSC_4776.JPG

  7588   Mon Oct 22 11:26:12 2012 ranaUpdateSUS PITCH damping needed

 

Too bad - I thought it would at least give a little damping. Since we want the viscous-like energy loss to be ~49x larger, we need to have the field modulation in the damper (not dumper) increase by ~7.

  7593   Tue Oct 23 01:46:53 2012 DenUpdateSUS PITCH damping needed

Quote:

 

Too bad - I thought it would at least give a little damping. Since we want the viscous-like energy loss to be ~49x larger, we need to have the field modulation in the damper (not dumper) increase by ~7.

 I've made SolidWorks models of damping bracket and eddy current disk. They will me manufactured and used instead of old ones. New bracket will be mounted in exactly the same place where the old one was. Drawings might not be complete but all dimensions are in the models so we can fix drawing tomorrow before going to machine shop.

I think we can use ring magnets for passive damping. Then we won't have the vent problem. I've found some at K&J Magnetics, we can get them any time. Magnets are Ni-Cu-Ni (fine for vacuum?) Diameter is 3/8'' with advertised tolerence 0.004'', so they should fit the holes.

Attachment 1: Mirror_Holder_ECD_NEW_DRAWING.PDF
Mirror_Holder_ECD_NEW_DRAWING.PDF
Attachment 2: TT_DAMPING_DRAWING.PDF
TT_DAMPING_DRAWING.PDF
  7595   Tue Oct 23 09:37:33 2012 SteveUpdateSUS passive TT adjustment correction

Quote:

Tip Tilt pitch adjustment on existing-in vacuum suspension. This can be added by a simple installation of a 1.25" long 2-56 threaded rod with nuts.

 We should check that  their sus wire diameter are 0.0017"  All 2-56 hardware are in and  Bob is cleaning them.

Attachment 1: IMG_1745.JPG
IMG_1745.JPG
  7598   Tue Oct 23 17:12:30 2012 DenUpdateSUS PITCH damping needed

 Koji and Steve pointed out that previous design  of a damping bracket was a bit complicated to manufacture. So I made it simpler and also added a tap hole for original yaw damping. We'll give drawing to Mike in the machine shop tomorrow morning.

I've purchased K&J magnets for eddy current damping, they should be here in 2 days. 

Attachment 1: simple_drawing.PDF
simple_drawing.PDF
  7602   Tue Oct 23 18:18:29 2012 JenneUpdateSUS PITCH damping needed

Quote:

Quote:

 

Too bad - I thought it would at least give a little damping. Since we want the viscous-like energy loss to be ~49x larger, we need to have the field modulation in the damper (not dumper) increase by ~7.

 I've made SolidWorks models of damping bracket and eddy current disk. They will me manufactured and used instead of old ones. New bracket will be mounted in exactly the same place where the old one was. Drawings might not be complete but all dimensions are in the models so we can fix drawing tomorrow before going to machine shop.

I think we can use ring magnets for passive damping. Then we won't have the vent problem. I've found some at K&J Magnetics, we can get them any time. Magnets are Ni-Cu-Ni (fine for vacuum?) Diameter is 3/8'' with advertised tolerence 0.004'', so they should fit the holes.

 Den mentioned that the disks will have threaded holes, and that he has made a note to that effect on the paper copy of the drawing that he will bring to Mike at the shop.  Also, all threaded holes in the new plate are marked on the paper copy.

  7604   Wed Oct 24 01:02:10 2012 KojiUpdateSUS PITCH damping needed

Wow... This is even more complicated than the original "Y" design...

  7619   Thu Oct 25 08:04:45 2012 SteveUpdateSUSmy assesment of the folding mirror (passive tip-tilt) situation

Quote:

The thinner wire has a history that it did not improve the hysteresis (ask Jenne). Nevertheless, it's worth to try.

If you flip the clamp upside-down, you can lift the clamping point up. This will make the gravity restoring torque stronger.
(i.e. Equivalent effect to increasing the mass)

Luckily (or unluckily) the clamp has no defined location for the wire as we have no wire fixture.
Therefore the clamp will grab the wire firmly even without milling.

 The wire clamps should be taken off at the top and at the mirror holder. They need a mill touch up. It would be nice to have the centering jig from LLO for the 0.0017"

The clamps in this condition are really bad. It can sleep, it is not adjustable.

 

Attachment 1: IMG_1748.JPG
IMG_1748.JPG
  7625   Thu Oct 25 20:44:11 2012 JenneUpdateSUSTip tilts in progress

Jamie and I spent some time with tip tilt SN001 this afternoon.  This was installed as SR3, so I was going to put a new LaserOptik mirror in there.  I accidentally snapped one of the wires (I forgot how strong the magnets are - one zipped from the mirror holder and captured the wire).  Jamie and I put the new LaserOptik mirror in, with the wedge correct, but we need to re-resuspend it with the 0.0036" wire tomorrow.  We'll also keep working on re-pitch aligning the other optics.

PR2 needs to be put back as a G&H, and we need to put a LaserOptik mirror into PR3.

  7630   Fri Oct 26 10:44:25 2012 JenneUpdateSUSTip tilts in progress

Quote:

Jamie and I spent some time with tip tilt SN001 this afternoon.  This was installed as SR3, so I was going to put a new LaserOptik mirror in there.  I accidentally snapped one of the wires (I forgot how strong the magnets are - one zipped from the mirror holder and captured the wire).  Jamie and I put the new LaserOptik mirror in, with the wedge correct, but we need to re-resuspend it with the 0.0036" wire tomorrow.  We'll also keep working on re-pitch aligning the other optics.

PR2 needs to be put back as a G&H, and we need to put a LaserOptik mirror into PR3.

 We resuspended SN001 this morning with 0.0036" wire.  We did as Koji suggested, and flipped the wire clamp so the suspension point is a little higher, so we'll see if that helps.  We put LaserOptik mirror SN1 into this TT001.

We put the G&H mirror back into TT004, which is PR2.  We also put a LaserOptik mirror (SN5) into TT005, which is SR3.

Jamie is working on re-pitch aligning TT004 and TT005 (we already did 001), then we can re-install them in the vacuum system later this afternoon.

  7631   Fri Oct 26 13:08:14 2012 JenneUpdateSUSTip tilts in progress

Quote:

Quote:
 

Jamie is working on re-pitch aligning TT004 and TT005 (we already did 001), then we can re-install them in the vacuum system later this afternoon.

 The tip tilts have all been pitch-adjusted now, and they have all been put back onto the tables, with the same serial numbers in the same places as we took them out.  Jamie also re-leveled the BS table.

Raji and I will align things after I finish measuring the MC spot positions.

  7637   Mon Oct 29 09:33:42 2012 SteveUpdateSUSPRM & ETMY sus damping restored
  7640   Mon Oct 29 18:14:55 2012 DenUpdateSUS PITCH damping needed

 

 We've received all parts that we need for eddy current damping. I've made an estimate of Q with dirty tip-tilt. It looks fine (Q~1)

We need to check ring magnets for vacuum compatibility. Bob start baking on Friday.

DSC_4787.JPG     DSC_4791.JPG

  7717   Fri Nov 16 00:08:36 2012 KojiUpdateSUSMC2 woes

People complained about the MC instability: If we aligned the MC, it locked nicely for a while.
Then suddenly you find that it got totally misaligned with the order of 0.2 with the alignment slider.
This misalignment usually happens for MC2, but it happend on MC3 once.

Surprisingly to me, this instability happened even without MCL and WFS, not only once but at least three times.
This suggests that the suspensions are the cause of the trouble.

I played with the MC2 suspension for a while in the afternoon. It seems that it has a hysteresis (or say, bistablity).
And the nominal alignment of MC2 seems close to the point where the transition happens. (Dunno why)

I further played with MC2 and found that a step of POS actuation by +/-10000 induces this transition go and back.
When the POS kick is in the negative direction (-10000), the MC2 seems to return to the preferrable
position. Therefore, I applied DC position force of -5000 to pull the mirror a bit from the nominal position.

I let the MC locked for ~4hours without MCL and WFS, it kept good alignment and the lock was stable
except for unlocks because of the activties by Den and Ayaka.

All of them has been done without previous monitor data as the tools were available.

The MC2 situation is not conclusive but we should check how we can prevent the bistable transition
by restricting MCL/WFS.

  7724   Mon Nov 19 15:15:22 2012 JenneUpdateSUSAll oplev gains turned on

Quote:

Oplev values that were changed to zero:

PRM P=0.15, Y=-0.3

SRM P=-2.0, Y=2.0

BS P=0.2, Y=-0.2

ITMY P=2.1, Y=-2.0

ITMX P=1.0, Y=-0.5

ETMX P=-0.2, Y=-0.2

ETMY P=0.5, Y=0.6

Also, PRCL was changed in the LSC input matrix from REFL33I to AS55I, since there is no REFL beam out of the IFO :(

 Ayaka and I restored all of the oplev gains to these values.  The exception is ETMY, which has both gains negative.  I am unsure if this is a transcription error on my part, or if something physical has changed.  The layout of the ETMY oplev was modified (since Rana took out the offending lens) but that shouldn't affect the sign of the gains.

  7775   Sun Dec 2 00:37:49 2012 DenUpdateSUSTT cable problem

 This week I've got all TT stuff baked and today was testing eddy current damping and electronics.

In the beginning everything was good: ring magnets fit mirror holder holes and their interaction with actuation magnets is strong enough to keep damping magnets in the wholes. I've put the frame horizontally and kicked it, magnets were still in the whole. Brackets also fit to the TT frame.  

DSC_4945.JPG     DSC_4946.JPG

I've tested eddy current dumping during ring down measurements, it was strong enough.

DSC_4947.JPG    DSC_4948.JPG

Then I started to test electronics. I've provided signal to TT1 channels and could see it in the clean room. But then things went terrible. I just could not connect TT cables to OSEMS, there is not enough space in the OSEM for the connector to plug in.

DSC_4949.JPG     DSC_4952.JPG

Connector should be machines to be more narrow. There is actually no reason for a connector to have this shape. I think it was designed to fit perfectly the OSEM frame but turned out to be ~0.5 mm wider then it should be.

  7781   Tue Dec 4 10:51:10 2012 SteveUpdateSUSPRM damping restored

PRM oplev gains set to zero from PIT 0.15 and YAW -0.3 and damping restored

  7783   Tue Dec 4 18:06:35 2012 DenUpdateSUSTTs are ready

 Using instructions from Bram and Suresh, I was able to plug in connectors to BOSEMs. Today I've tested electronics, everything works good. Jamie made an medm screen and channels for TTs. Sliders for pitch and yaw go from -100 to 100 counts. Calibration to angle is 1e-5 rad / count.

TTs are in the clean room waiting for installation.

IMG_0105.JPG    IMG_0108.JPG

  7785   Tue Dec 4 20:13:55 2012 KojiUpdateSUSTTs are ready

Please leave here what was the instruction by Bran and Suresh so that the other people can redo it sometime later!

  7787   Tue Dec 4 21:57:04 2012 DenUpdateSUSTTs are ready

Quote:

Please leave here what was the instruction by Bran and Suresh so that the other people can redo it sometime later!

 The connectors can be plugged into the BOSEMs if we loosen the two screws which hold down the mini-D connector and the flex circuit.  Tighten the screws after the connector is pluged in.

  7798   Fri Dec 7 19:24:43 2012 Den, AyakaUpdateSUSoplevs as acoustic and seismic noise couplers at high frequencies

We've provided acoustic excitation using speakers on the AS table and saw that PSD of YARM feedback signal increased in the frequency range 50 - 100 Hz. Meanwhile, XARM feedback signal did not change. Moreover, YARM noise is much higher at these frequencies compared to XARM.

The problem was with YARM oplev servos. Both ITMY and ETMY produced noise to YARM length. ITMY oplev signal had a huge resonance at 55 Hz. We measured coherence with accelerometers, it was 0.8. It turned out that one of the mirror mounts was not fixed in the oplev path. When we fixed it, noise has gone.

Note: speakers were on AS table but mirror mounts could steel feel it on ITMY table.

IMG_0111.JPG         YARM.png

Then we had a look on ETMY table. We saw a mirror on suspiciously long mirror mount that was used in the ETMY oplev path. We slightly kicked long mount with a small screwdriver and YARM control signal went up with resonance at 100 Hz.

IMG_0112.JPG        ETMY_olreso_copy.png

  7799   Fri Dec 7 20:34:31 2012 AyakaUpdateSUSoplevs as acoustic and seismic noise couplers at high frequencies

I will just leave the picture of spectrum that shows the injected acoustic sound effects due to the oplevs.

 YARM_acous_oplev.pdf

red line: POY error without oplev feedback nor acoustic noise
blue line: POY error without oplev feedback but with acoustic noise
brown line: POY error with oplev feedback but without acoustic noise
green line: POY error with oplev and acoustic noise

You can see there is noise only at green line around 70 - 100 Hz. And it does not look like the acoustic signal is injected directly to the arms but the acoustic sound couples to the original noise source.

  7821   Thu Dec 13 04:29:34 2012 DenUpdateSUSTT angle of incidence

I think the angle of incidence on TT inside BSC will be too large because of eddy current damping brackets. I've measured max possible angle of incidence

  Max angle of incidence, degrees
No bracket 72
Original bracket 45
New bracket (with no screws for tiny yaw magnets) 52

This means that we do not have too much range and there is a probability that 45 degree incident beam will start clipping. I think we should just cut off the central part of the bracket. We do not need it anyway, our eddy current damping due to corner magnets is good enough.

I've left the brackets near the laptop in the clean room.

  7822   Thu Dec 13 04:42:32 2012 DenUpdateSUSITMX local damping

Tonight we've noticed that ITMX local damping was kicking the optics. This happened because LR shadow sensor was not working. In ~30 minutes it started to work again. Evan and I were working on installation, moving and focusing cameras and locking prcl and mich. We've installed a camera on BSC and plugged it in to PSL_SPARE input.

I'm not sure that this can be correlated to ITMX LR shadow sensor behaviour.

 

lrsen.png

  7826   Fri Dec 14 01:42:53 2012 DenUpdateSUSTT angle of incidence

I've estimated max possible angle of incidence on TT if we allow 20mm tolerance for the beam size and 5 mm tolerance for spot location on the mirror. It turns out to be

alpha = 43 degrees

So we need to cut the central part of the bracket. Then the max possible angle of incidence will be

alpha = 63 degrees

 

DSC_4791.jpeg

We can start the vent on Monday and use TT with an old bracket for yaw damping and later during the week we can install the brackets after they will be baked.

  7827   Fri Dec 14 02:52:32 2012 KojiUpdateSUSTT angle of incidence

At least, we don't want to use Al-coated mirrors. We should use multilayer dielectric mirrors.

  7828   Fri Dec 14 03:15:49 2012 JenneUpdateSUSTT angle of incidence

But have you looked yet at what angle we need? The first input string mirror has a quite small incidence angle. The other input steering mirror maybe borderline, based on your estimates. Also, have we considered just having new brackets made and cleaned? Is there a reason we would prefer to modify the ones we have?

  7837   Mon Dec 17 11:20:58 2012 JenneUpdateSUSBeam dumps on vertex oplevs removed

I'm not sure when this was done, but there were beam dumps in front of the lasers for BS/PRM oplevs as well as ITMY/SRM oplevs.  MICH wasn't holding lock very nicely, so I poked around, and the Sum values for all of these optics' oplevs seemed too low, so I went to look, and found dumps.  I have removed these, and now BS and ITMY oplevs are back to normal.  (PRM and SRM are still misaligned right now, so I'll check those later, but they should be fine).

BS's oplev has been enabled while non-existant, at least for the whole weekend, since I found it enabled.  ITMY I found misaligned, so it's oplev servos were off.

In other news, we should get back in the habit of restoring all optics before we leave for the night / whenever locking activities are finished. 

  7838   Mon Dec 17 14:13:55 2012 JenneUpdateSUSPRM oplev gains restored

Quote:

PRM oplev gains set to zero from PIT 0.15 and YAW -0.3 and damping restored

 Put them back to normal.

  7844   Mon Dec 17 21:41:30 2012 ranaSummarySUSBeCu wire

Just in case we want to retrofit the Tip/Tils with Beryllium Copper wire, here are links to a few sources which have a supply of the right composition and temper:

http://www.lfa-wire.com/Tempered-Alloy-25_C17200.htm

http://www.alloywire.com/beryllium_copper_CB_101.html

http://www.ngk.co.jp/english/products/electronics/berylliumcopper/wire/index.html

http://www.goodfellow.com/E/Copper-Beryllium-Wire.html

 

I don't think its worth it to do something to modify them unless we get a real reduction in the hysteresis - need a benchtop test setup ASAP.

  7850   Tue Dec 18 15:32:29 2012 JenneUpdateSUSTT angle of incidence

Quote:

At least, we don't want to use Al-coated mirrors. We should use multilayer dielectric mirrors.

 I popped into the cleanroom earlier today, and all 4 active TTs have dielectric coatings.  I'm not sure why the mirror in this photo looks funny, but the actual mirrors installed are correct, at least in type of coating. 

I'm not sure if Den wrote down what mirrors are actually in there, and I didn't look carefully - I don't know if they are G&H, CVI, other mystery company?

  7855   Wed Dec 19 11:14:25 2012 SteveUpdateSUSBeCu wire in stock

Quote:

Just in case we want to retrofit the Tip/Tils with Beryllium Copper wire, here are links to a few sources which have a supply of the right composition and temper:

http://www.lfa-wire.com/Tempered-Alloy-25_C17200.htm

http://www.alloywire.com/beryllium_copper_CB_101.html

http://www.ngk.co.jp/english/products/electronics/berylliumcopper/wire/index.html

http://www.goodfellow.com/E/Copper-Beryllium-Wire.html

 

I don't think its worth it to do something to modify them unless we get a real reduction in the hysteresis - need a benchtop test setup ASAP.

 Be Copper in the lab is from Ca Fine Wire :  alloy 10 CDA 17 in sizes .008"  &  0.002"  There are other sus wire choices in the Drever lab

  7869   Fri Dec 21 16:50:30 2012 RanaUpdateSUSTT in vac DB25 pin swapping

[Koji, Rana, Nic, Steve]

We went to the 25-pin D cable which connects to the TT1 quadropus and succeeded eventually in swapping pins 12/24 into the 13/25 positions.

  1. The D-sub connector is a custom made LIGO part and so it doesn't at all work to use the standard pin extractor tools to move the pins out; we should have investigated this before spending all this time poking at and possibly damaging the existing connector.
  2. To move the pins, we have to partially dis-assemble the connector and fish the pins/wires through the appropriate holes. Unfortunately, the design is such that we nearly lose all of the pins when trying to do this. Pictures describe the story better than words.
  3. After the swap we tried to test the TT, but again wasted some time because the vac feedthrough was incorrectly labeled. The 25-pin feedthrough labeled as "PZT1" does not, in fact, connect to the TT. Instead, its the one slightly above it that is labeled "Pico". I have moved the PZT1 sticker up to match the actual connector. In order to discover this, we beeped through several stages of the coil driver, cable system. WE need to order some in-line D-sub breakouts for 25pin, 37pin, and 9pin which are similar to the ones we have now for 15pin. These are better than the green terminal block breakouts.
  4. After this, we were able to see the TT move, but elected to leave the final piece of the work (determining which microD goes with which coil) to when Jamie gets back.
  5. The TT screen is not good: it needs to be just like the usual sus screen so that we can put in offsets, excitations, etc. Perhaps also the ASC-TT screen can link to the TT:SUS screens. We can just copy the eLIGO TT screens to get going.
  7871   Wed Jan 2 06:52:50 2013 KojiUpdateSUSTT in vac DB25 pin swapping

[Koji, Rana, Nic, Steve]

I recalled that we used an optical lever to check if the TT is moving or not.
We used a laser pointer on a tripod, which was prepared by Steve.

I should also note that we stepped back the eddy current dampers from the magnets
in order to enhance the motion of the suspension. They should be restored in the end.

The mini-D connectors on the OSEMs are loosened so that we can plug the cables in.
This requires a specific metric allen key
that is stored in a clean tool box with an aluminum foil.

  7884   Tue Jan 8 18:10:41 2013 JenneUpdateSUSPRM, SRM, BS oplevs off

I don't know why (I'm just leaving the lab right now....) but BS, PRM, SRM all have no light on their oplev PDs. I have turned off the oplev servos for now, and will get back to them tomorrow, before redoing the BS table oplev layout.

  7900   Tue Jan 15 01:41:40 2013 ranaUpdateSUSTT

 That seems like easily enough range; as long as we can put the TT into the middle of their range to start with we should be OK.

We should consider instrumenting the leakage transmission through all TT with a bare QPD on a stick. We can then use those sensors to monitor the spot positions within the input mirrors as well as the PRC / SRC.

  7903   Wed Jan 16 08:29:45 2013 SteveUpdateSUSPRM damping restored

PRM oplev servo turned off.  OLPIT servo gain 0.15 and OLYAW  -0.3 set to ZERO.  PRM damping restored

  7937   Thu Jan 24 11:31:45 2013 SteveUpdateSUSETMX damping restored

ETMX sus damping restored.  It is still noisy

  7938   Thu Jan 24 11:40:55 2013 JenneUpdateSUSETMX damping restored

Quote:

ETMX sus damping restored.  It is still noisy

 I should have elogged, but I turned off the watchdog to remind myself that iscex computer is still crashed.  "Turning on" the damping doesn't do anything since there aren't any signals going to the coils from the computer.

  8093   Sat Feb 16 17:27:26 2013 yutaUpdateSUSPRM coil balanced

PRM coil gains and f2a filters are adjusted for PRMI work.
It seems like UR/LL coil gains were ~10 % larger than others, and f2a filters changed by few %.

What I did:
  1. Tried to lock PRMI but when I turn on PRCL lock, PRM reflection looked like it tends to go up and left in REFL camera (last night).

  2. So, I set up PRM oplev back, by steering PRM oplev mirrors on the BS table (last night).

  3. Turned PRM oplev sero on, f2a filters off, and ran

> /opt/rtcds/caltech/c1/scripts/SUS/F2P_LOCKIN.py -o PRM

  I had to fix F2P_LOCKIN.py because it assumed some OUTPUT buttons in LOCKIN1 filters to be ON.
  Also, I had to restore filters in LOCKIN1 (8.5 Hz bandpass filter etc.) because their names were changed. To do this, I copied filters needed from /opt/rtcds/caltech/c1/chans/filter_archive/c1sus/C1SUS_110916_162512.txt, renamed LOCKIN1_(I|Q|SIG) with LOCKIN1_DEMOD_(I|Q|SIG), and pasted to the current filter bank file. I checked that they look OK with foton after editing the file.

  This measurement takes about 30 minutes. I ran several times to check consistency. There was ~ 0.1 % standard deviation for the measurement results.

  4. By putting measured coupling coefficients and PRM pendulum frequency (f0=0.993 Hz) to /opt/rtcds/caltech/c1/scripts/SUS/F2Pcalc.py, I got new f2a filters.

  5. Overwrote f2a filters in C1:SUS-PRM_TO_COIL_(1-4)_1 FM1 with new ones, and turned  new f2a filters on.

Result:
  Below is the DC gain adjustment result from F2P_LOCKIN.py;

multiplier factors are :
UL = 1.141525
UR = 0.879997
LR = 1.117484
LL = 0.860995
Set C1:SUS-PRM_ULCOIL_GAIN to 1.04990177238
Set C1:SUS-PRM_URCOIL_GAIN to -0.983396190716
Set C1:SUS-PRM_LRCOIL_GAIN to 0.954304254663
Set C1:SUS-PRM_LLCOIL_GAIN to -0.971356852259


  So, UR/LL coil gains somehow got ~10 % larger than other two since last coil balancing.

  Measured coupling coefficients from F2P_LOCKIN.py were

- measured coupling coefficients are :
P2P(POS=>PIT) = 0.014993
P2Y(POS=>YAW) = 0.001363


  New f2a filters are plotted below. They look fairly different compared with previous ones.
PRM_f2a.png


 

We need better F2P_LOCKIN.py:
  Some one should make F2P_LOCKIN.py better. The main problem is the sudden gain change when starting diagonalization at low frequency. It sometimes trips off the watchdog.

Some elogs related:
  Kiwamu made f2a filters in Sep 2011: elog #5417
  Koji adjusting DC gains in Jan 2013: elog #7969

  8096   Sun Feb 17 19:27:19 2013 ranaUpdateSUSPRM coil balanced

 I will check out the AS55 situation tomorrow. Just put it on my desk.

MC Autolocker was disabled - I enabled it.

For the F2P.py, you should look at how we did this with the script written 8 years ago in csh. There we stored the initial values in a file (so they don't get blow away if someone does CTRL-C). Your python script should have a trap for SIGINT so that it dies gracefully by restoring the initial values. In order to have the smooth value adjustment, you must first set the TRAMP field for all the coil gains to 2 and then switch. Make sure that the lockin ignores the first few seconds of data after making this switch or else it will be hugely biased by this transient.

For the PRM OL use as a F2A reference, you also have to take into account that the OL beam is hitting the PRM surface at non-normal incidence. IF it is a large angle, there will be a systematic error in the setting of the F2Y values.

  8152   Sun Feb 24 00:14:28 2013 ManasaUpdateSUSSUS Summary

I tried to fix the alarms for sensors on the SUS summary screen. I checked earlier elogs and found the setSensors.py script.

I received errors while running the script and pianosa was refused connection to nds. Yuta suspects problems with the lib directory.

Jamie! Can you fix this?

  8154   Sun Feb 24 17:54:34 2013 ranaUpdateSUSSUS Summary

 

 I asked John Z to talk with Jamie and then install a new NDS2 server software for us. Jamie may know if this happened or was foiled by the linux1 RAID failure.

In any case, our pyNDS stuff ought to be able to talk to NDS2 or our old NDS1 stuff, I hope.

ELOG V3.1.3-