40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 338 of 344  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  3769   Sat Oct 23 03:36:05 2010 yutaUpdateCDSfixed filters for C1SUS, C1RMS, C1MCS

(Joe, Yuta)

Summary:

 This Monday, MC suspension damping got something wrong.
 We started to check filters and found that digital filters were wrong because of mis-conversion from old filter files to new files.
 We converted the file again, and with mutual understanding between Foton and us, we finally got correct filters(I hope!).

What we did:
 1. Merged filter files in old /cvs/cds/caltech/chans/ directory into C1SUS.txt(BS,ITMX,ITMY), C1RMS.txt(PRM,SRM), C1MCS.txt(MC123).

 2. Rebuilt the RT models in order to get a correct filter file header(they have list of filter modules).

 3. Concatenate the header with filter design part which we got from step1.

 4. Replaced 'N 2048' with 'N 16384'
   It replaces sampling rate of "XXSEN"s.

Basically, step1-4 was the same with what we did last time. We didn't changed the fitler coefficients, so Foton somehow changed the original filter design.
So, this time, we

 5. Deleted coefficients like we did on Tuesday (see elog #3774).

But Foton couldn't read the file correctly this time. Foton seemed to be unbeatable.
Even if we replaced the sampling rate, Foton kept saying 2048! (This is maybe because Foton's default value is 2048Hz. Everytime Foton notice some editting in the file, he destroys everything. He hates editting)
The problems were always associated with the sampling rate, so

 6. Got back to step4 and undo-ed the replacement.

 7. Foton could read it this time, so I changed the sampling rate one by one using Foton GUI.

 8. Checked filters using Foton's Bode Plot.(Not for all, but some that had problem before)

 9. Splitted SDSEN filters to SDSEN, SUSSIDE, and SDCOIL.

 10. Put some missing whitening filters, and 28HzELPs.
   BS, PRM, SRM didn't have any 28HzELP for SDCOIL.
   ITMX and ITMY SDCOIL had SimDW/InvDW which doesn't make sense(SIDEs don't have analog DW). So, I deleted and replaced with 28HzELP.

F2A issue:
 We failed in sending F2A filters to new filter files.
 These are a little bit complicated because TO_COIL_X_X filters were named ULPOS,URPOS etc before.
 Also, MC3 didn't have any F2As, so maybe we should but the same F2As as MC1/2.
 Note that every F2As are different, and TO_COIL matrix have UL,UR,LL,LR order(not same as INMATRIX).
 Also, SRM had f2pv instead of F2A!

Next work:
 - Check whole filters by actually measuring transfer function between SENs and COILs.
 - Damp MC suspentions, and lock MC.
 - Measure openloop TF and compare with the designed.


How do you read a Foton filter file:
 When you open up a Foton filter file, you see filters like this.

################################################################################
### modulename                                                               ###
################################################################################
# SAMPLING modulename samplingrate
# DESIGN   modulename n filterdesign
# DESIGN   modulename n filterdesign
###                                                                          ###
modulename   n xy z      v      w filtername                        gain    a1     a2    b1     b2
modulename   n xy z      v      w filtername                        gain    a1     a2    b1     b2
                                                                            a1     a2    b1     b2
n: filter number
 0 for FM1, 1 for FM2, ... , 9 for FM10

x: Input Switching setting
 1 Always On
 2 Zero History

y: Output Switching setting
 1 Immediately
 2 Ramp
 3 Input Crossing
 4 Zero Crossing

z: number of filters cascaded.

v: if y=2, (Ramp Time(sec))*(samplingrate)
   if y=3 or 4, Tolerance

w: (Timeout(sec))*(samplingrate)

 Note that v and w are changed when sampling rate is changed.

 Transfer function will be;
  H(1/z)=G*(1+b1/z+b2/z/z)/(1+a1/z+a2/z/z)
  z=exp(s/fs)

 where fs is the sampling frequency.

Reference:
 Kiwamu Izumi: "Notes about Digital Filters," http://tamago.mtk.nao.ac.jp/izumi/green/DigitalFilter.pdf

  3770   Sat Oct 23 14:42:01 2010 yutaSummaryCDSdamped MC suspensions

After replacing filters, MC suspensions damped  last night.

Further measurement next time.

Attachment 1: dam.png
dam.png
  3785   Tue Oct 26 12:45:20 2010 yutaHowToCDSmaking a new master file for medm screens

(Joe, Yuta)

 In elog #3708, we showed how to edit all the similar medm screens easiliy.
 But if there are no master files you want to edit in /opt/rtcds/caltech/c1/medm/master/ directory, you can make one.
 Say, you want to edit all the similar medm screens named C1SUS_NAME_XXX.adl.

1. Copy one of C1SUS_NAME_XXX.adl to /opt/rtcds/caltech/c1/medm/master/ directory as C1SUS_DEFAULTNAME_XXX.adl.

2. Go to that directory and
  sed -i 's/NAME/DEFAULTNAME/g' C1SUS_DEFUALTNAME_XXX.adl

3. Add "_XXX.adl" to file_array list in generate_master_screens.py

4. Edit C1SUS_DEFUALTNAME_XXX.adl

5. Run ./generate_master_screens.py

That's all!!

  3787   Tue Oct 26 16:02:55 2010 yutaHowToCDSthings to do after making a new Simulink model

(Joe,Yuta)

Things to do after making a new Simulink model.

1. ssh c1sus, go to /opt/rtcds/caltech/c1/core/advLigoRTS/ and run
 bash ./makestuff.sh c1SYS

 makestuff.sh does;

  make uninstall-daq-$*
  make clean-$*
  make $*
  make install-$*
  make install-daq-$*
  make install-screens-$*
  sed -i 's/RO \(.*SW[12]R.*\)/\1/' /opt/rtcds/caltech/c1/target/$*/$*epics/autoBurt.req


 If you don't need to re-install DAQs or screens, just run line 2,3,4, and 7 and go to step #6.

2. ssh c1sus, go to /opt/rtcds/caltech/c1/scripts/ and run
 sudo ./startc1SYS

 For now, you have to put "1" in "BURT Restore" in GDS screens with in 5-10 secs.

3. Now the DAQ channel numbers are changed. So, go to /cvs/cds/rtcds/caltech/c1/chans/daq/ and run
 ./activateDAQ.py

 activateDAQ will activate the following DAQ channels for every optics with data rate 2048Hz;
  ULSEN_OUT
  URSEN_OUT
  LRSEN_OUT
  LLSEN_OUT
  SDSEN_OUT
  SUSPOS_IN1
  SUSPIT_IN1
  SUSYAW_IN1

4. Restart fb. See this wiki page.
 Basically you what have to do is kill and restart daqd in fb and restart mx_streams in c1sus.

5. DONE! Burt restore if you want.


6. If you don't need to re-install DAQs or screens;
  a. Go to /opt/rtcds/caltech/c1/target/c1SYS/c1SYSepics and run
    sudo rmmod c1SYSfe

  b. Go to /opt/rtcds/caltech/c1/target/c1SYS/bin/ and run
    sudo insmod c1SYSfe.ko

  3788   Tue Oct 26 17:31:17 2010 yutaUpdateCDSfixed OPLEV stuff and MCL filters

(Joe, Yuta)

Background:

 We are currently working on getting rid of "white stuff" in MEDM screens.
 Today, we fixed OPLEV stuff, MCL filters, and time stamps.

What we did:
 1. Plugged in OPLEV cables to ADC2. (See this wiki page for wiring)

 2. Connected ADC2 and OPLEV in Simulink model and fixed MEDM screens for OPLEVs (Attached #1).

 3. Put MCL filters for BS,ITMX,ITMY,PRM,SRM.
  They don't need them, but just for getting rid of "white stuff."
  They are connected to the ground, so the outputs are always 0.

 4. Fixed "TIME_STRING"s in MEDM screens so that they show current time correctly.
  You only need to put text monitor with channel "C1:FEC-DCU_NODE_ID_TIME_STRING" into master files(DEFAULTNAME things) and run generate_master_screens.py.
  It will automatically sets DCU ID correctly!! (Great work, Joe!)
  See this wiki page for more info on making MEDM screens.

 5. Checked OPLEV for MC2 by pointing a laser pointer to QPD. (For MC2, OPLEV is just a transmission beam position monitor)
  Each quadrant looked like they are connected to the right channel numbers.

Plan:
 - figure out what C1:SUS-NAME_MODE_SW1 does and fix
 - fix Whitening, Dewhitening ON/OFF button in main MEDM screens, so that they switch every channels' filters
 - make a new screen for MC (like the old one C1IOO_ModeCleaner.adl)
 - create a new mark for new MEDM screens

Attachment 1: optlevMC2.png
optlevMC2.png
  3805   Thu Oct 28 03:39:58 2010 yutaUpdateIOOgot very stable MC locking

(Rana, Suresh, Jenne, Kiwamu, Kevin, Yuta)

Summary:
  Last night we locked MC by feeding back the signal to NPRO PZT.
  But it was not so stable.
  We wanted more gain to lower the seismic motion, but we don't need high gain in high frequency part(>~1kHz) because it may cause something bad(NRPO PZT oscilatting, PMC not able to catch up with the NPRO frequency change, etc).
  So, we put DC gain boost today.
  It successfully made MC locking stable!

What we did:
1. Lowered the main laser temperature from 32.2° C to 31.8° C.
  When we increased the laser temperature, PMC transmission get lower.  32.2° C was on the cliff, so we put it to plateau region.

2. Lowered the gain of PMC servo (2dB instead of 8dB last night), because PMC was oscillating.
  We got 5.3V OMC transmission.

3. Made 3Hz pole, 30Hz zero filter and put in NPRO PZT servo loop.
  0dB at DC, -20dB at high frequency (see Kevin's elog #3802)

4. Put more gain to NPRO PZT servo loop to compensate -20dB at high frequency.
  In a word, we put DC gain boost.
  Attachment #1 is the MEDM screen screenshot for MC servo.

5. Aligned the beam into QPD at MC2 trans.
  We put lens in front of the QPD.
  Now, we can see the actual motion of the beam, and resonance peaks(Attachment #2; not locked at the highest).
    (We added 30Hz LPF after each 4 quadrant inputs to reduce noise)

Plan:
 - optimize MC suspension alignments
 - activate OL DAQ channels
 - reduce RFAM
 - install tri-mod box
 - QPD signal at MC2 should be more high(currently, ~7counts which equals to ~4mV)
 - change temperature of X-end laser to get green beat

Attachment 1: C1IOO_MC_SERVO20101028.png
C1IOO_MC_SERVO20101028.png
Attachment 2: MCrocks!.png
MCrocks!.png
  3807   Thu Oct 28 04:28:50 2010 yutaUpdateGreen Lockingchecked frequency counter SR620

(Kiwamu, Yuta)

Background:
  For green locking, we are planning to feedback frequency differential signal to ETM suspension for the final configuration.
  We don't have ETM suspension control system right now, so we are going to feedback the signal to X-end laser frequency for a test.
  We have two loops for the servo;
    1. coarse locking using frequency counter, feeding back to the laser temperature
    2. using VCO, feeding back to the laser PZT
  Today, we checked frequency counter SR620 and see how to get the small beat note signal(-48dBm; see elog #3771).

What we did:
  1. Using Marconi(RF signal generator), put RF signals to SR620 and see how small signal SR620 can see.
    It depends on the frequency. For 80MHz signal, you need more than about -9dBm.
       60MHz  >-12dBm
       70MHz  >-10dBm
       80MHz  >-9dBm
       90MHz  >-8dBm
      100MHz  >-7dBm

Since we are going to lock the frequency difference between X-end and PSL to 80MHz, we need at least +40dBm amp before putting the signal into SR620.

RF amplifier ZHL-32A has around +28dBm +28dB gain at 80MHz, so we need 2 of them.

  2. Marconi -> ZHL-32A -> ZHL-32A -> SR620 and see how small 80MHz signal SR620 can see.
    Around -68dBm. This should be enough.

  3. SR620 has "STRIP CHART" output on the rear panel. The output voltage is proportional to the mean frequency of the input.
    The output range is 0-8V. So in order to get 4V for 80MHz, set SCALE to 20MHz.

Plan:
 - find green beat again and see if SR620 can see it with double ZHL-32A configuration

  3813   Thu Oct 28 20:08:26 2010 yutaUpdateGreen Lockingrevised RF amp cascading

Background:
  Yesterday, I said I will use ZHL-32A for amplifying beat note signal, but as Koji pointed out, ZHL-32A is for medium high power.
  So I changed my mind to use ZFL-1000LN instead. ZFL-1000LN is a low noise RF amp whose maximum power is 3dBm.
  Also, we included a splitter in our consideration.

What I did:

1. Set up a new setup. ZFL-1000LN has a gain of +24dB at 80MHz and splitter ZFRSC-42 has a loss of -6dB. So;

beat note signal -> ZFL-1000LN -> ZFL-1000LN -> ZFRSC-42 => SR620 and VCO

2. Measured frequency-output relation. When the input signal was 80MHz -48dBm, the output was -8.7dBm. For other frequencies;
       60MHz  -3.3dBm
       70MHz  -5.7dBm
       80MHz  -8.7dBm
       90MHz  -5.5dBm
      100MHz  -3.5dBm
  So, we can see frequency up to >100MHz by SR620 using this setup.

3. Checked harmonics peak levels of the output using an RF spectrum analyzer. When the input signal was 80MHz -48dBm, the height of the peaks were;
     80MHz -8.8dBm
    160MHz -30dBm
    240MHz -42dBm
  Other peaks were smaller than the 3rd harmonics. Also, RF PD that detects beat note signal has a cut-off frequency at around 100MHz. So, we don't need to worry about wave transformation for this setup.

Quote:

ZHL-32A is a high power (well..., actually middle power) amplifier with the max output power of +29dBm (~1W!).
It seems to be overkill.
Your signal is so small so you don't need ZHL-32A, but can use small amp which we may have somewhere in the lab.

And the description:
"RF amplifier ZHL-32A has around +28dBm gain at 80MHz"
The unit is wrong.

Yes. I corrected my previous elog.

  3814   Thu Oct 28 21:20:11 2010 yutaUpdateCDSFlaky fb, tried DAQ re-install, but no help

Summary:
  Unfortunately, fb is flakier than normal. We can't use dataviewer and diaggui now.
  I thought it might be because editting .ini files(list of DAQ channels) in /cvs/cds/rtcds/caltech/c1/chans/daq/ without using GUI was doing something wrong.
  So, I re-installed DAQ, but it didn't help.

What I did:
1. ssh c1sus, went to /opt/rtcds/caltech/c1/core/advLigoRTS/ and ran
  make uninstall-daq-c1SYS
  make install-daq-c1SYS

It didn't help.
More than that, MC suspension damping went wrong. So;

2. Rebooted c1sus machine.
 I restored MC suspension damping by doing this.
 (Similar thing happened Tuesday when we were trying to lock MC)

Conclusion:
  Editting .ini DAQ channel list file wasn't wrong. (or, I failed in finding anything wrong right now)

Quote:

Attempted Fixes:

Yuta may try restoring the old DAQ channel choices and see if that makes a difference.

 

  3815   Thu Oct 28 23:17:15 2010 yutaSummaryCDS[EMERGENCY] accidentally deleted daqd

Rana showed me that if c1sus machine runs c1mcs stuff(and c1x02 stuff) only, we can use dataviewer without crashing fb.
Also, if we set correct NDS server and port(fb/8088), we can use diaggui on every machine.


During my investigation on what he did, I accidentally deleted daqd......
I am very very sorry.

I don't know if it helps or not, but all I have is the following information:

[Backup?]
    /opt/rtcds/caltech/c1/target/fb/daqd.25sep10


[What I deleted]
   -rwxr-xr-x 1 controls controls 6583071 Oct  1 11:57 daqd


[help message for daqd existed]
CDS Data Acquisition Server, Frame Builder, version 2.0
California Institute of Technology, LIGO Project
Client communication protocol version 11.4

Usage:
        daqd [-f <input frame file name>]
        [-c <configuration file (default -- $HOME/.daqdrc)>]

        [-s <frame writer pause usec (default -- 1 sec)>]


This executable compiled on:
        Fri Oct  1 10:33:18 PDT 2010
        Linux fb 2.6.34.1 #7 SMP Fri Sep 24 14:09:53 PDT 2010 x86_64 Dual-Core AMD Opteron(tm) Processor 8220 AuthenticAMD GNU/Linux



Please help me, Joe.

  3828   Fri Oct 29 18:37:33 2010 yutaSummaryCDSdaqd and current CDS status

Background:
  Before Joe left(~ 1 hour ago), fb was working for a while. But after he left, daqd core dumped.
  This is maybe because we started c1sus and c1rms again for a delay measurement, just before he left.

What I did:
  I restarted IOP(c1x02) and FE models.
  Now it seems OK (we can use dataviewer and diaggui), but daqd reports bunch of errors like;

CA.Client.Exception...............................................
    Warning: "Identical process variable names on multiple servers"
    Context: "Channel: "C1:SUS-ITMX_TO_COIL_0_3_INMON", Connecting to: 192.168.113.85:42367, Ignored: c1susdaq:42367"
    Source File: ../cac.cpp line 1208
    Current Time: Fri Oct 29 2010 18:07:39.132686519
..................................................................


tp node xx invalid  (xx is 38 to 36)

Current CDS status:

MC damp dataviewer diaggui AWG c1ioo c1sus c1iscex RFM Sim.Plant  ...
                   ... 

   Please add other stuff you need.

Below is an example of how the color code works:

06-25-2009.NN_24ThreatLevel.GJH2L69BK.1.jpg

  3829   Sat Oct 30 05:27:53 2010 yutaSummaryCDSCDS time delay measurement

Motivation:
  We want to know the time delay of CDS in the IOP scheme.

Setup:
delaysetup.png

What I did:
1. Plugged out SCSI cable from ADC card 2 and DAC card 0 on C1SUS machine.
   ADC card 2 is ADC 0
   DAC card 0 is DAC 0

2. Measured tranfer function between ADC and DAC by SR785 and compared with the downsampling filter in IOP with 65534Hz(=4x16384Hz) sampling frequency.

  As ADC_0_0 corresponds to PRM ULSEN input and DAC_0_0 corrsponds to ULCOIL output, we turned all the filters off and set gains to 0 or 1 so that TF between ULSEN to ULCOIL will be ideally 1. (see this wiki page for channel assigns)

  The filter coefficients for the down sampling filter was found in;
    /cvs/cds/rtcds/caltech/c1/core/advLigoRTS/src/fe/controller.c
  It was named feCoeff4x.

static double feCoeff4x[9] =
        {0.014805052402446,
        -1.71662585474518,    0.78495484219691,   -1.41346289716898,   0.99893884152400,
        -1.68385964238855,    0.93734519457266,    0.00000127375260,   0.99819981588176};


3. Calculated the time delay dt using the following formula;
  dt = [pm - pc]/f/360deg    (pm: measured phase, pc: calculated phase from feCoeff4x, f: frequency)

4. Measured TF between the SCSI cables to estimate the effect of the cables and others.
  Disconnected SCSI cables from ADC and DAC, and connected A aad B(see setup).
  I measured both when input coupling of SR785 is DC and AC and see what happens.

Result:
  [time delay of the CDS]  (left, middle)
    The time delay gets larger with frequency. The time delay seems to be -175 usec at DC.
    However, the gain seems a little different from my expectation(feCoeff4x). So, there are maybe other filters I don't know.
    I neglected TF of upsampling this time.

  [cable and other effect]  (right)
    The effect to the time delay measurement was tiny by a factor of 10^4 to 10^3 (few nsec).
    But the total cable length was about 5 m and assuming signal speed is 0.6c, delay will be about 30 nsec.
    I don't know what's happening.

CDSdelay.png

Plan:
  - make a model that does not go through IOP and see the delay caused by IOP

By the way:
  fb daqd is still running for hours!
  Every FEs are running(c1sus,rms,mcs).

  3838   Mon Nov 1 15:47:15 2010 yutaSummaryCDSCDS time delay measurement

Background:
  I measured CDS time delay last week, but because of my lack of understanding the system, it was incorrect.
  IOP has an anti-aliasing filter before downsampling from 64kHz(65536Hz) to 16kHz(16384Hz) and also has an anti-imaging filter before upsampling from 16kHz to 64kHz.
  So, I should have take feCoeff4x into account twice.
downupsampling.png

Result:
  TF agreed well with 2-time feCoeff4x and CDS time delay was -123.5 usec.
CDSdelay2.png


Plan:
 - make AWG(, diaggui TF measurement, tdssine) work
 - check input/output filter switching (using tdssine & tdsdmd)
 - measure openloop TF of MC suspension damping
 - divide it with my expectation and see if there are any filters I don't know

Quote:

Unsatisfactory.

Neglecting the digital anti-imaging filter makes the discrepancy. You must take into account your digital filter twice.

I attached the slides I made during my visit for March LVC '09. P.5 would be useful.

 

  3841   Mon Nov 1 19:32:08 2010 yutaSummaryCDSfb crashed? during c1ioo and c1mcs connection at ASC

Frame builder died again!!

Background:
  We want to do angle to length measurement to optimize the beam position and increase visibility of MC locking.
  In order to do A2L measurement, we need excitation point, but AWG is currently not working.
  The better way is to use LOCKIN stuff like we had for OMC and put it to C1IOO WFS.
  A software oscillator in LOCKIN shakes the suspension, and demodulate the length signal.
  We can choose whatever DOF to shake, whatever signal to demodulate. It would be useful not just for A2L.

What I did:

  I started to put C1IOO WFS signal into C1SUS MC suspension RT model, but after compiling new c1mcs, fb crashed.
  Looks like daqd and mx_streams are running, but DAQ is not working(red).
  I don't know how to restart in a new way!

  3842   Mon Nov 1 23:31:05 2010 yutaUpdateCDSchecked input hardware filter in single frequency

Background:
  For input filter, we have analog whitening filter and also digital whitening filter. They have the same TF and when analog one is off, digital one should be on and vice versa.
  I made a python script that checks the switching automatically.

Method:
  Excite the suspension in a single frequency and see sensor inputs(XXSEN_IN1).
  Calculate the magnitude in the excitation frequency and compare it when digital whitening is off and on.
  When digital whitening is off, analog should be on, so sensor inputs should gone though the analog filter. That means the signal is multiplied by the TF of that filter, which makes the difference.

  We currently don't have excitation and I thought I have to wait, but instead of putting some extra excitation, I found that 60Hz line noise is useful.

Script:
  The script is /cvs/cds/caltech/users/yuta/scripts/WDWchecker.py
  For every sensor input, it;
    0. Stores current filter switching(XXSEN_SW1R)
    1. turns OFF the digital filter(FM1, using ezcaswitch)
    2. tdsdmd XXSEN_IN1 in 60Hz
    3. turns ON the digital filter
    4. tdsdmd XXSEN_IN1 in 60Hz
    5. divides mag(2.) by mag(4.) and calculate the analog filter gain in 60Hz
    6. Restores the filter switching in the state before the checking

Result:
  The results are;

C1:SUS-BS_ULSEN_IN1: 22.2 dB
C1:SUS-BS_URSEN_IN1: 18.7 dB
C1:SUS-BS_LRSEN_IN1: 22.7 dB
C1:SUS-BS_LLSEN_IN1: 16.0 dB
C1:SUS-BS_SDSEN_IN1: 21.5 dB
C1:SUS-ITMX_ULSEN_IN1: 16.9 dB
C1:SUS-ITMX_URSEN_IN1: 16.3 dB
C1:SUS-ITMX_LRSEN_IN1: 17.5 dB
C1:SUS-ITMX_LLSEN_IN1: 17.1 dB
C1:SUS-ITMX_SDSEN_IN1: 6.2 dB
C1:SUS-ITMY_ULSEN_IN1: 15.5 dB
C1:SUS-ITMY_URSEN_IN1: 16.5 dB
C1:SUS-ITMY_LRSEN_IN1: 17.4 dB
C1:SUS-ITMY_LLSEN_IN1: 16.3 dB
C1:SUS-ITMY_SDSEN_IN1: 18.0 dB
C1:SUS-PRM_ULSEN_IN1: 0.1 dB
C1:SUS-PRM_URSEN_IN1: 10.3 dB
C1:SUS-PRM_LRSEN_IN1: 13.1 dB
C1:SUS-PRM_LLSEN_IN1: -32.3 dB
C1:SUS-PRM_SDSEN_IN1: 14.6 dB
C1:SUS-SRM_ULSEN_IN1: 17.3 dB
C1:SUS-SRM_URSEN_IN1: 13.5 dB
C1:SUS-SRM_LRSEN_IN1: 1.6 dB
C1:SUS-SRM_LLSEN_IN1: 16.7 dB
C1:SUS-SRM_SDSEN_IN1: 18.3 dB

C1:SUS-MC1_ULSEN_IN1: 17.0 dB
C1:SUS-MC1_URSEN_IN1: 18.6 dB
C1:SUS-MC1_LRSEN_IN1: 14.9 dB
C1:SUS-MC1_LLSEN_IN1: 27.0 dB
C1:SUS-MC1_SDSEN_IN1: 16.6 dB
C1:SUS-MC2_ULSEN_IN1: 19.8 dB
C1:SUS-MC2_URSEN_IN1: 14.0 dB
C1:SUS-MC2_LRSEN_IN1: 20.8 dB
C1:SUS-MC2_LLSEN_IN1: 16.1 dB
C1:SUS-MC2_SDSEN_IN1: 17.3 dB
C1:SUS-MC3_ULSEN_IN1: 15.5 dB
C1:SUS-MC3_URSEN_IN1: 17.3 dB
C1:SUS-MC3_LRSEN_IN1: 18.2 dB
C1:SUS-MC3_LLSEN_IN1: 18.7 dB
C1:SUS-MC3_SDSEN_IN1: 16.8 dB


  Whitening filter has 18dB gain at 60Hz. (It's 3Hz pole, 30Hz zero, 100Hz zero and 0dB at DC)
  So, from the result, at least MC suspensions look like they have correct switching.
  But some channels doesn't look ok.
  We have to check those.

Plan:
   - check ITMX_SDSEN, PRM_ULSEN, PRM_LLSEN, SRM_LRSEN input filters
   - check the script and see if the script can really check. maybe the script needs some adjustments (# of averaging, multiple frequency, ......)
   - make AWG(, tdssine) work
   - check output hardware filter

By the way:
  fb is back. I don't know why. With help from Joe, I just compiled c1mcs again and again changing number of RFM channels.

  3849   Wed Nov 3 02:23:11 2010 yutaSummaryCDSchecking whitening filter board

Summary:
  Last night, I found that some of the input channels have wrong hardware filter switching(see elog #3842).
  So, to check the whitening board(D000210), I swapped the one with ok switching and bad switching.
  During the checking, I somehow broke the board.
  I fixed it, and now the status is the same as last night (or, at least look like the same).

What I did:
  1. Switching for SRM_LRSEN looked bad and every input channel for MC3 looked OK.
     So, I unplugged the whitening board for SRM (1X5-1-5B) and plugged it into MC3's place(1X5-1-8B).

  2. Ran WDWchecker.py for MC3. The switching seemed OK for every input channel, which means the whitening board was not the wrong one.

  3. Swapped back the whitening board as it was.

  4. Found MC3_ULSEN_OUT and MC3_LLSEN_OUT was keep showing negative value(they should be positive).

  5. Check the board and found that one of LT1125 for UL/LL was wrong (broken virtual ground).

  6. Replaced LT1125 and put the board back to 1X5-1-8B.

  7. Checked the board with WDWchecker.py and dataviewer 5-hour minute trend.
      The input signal came back to normal value(Attachment #1), MC3 damping working, input filter switching seems working

before LT1125 replacement after LT1125 replacement
C1:SUS-MC3_ULSEN_IN1: -2.4 dB [!]
C1:SUS-MC3_URSEN_IN1: 16.9 dB
C1:SUS-MC3_LRSEN_IN1: 15.4 dB
C1:SUS-MC3_LLSEN_IN1: -1.1 dB [!]
C1:SUS-MC3_SDSEN_IN1: 18.4 dB
C1:SUS-MC3_ULSEN_IN1: 18.2 dB
C1:SUS-MC3_URSEN_IN1: 17.6 dB
C1:SUS-MC3_LRSEN_IN1: 16.6 dB
C1:SUS-MC3_LLSEN_IN1: 17.1 dB
C1:SUS-MC3_SDSEN_IN1: 16.2 dB


Result:
  The whitening board seems OK.
  The wrong one is either wiring or RT model. Or, the checking script.

Attachment 1: MC3SEN.png
MC3SEN.png
  3850   Wed Nov 3 02:37:39 2010 yutaSummaryGreen Lockingcoarse locked green beat frequency

(Kiwamu, Yuta)

We succeeded in coarse locking the green beat frequency, using a frequency counter and feeding back the signal to the X-end laser temperature.

Setup:
  beat note -> RF PD -> SHP-25 -> SLP-100 -> ZFL-1000LN -> ZFL-1000LN -> ZFL-500LN -> ZFRSC-42 -> SBP-70 -> ZFRSC-42 -> SR620 -> c1psl(C1:PSL-126MOPA_126MON)
  c1auxey(C1:LSC-EX_GREENLASER_TEMP) -> X-end laser temp

  The frequency counter SR620 converts the beat frequency to voltage.
  We added some filters (SHP-25, SLP-100, SBP-70). Otherwise, SR620 doesn't count the frequency correctly.

What we did:

  1. Getting green beat note again
     Set PSL laser temp to 31.81 °C and X-end laser temp to 37.89 °C.
     Set PPKTP crystal temp to 37.6 °C, which maximizes output green beam power.

  2. ADC channel and DAC channel
     Disconnected one channel going into VME-3123 (at 1X1) and used c1psl's C1:PSL-126MOPA_126MON as ADC channel for the output from SR-620
     Made a new DAC channel on c1auxey named C1:LSC-EX_GREENLASER_TEMP, and disconnected one channel from VME-4116 (at 1X9) to use it as DAC channel for X-end laser temperature control.

  3. Coarse lock by ezcaservo
     Ran;
        ezcaservo C1:PSL-126MOPA_126MON -s 150 -g -0.0001 C1:LSC-EX_GREENLASER_TEMP
     "-s" option is a set value. The command locks C1:PSL-126MOPA_126MON to 150 (in counts), using 0Hz pole integrator.

Result:
  The beat frequency locked on to ~77MHz. The frequency fluctuation of the beat note during the servo is ~3MHz with ~10sec timescale.
  VCO has  ~+/-5MHz range, so this coarse locking meets the requirement.

  Here's a plot of the error signal and feed back signal;
  Screenshot_LowFreqLock.png

  3857   Wed Nov 3 21:19:40 2010 yutaUpdateCDSput LOCKIN to c1ioo model and checked

(Joe, Yuta)

Summary:
  LOCKIN(consists of oscillator and demodulator) is needed for A2L measurement.
  So, we put LOCKIN to c1ioo model, whose outputs goes to c1mcs ASC.
  After that, I checked the functionality of LOCKIN by directly connecting DAC output for a coil to ADC input for MCL with BNC cable.

What we did:
[Putting LOCKING to c1ioo model]
1. Copied Simulink LOCKIN stuff(cdsOsc, Product, cdsPhase ...) from /cvs/cds/caltech/cds/rward-advLigo/src/epics/simLink/omc.mdl and put it into c1ioo model.

2. Copied MEDM screen file /cvs/cds/caltech/medm/c1/omc/C1OMC_LSC_LOCKIN.adl and modified it for our use.

[Checking LOCKIN]
3. Disconnected MC2_ULCOIL input to SOS Coil driver at 1X4-1-6A and checked the signal from software oscillator at c1ioo is coming.

4. Disconnected the cable labeled "MC OUT1" at 1X2 (which is MCL signal to ADC) and put MC2_ULCOIL output directly using long BNC cable.

5. Checked the functionality of LOCKIN by StripTool.
   The cable wiring did not conflict with my expectation.
   Software mixer is working.(frequency is doubled. X_SIN has offset and X_COS doesn't)

6. Put the cables back.

Result:

  Thanks to c1rfm, c1ioo and c1sus are talking without ADC timeout.
  Also, LOCKIN is working fine.

Attachment 1: Screenshot_C1IOO_LOCKIN.png
Screenshot_C1IOO_LOCKIN.png
  3863   Thu Nov 4 17:53:29 2010 yutaUpdateCDSprimitive python script for A2L measurement

Summary:
  I wrote a python script for A2L measurement.
 Currently it is really primitive, but I tested the basic functionality of the script.

 We already have A2L script(at /cvs/cds/rtcds/caltech/c1/scripts/A2L) that uses ezlockin, but python is more stable and easy to read.

A2L measurement method:
  1. Dither a optic using software oscillator in LOCKIN and demodulate the length signal by that frequency.
  2. Change coil output gains to change the pivot of the dithering and do step 1.
  3. Coil output gain set that gives the smallest demodulated magnitude tells you where the current beam spot is.

  Say you are dithering the optic in PIT and changing the coil gains keeping UL=UR and LL=LL.
  If the coil gain set UL=UR=1.01, LL=LR=-0.99 gives you demodulated magnitude 0, that means the current beam spot is 1% upper than the center, compared to 1/2 of UL-LL length.
  You do the same thing for YAW to find horizontal position of the beam.

Description of the script:
  Currently, the script lives at /cvs/cds/caltech/users/yuta/scripts/A2L.py
  If you run;
     ./A2L.py MC1 PIT
  it gives you vertical position of the beam at MC1.

  It changes the TO_COIL matrix gain by "DELTAGAINS", turns on the oscillator, and get X_SIN, X_COS from C1IOO_LOCKIN.
  Plots DELTAGAINS vs X_SIN/X_COS and fit them by y=a+bx+cx^2.(Ideally, c=0)
  Rotates (X_SIN, X_COS) vectors to get I-phase and Q-phase.
    (I,Q)=R*(X_SIN,X_COS)
  Rotation angle is given by;
    rot=arctan(b(X_COS)/b(X_SIN))
  which gives Q 0 slope(Ideally, Q=0).
  x-intercept of DELTAGAINS vs I plot gives the beam position.

Checking the script:
  1. I used the same setup when I checked LOCKIN(see elog #3857). C1:SUS-MC2_ULCOIL output goes directly to C1:IOO-LOCKIN_SIG input.

  2. Set oscillator frequency to 18.13Hz, put 18.13Hz band-pass filter to C1:IOO-LOCKIN_SIG filter module, and put 1Hz low-pass filter to C1:IOO-LOCKIN_X_SIN/X_COS filter modules.
        Drive frequency 18.13Hz is same as the previous script(/cvs/cds/rtcds/caltech/c1/scripts/A2L/A2L_MC2).

  3. Ran the script. Checked that Q~0 and rot=-35deg.

  4. Put phase shifting filter to C1:IOO-LOCKIN_SIG filter module and checked Q~0 and rotation angle.
     fitler rot(deg)
     w/o    -35
     +90deg  45
     -90deg  56
     -45deg -80

  5. Put some noise in C1:SUS-MC2_ULCOIL by adding SUSPOS feedback signal and ran the script.(Attachment #1)
      During the measurement, the damping servo was off, so SUSPOS feedback signal can be treated as noise.

Conclusion:
  The result from the test measurement seems reasonable.
  I think I can apply it to the real measurement, if MCL signal is not so noisy.[status: yellow]

Plan:
  - add calculating coherence procedure, averaging procedure to the script
  - add setting checking procedure to the script
  - apply it to real A2L measurement

Bay the way:
  Computers in the control room is being so slow (rossa, allegra, op440m, rosalba). I don't know why.

Attachment 1: a2ltest.png
a2ltest.png
  3868   Fri Nov 5 14:06:19 2010 yutaUpdateIOOtried to align MC by A2L measurement

(Suresh, Kiwamu, Yuta)

Summary:
  Lastnight, we locked the MC and tried angle to length(A2L) measurement using my new python script (see elog #3863).
  Although the amount of position script shows looks too big, the response seemed somewhat reasonable.
  Using the results of A2L measurement, we managed to reduce the displacement from the center of the MC optics, but we lost TEM00 mode after changing the incident beam direction and PMC lock got off .
  We restored the alignments and now it is 00, but the displacements got worse than the best we achieved last night.

  I think I have to rethink how to align MC. Even if I could somehow get exact position of the beam, how to align the beam to the center of the optics?

What we did:
  1. At first we tried to align by changing the direction of the incident beam. We found that A2L.py shows opposite direction(lower <-> upper). It was because of my misunderstanding and we agreed that the direction is opposite.

  2. Aligned MC optics without changing the direction of the incident beam. We could understand which directions decrease the displacements from the center, and managed to decrease them.

  3. There seemed to be a limit in aligning the MC optics without changing the incident beam direction. So, we started to change the incident beam direction again by steering mirrors at PSL table.

  4. During the change, PMC lock got off. We restored it, but we lost MC's 00 mode.

  5. We restored MC 00 mode, and measured the final A2L. The result was worse than we achieved by step #2.

Result:
  The final result from last night using my script was as follows;

  MC1 MC2 MC3
vertical 36% -19% 19%
horizontal 49% 6% -37%

  % is the length compared to the half of coil to coil length. Low / right are positive.
  We can see the beam position got better by looking at the monitor from MC2, and the A2L measurement result agrees with that.

  Here's some pictures from the measurement last night. Each plots are not taken at the same time.
A2LmeasurementFigures.png
   (It was painful using slow computers to make measurement. The StripTool graph shows straight lines when computers got frozen)

Plan:
 - Plan a strategy
 - The script needs self-estimation of the measurement. Now, the script fits the plot assuming every data has the same error.
 - When the beam is near the center, the signal gets smaller and the result will be unreliable. One thing I can do is to change TO_COIL gains radically so that the axis of rotation go far from the center.

  3876   Sat Nov 6 07:26:54 2010 yutaSummaryIOOreduced common mode displacement of the beam through MC1 to MC3

(Koji, Suresh, Yuta)

Summary:

  We need MC to be locked and aligned well to align other in-vac optics.
  By using a new python script A2L.py(see elog #3863), we are measuring A2L coupling and centering the beam.
  Tonight's goal was to reduce common mode displacement of the beam through MC1 to MC3, and we succeeded.

Strategy of beam centering:

  We first ignore the beam position at MC2 and focus on MC1,MC3. If MC1,MC3 alignments are given, MC2 alignment is determined.

  For MC1 and MC3, we first reduce the common mode displacement using the last steering mirror at PSL table.
  The last steering mirror makes translation of the incident beam because it is far (~m) from the MC.
  So,
    1. Rotate the steering mirror nob a little
    2. Lock MC so that MC beam axis will be the same as the incident beam axis
    3. A2L measurement
    4. To 1-3 over until the beam crosses MC1 center to MC3 center axis
        The amount of vertical/horizontal displacements of the beam spot at MC1 and MC3 should be the same.
        From our convention, for vertical, MC1 and MC3 should have opposite sign. For horizontal, same sign. (see picture below)

Result:
A2LMCalign.png
 
  From the A2L measurement, now the beam spot is lower right at MC1 and upper right at MC3.
 

  The directions of the beam spot motion agree with the steering mirror tilts.
  Also, the amount of the motion seems reasonable.
    1 tooth rotation of the steering mirror nob makes ~1e-3 inch push which equals to ~0.5mrad rotation.
    The steering mirror to MC is like ~2m and 0.5mrad mirror tilt makes ~2mm displacement at the MC optics.
    2mm displacement is ~15% at the mirror (see Koji's elog #2863;note that coil-coil distance is 1/sqrt(2) of the mirror diameter).
    The measured vertical spot motion is ~15%/1tooth. Horizontal is sqrt(2) times bigger because of the angle of the MC1, MC3 and they are about that much, too.

Plan:
 - Use IM1 to make beam tilt and finally center the beam
 - Improve the script so that it features weighting in fitting
 - Write a script that balances actuation efficiency of the 4 coils.
     We are currently assuming that 4 coils are well balanced.
     In order to do the balancing, we need to balance OSEMs too.

  3883   Tue Nov 9 05:40:12 2010 yutaSummaryIOOMC aligning going on

(Suresh, Yuta)

Background:
  Last week, we reduced the common mode displacement of the beam through MC1 to MC3. 
  Next work is to tilt the beam and center it.

What we did:
  1. Changed the offset going into 1201 Low Noise Amplifier(1201 is for adding +5V offset so that the feedback signal will be in the range of 0-10V)
  2. Using the last steering mirror(SM@PSL) and IM1, tilted the beam
  3. As the beam height changed alot(~0.5cm higher at IM1), MC1 reflection could not reach MCREFL PD. So, we tilted the mirror just after MC1, too.

Result:
MCalignNov9.png

Plan:

  - continue to tilt IM1 in small increments in order to reduce PIT/YAW to length coupling
      If large increments, it takes so much time re-aligning MC to get flashing!

By the way:

    The signal we kept saying "MCL" was not the error signal itself. It was a feed back signal(output of the mode cleaner servo board). The cable labeled "MC REFL" is the error signal. Compare MEDM screen C1IOO_MC_SERVO.adl and the mode cleaner servo board at 1X2. You will be enlightened.

Quote (from elog #3857):

4. Disconnected the cable labeled "MC OUT1" at 1X2 (which is MCL signal to ADC) and put MC2_ULCOIL output directly using long BNC cable.

 

  3884   Wed Nov 10 02:51:35 2010 yutaSummaryIOOlimitation of current MC aligning

(Suresh, Yuta)

Summary:
  We need MC to be locked and aligned well to align other in-vac optics.
  We continued to align the incident beam so that the beam passes the actuation nodes of MC1 and MC3.
  From the previous measurement, we found that beam height at IM1 has to be increased by ~3cm.
  Today, we increased it by ~1cm and achieved about 1/3 of the required correction.
  But we cannot proceed doing this because the beam is hitting IM1 at the edge already.

What is the goal of this alignment?:
  If the beam doesn't hit MC optics in the center, we see angle to length coupling, which is not good for the whole interferometer.
 
  Also, if the beam is tilted so much, transmitted beam though MC3 cannot go into FI at right after MC3.
  Say, FI has an aparture of 3mm and MC3-FT distance is 300mm. The beam tilt should be smaller than 3/300 rad. MC1-MC3 distance is 200mm, so the displacement at each mirror should be smaller than ~1mm.
  1mm is about 7% (see Koji's elog #2863) TO_COIL gain imbalance in A2L measurement.
 
  We are currently assuming that each coils are identical. If they have 5% variance, it is meaningless to try to reduce the beam displacement less than ~5%.

  So, we set the goal to 7%.

What we did:

  1. Leveled the MC table.

  2. Measured the table height using DISTO D3 laser gauge.
    PSL table 0.83m (+-0.01m)
    OMC table 0.82m
    MC table  0.81m

  3. Using the last steering mirror(SM@PSL) and IM1, tilted the beam vertically

Result:

MCalignNov9.png

  At t=0 (this morning), the beam tilt was ~40%/(MC1-MC3 distance). Now, it is ~30%/(MC1-MC3 distance).
  30%/(MC1-MC3 distance) is ~5/200 rad.

Plan:

 We have to somehow come up with the next story. Too much vertical tilt. What is wrong? Table leveling seems OK.
 - measure in-vac beam height
 - maybe OSEMs are badly aligned. we have to check that.

  3886   Wed Nov 10 12:21:18 2010 yutaSummaryIOOlimitation of current MC aligning

1. We didn't measure the aperture size last night. We have to check that.

2. We have to measure the length of FI. Or find a document on this FI.

3. Yes, 5%/sqrt(4). But I didn't think the factor of 2 is important for this kind of estimation.

  3891   Thu Nov 11 04:32:53 2010 yutaSummaryCDSfound poor contact of DAC cable, previous A2L results were wrong

(Koji, Jenne, Yuta)

We found one of DAC cables had a poor contact.
That probably caused our too much "tilt" of the beam into MC.

Story:
  From the previous A2L measurement and MC aligning, we found that the beam is somehow vertically "tilted" so much.
  We started to check the table leveling and the beam height and they looked reasonable.
  So, we proceeded to check coil balancings using optical levers.
  During the setup of optical levers, I noticed that VMon for MC1_ULCOIL was always showing -0.004 even if I put excitation to coils.
  It was because one of the DAC cables(labeled CAB_1Y4_88) had a poor contact.
  If I push it really hard, it is ok. But maybe we'd better replace the cable.

What caused a poor connection?:
  I don't know.
  A month ago, we checked that they are connected, but things change.

How to prevent it:
  I made a python script that automatically checks if 4 coils are connected or not using C1:IOO_LOCKIN oscillator.
  It is /cvs/cds/caltech/users/yuta/scripts/coilchecker.py.
  It turns off all 3 coils except for the one looking at, and see the difference between oscillation is on and off.
  The difference can be seen by demodulating SUSPOS signal by oscillating frequency.
  If I intentionally unplug CAB_1Y4_88, the result output for MC1 will be;

==RESULTS== (GPS:973512733)
MC1_ULCOIL      0.923853382664 [!]
MC1_URCOIL      38.9361304794
MC1_LRCOIL      55.4927575177
MC1_LLCOIL      45.3428533919


Plan:
 - Make sure the cable connection and do A2L and MC alignment again
 - Even if the cables are ok, it is better to do coil balancings. See the next elog.

  3892   Thu Nov 11 05:56:04 2010 yutaSummaryIOOsetting up temporary oplev for coil balancing of MCs

(Suresh, Yuta)

Background:
  Previous A2L measurement is based on the assumption that actuator efficiencies are identical for all 4 coils.
  We thought that the unbelievable "tilt" may be caused by imbalance of the coils.

Method:
  1. Setup an optical lever.
  2. Dither the optic by one coil and demodulate oplev outputs(OL_PIT or OL_YAW) in that frequency.
  3. Compare the demodulated amplitude. Ideally, the amplitude is proportional to the coil actuation efficiency.

What we did:
[MC2]
  MC2 is the least important, but the easiest.
  1. Placed a red laser pointer at MC2 trans table. During the installation, I moved the mirror just before QPD.
  2. Made a python script that measures coil actuation efficiency using the above method. I set the driving frequency to 20Hz.
  It is /cvs/cds/caltech/users/yuta/scripts/actuatorefficiency.py.
  The measurement result is as follows. Errors are estimated from the repeated measurement. (Attachment #1)

MC2_ULCOIL 1
MC2_URCOIL 0.953 ± 0.005
MC2_LRCOIL 1.011 ± 0.001
MC2_LLCOIL 0.939 ± 0.006


[MC1]
  For MC1, we can use the main laser and WFS1 QPD as an oplev.
  But we only have slow channels for QPD DC outputs(C1:IOO_WFS1_SEG#_DC).
  So, we intentionally induce RF AM by EOM(see Kiwamu's elog #3888) and use demodulated RF outputs of the WFS1 QPD(C1:IOO_WFS1_I/Q#) to see the displacement.
  1. Replaced HR mirror in the MCREFL path at AP table to BS so that we can use WFS1.(see Koji's elog #3878)
    The one we had before was labeled 10% pick-off, but it was actually an 1% pick-off.
  2. Checked LO going into WFS1 demodulator board(D980233 at 1X2).
    power: 6.4dBm, freq: 29.485MHz
  3. Turned on the hi-voltage(+100V) power supply going into the demodulator boards.
  4. Noticed that no signal is coming into c1ioo fast channels.
    It was because they were not connected to fast ADC board. We have to make a cable and put it in.

[MC3]
  Is there any place to place an oplev?

Plan:
 - prepare c1ioo channels and connections
 - I think we'd better start A2L again than do oplev and coil balancing.

Attachment 1: MC2coils.png
MC2coils.png
  3905   Fri Nov 12 06:10:24 2010 yutaUpdateIOOMC aligned (without coil balancing)

Background:
  Last night, we found that one of DAC channels are poorly connected, so we fixed the connectors.
  Rana and Koji used their incredible eyeballs to roughly align MC.
  Next thing to do is to balance the coils, but it takes some time for the setup.
  So, we decided to do A2L anyway.

What I did:
  Using the last steering mirror at PSL table and IM1, changed the incident beam direction to align MC.

Result:
MCalignCALIB.png
 
  I was amazed by their eyeballs.
  I turned the nobs of SM@PSL and IM1 in small increments, so I never lost TEM00.

Is it enough?:
  The length of the whole faraday is about 20cm and aperture diameter is about 12mm. (I couldn't measure the aperture size of the core)
  The beam is about 9mm diameter at 6w.
  So, if the beam is vertically tilted at more than ~3/200rad, it(6w) cannot go through.
  3/200 rad is about 20% difference in position at MC1 and MC3.
  So, the result meets the requirement.

  Also, assuming that coils have 5% imbalance, the beam position I measured have ~3% error.
  So, to do more precise beam centering, we need to balance the coils.

  3912   Sat Nov 13 15:53:05 2010 yutaUpdateCDSdiagonalization of MC input matrix

Motivation:
  MC is aligned from the A2L measurement, but to do the beam centering more precisely, we need coils to be balanced.
  There are several ways to balance the coils, like using oplev or WFS QPD RF channels.
  But oplev takes time to setup, especially for MC3. Also, c1ioo WFS channels were newly setup and haven't been checked yet.
  So, I decided to use OSEM sensors.
  An OSEM sensor itself is sensitive to every DOF of an optic motion, but we can diagonalize them using 4 OSEM sensors and proper input matrix.

Method:

  1. Measure transfer functions between
     ULSEN and URSEN (H_UR(f))
     ULSEN and LRSEN (H_LR(f))
     ULSEN and LLSEN (H_LL(f))

  2. Make a matrix A.

    A =  [[ 1           1           1          ]
          [ H_UR(f_pos) H_UR(f_pit) H_UR(f_yaw)]
          [ H_LR(f_pos) H_LR(f_pit) H_LR(f_yaw)]
          [ H_LL(f_pos) H_LL(f_pit) H_LL(f_yaw)]]


    where f_dof are resonant frequencies.

  3. A is

    s = Ad


   where vectors s^T=[ULSEN URSEN LRSEN LLSEN] and d^T=[POS PIT YAW].
   So,

    d = Bs = (A^TA)^(-1)A^Ts

   where A^T is transpose of A.

   B is the input matrix that diagonalizes 3 DOFs.

What I did:

  1. Measured the TFs using diaggui and exported as ASCII.

  2. Made a script that reads that TF file, calculates and sets a new input matrix B.
    /cvs/cds/caltech/users/yuta/scripts/inputmatrixoptimizer.py
   You need to set resonant frequencies to use the script.

   New input matrices for MCs are;

C1:SUS-MC1_INMATRIX
[[ 1.17649712  0.94315611  0.85065054  1.02969624]
 [ 0.55939288  1.28066594 -0.85235358 -1.3075876 ]
 [ 1.23467139 -0.74521928 -1.29394051  0.72616882]]

C1:SUS-MC2_INMATRIX
[[ 1.12630748  1.01451545  0.9013457   0.95783137]
 [ 1.03043025  0.67826036 -1.37270598 -0.91860341]
 [ 0.83546271 -1.26311029 -0.6456881   1.2557389 ]]

C1:SUS-MC3_INMATRIX
[[ 1.18212117  1.26419447  0.77744155  0.77624281]
 [ 0.79344415  0.84959646 -1.10946339 -1.247496  ]
 [ 1.00225331 -0.84807863 -1.21772132  0.93194674]]


  I ignored SIDE this time.

Result:

  Spectra of each SUSDOF_IN1_DAQ before diagonalization (INMATRIX elements all 1 or -1) were
MCspectraNov09.png

  After diagonalization, spectra are
MCspectraNov13.png

  As you can see, each SUSDOF has only single peak (and SIDE peak) after the diagonalization.
  SUSSIDE still has 4 peaks because SIDE is not included this time.

  For MC2, POS to SUSPIT and POS to SUSYAW got worse. I have to look into them.

Effect of resonant frequency drift:

  As you can compare and see from the spectra above, resonant frequencies of MC1 are somehow drifted(~0.5%) from Nov 9 to Nov 13.
  If resonant frequency you expected was wrong, calculated input matrix will be also wrong.
  The effect of 0.5% drift and wrong input matrix can be seen from this spectra. DOFs are not clearly separated.
 MC1spetra_wrongmatrix.png

Plan:

 - learn how to use diaggui from command line and fully automate this process
 - balance the coils using these diagonalized SUSPOS, SUSPIT, SUSYAW

  3929   Tue Nov 16 03:33:22 2010 yutaUpdateIOOaligned Faraday, beam reached SM just before PRM

(Koji, Yuta)

We aligned the Faraday after MC and we are now ready to install PRM.

Background:
  MC was roughly aligned (beam spot ~0.7mm from the actuation center).
  So, we started aligning in-vac optics.
  First thing to align was the Faraday after MC3.

What we did:
  1. Ran A2L.py for confirmation.(Second from the last measurement point on the A2L result plot)

  2. Aligned the Faraday so that MC3 trans can go through it. We moved the Faraday itself, while we didn't touch IM2.
     We turned the pitch nob of the last steering mirror at PSL table in CCW slightly in order to lower the beam at the Faraday by ~1mm.

  3. During the alignment, we found that the polarization of the incident beam was wrong. It should have been S but it was P.
     As there is the HWP right before the EOM, Rana rotated it so as to have the correct polarization of S on the EOM and the MC.
     Note that the PMC and the main interferometer are configured to have P-pol while the MC is to have S-pol.

  4. Setup the video camera to monitor the entrance aperture of the Faraday. It required 4 steering mirrors to convey the image to the CCD.

  5. Moved all of the OSEMs for MC1 and MC3 so that the sensor output can have roughly half of their maxima.

  6. Ran A2L.py. (The last measurement point on the A2L result plot)

  7. Aligned the IO optics so that the beam goes Faraday -> MMT1 -> MMT2 -> SM3.

Result:

  1. OSEM sensor outputs for MC1 and MC3 are;

(V) MC1 MC3
max current value max current value
ULSEN 1.3 0.708 1.37 0.699
URSEN 1.4 0.845 1.71 0.796
LRSEN 1.45 0.743 1.77 0.640
LLSEN 1.56 0.762 1.56 0.650
SDSEN 1.67 0.801 1.59 0.821



  2. A2L result is;
MCalignNov16.png


     The beam position slightly got lower(~0.2mm), because we touched SM at PSL table.
     Alignment slider values changed because we moved MC1 and MC3 OSEMs.

  3. Now, MC_RFPD_DCMON is ~0.39 when MC unlocked and ~0.083 when locked.
     So, the visibility of MC is ~79% (for S-pol).

  4. Now the incident beam to the MC has S polarization, the cavity has higher finesse. This results the increased MC trans power.
     It was ~8e2 when the polarization was P, now it is ~4.2e3 when the MC is locked.

  5. The beam reached SM3 at BS table. The alignment of the SM2, MMT1, MMT2 were confirmed and adjusted.

  6. All pieces of the leftover pizza reached my stomach.

Plan:
  - Install PRM to the BS chamber.
  - Align PRM and get IFO reflection beam out to the AP table
 

  3937   Wed Nov 17 02:53:41 2010 yutaUpdateIOOplaced new PRM to BS table

(Kiwamu, Yuta)

Background:
  Yesterday, we aligned the Faraday and the beam reached SM2 at BS table.
  Today, we placed a new PRM tower to BS table.

What we did:

  1. Moved IPPO, IPPOSSM1, IPPOSSM3, IPANGSM1, IPANGSM2 out from the BS chamber.

  2. Moved SRM tower(at PRM's place) to the ITMX chamber.

  3. Placed the new PRM tower at the BS chamber.

  4. Adjusted positions of the OSEMs for PRM and BS so that the sensor output can have roughly half of their maximum.

  5. Checked damping servo for PRM and BS. They were working and helped us when adjusting OSEM positions.

  6. Placed IPPO back and using SM2, made the beam hit PR2 at ITMX table.

  7. Aligned the PRM so that the reflected beam path overlaps the incident beam.
     We checked it by looking at MMT1.
     For the alignment, we used IFO align sliders(C1:SUS-PRM_PIT_COMM, YAW_COMM).
        To use them, we rebooted c1susaux.

Result:
  1. The new PRM tower is placed.

  2. OSEM sensor outputs for PRM and BS are;

(V) PRM BS
max current value max current value
ULSEN 1.72 1.006 1.50 0.757
URSEN 1.66 0.918 1.57 0.821
LRSEN 1.92 1.304 1.57 0.821
LLSEN 2.06 1.031 1.38 0.704
SDSEN 9.21 4.366 1.57 0.821

    We changed PRM aligning slider values, and they changed OSEM sensor outputs. We set the slider values to 0 when adjusting OSEM positions.

  3941   Wed Nov 17 20:44:59 2010 yutaSummaryCDSno QPD channels on c1sus machine today

(Joe, Suresh, Yuta)

Currently, only 2 ADC cards work on c1sus machine.
No QPD inputs(e.g. MC2 trans), and no RFM.


Summary:
  We wanted to have PEM(physical environment montor) channels, so we moved a ADC card in c1sus machine.
  It ended up with destroying one of the 3 ADCs.

What we did:
  1. Moved ADC card at PCIe expansion board slot 0 to other empty slot.
     What we call PCI slot 0 was "DO NOT USE" in LIGO-T10005230-v1, so we moved it.

  2. Connected that ADC card to PEM channel box at 1X7 via SCSI cable.

  3. ADC card order is changed, so we checked ADC number assinging and re-labeled the cable.

  4. Found RFM is not working(c1sus and c1ioo not talking) and fb is in a weird state(Status: 0x4000 in GDS screens)

  5. Swapped the cabling so that ADC card 0 will be connected to timing interface card at slot1, but didn't help.
     More than that, we suffered ADC timeout.

  6. Tried ADC card swapping, slot position changing, taking out some of the ADC cards, etc.
     We found that ADC timeout doesn't happen with 2 ADC cards.
     But if we connect one of the ADC card to the timing interface card at slot 8, c1sus ADC timeouts with 2 ADC cards, too.
     So, I think that timing interface card is bad.

  7. Stopped rebooting c1sus again and again. We decided to investigate the problem tomorrow.
     We only need ADC card 0 and 1 for MC damping.(see this wiki page)
       ADC card 0: all UL/UR/LR/LL SENs
       ADC card 1: all SD SENs     
       ADC card 2: all QPDs

Result:
  We can damp optics and lock MC.
  We can't do A2L because RFM is not working.
  We can't see MC2 trans because we currently don't have ADC card 2.

  3943   Thu Nov 18 00:40:31 2010 yutaUpdateIOOPRM reflected beam reached AP table

(Kiwamu, Yuta)

Summary:
  Yesterday, we placed the new PRM to BS chamber and the beam reached PR2 at ITMX chamber.
  Today, we lead the PRM reflected beam back to AP table.
  Also, we aligned PRs so that the beam hits ITMX and ITMY.

What we did:
  1. Aligned PR2 at ITMX chamber and PR3 at BS chamber so that the beam hits ITMY.

  2. Aligned ITMX using IFO_ALIGN sliders so that the reflected beam overlaps at BS.

  3. Aligned BS using IFO_ALIGN sliders so that the splitted beam to ITMX overlaps the green beam from the X-end.

  4. Roughly aligned ITMY using IFO_ALIGN sliders so that the reflected green goes to far x-end.

  5. From yesterdays in-vac work, the reflected beam from PRM reached the Faraday.
     Aligned 2 steering mirrors in MC chamber so that the beam reaches AP table.

  6. Found the beam is double-spotted by a steering mirror at just after the Faraday symmetric port.
      The mirror is Y1-2037-45S. The beam is hitting it in ~10deg, so we have to replace it.

Plan:
  - replace the steering mirror right next to the Faraday symmetric port.
  - recyled Michealson

Note:
  We had to use "ITMX" channels to align ITMY. We have to fix and check X-Y confusion.
  Also, damping servo for ITMs does not seem to work. We have to check this.

  3948   Thu Nov 18 16:32:21 2010 yutaSummaryCDScurrent damping status for all optics c1sus handles

Summary:
   I set Q-values for each ringdown of PRM, BS, ITMX, ITMY, MC1, MC2, MC3 to ~5 using QAdjuster.py.
   Here are the results;
c1susdampings.png

  Red ringdowns indicate the second try after gain setting.

Note:

  - ITMX and ITMY are referred according to MEDM screens in this entry.
  - ITMX(south) OSEM positions are currently so bad(LL and SD are all the way in/out).
        I have to change IFO_ALIGN slider values to check the damping servo. For SIDE, I couldn't do that. I reverted the slider change after the damping checking.
  - ITMY(west) somehow has opposite coil gain sign.
       Usually for the other optics, UL,UR,LR,LL is 1,-1,1,-1. But for ITMY to damp, they are -1,1,-1,1.
  - PRM damps, but ringdown doesn't look nice. There must be something funny going on.
  - SRM doesn't have OSEMs put in now.

  3957   Fri Nov 19 17:12:22 2010 yutaUpdateCDSETMX damped, but with weird TO_COIL matrix

Background:
  c1iscex machine is currently being setup and RT model c1scx is running.
  But ETMX(south) didn't seem to be damped, so I checked it.

What I did:
  1. Checked the wiring. It seemed to be OK.
    Looked LEMO monitor output of SUS PD Whitening Board(D000210) with oscilloscope and they seemed to be getting some sensor signal except SDSEN.
      SDSEN is funny. C1:SUS-ETMX_SPDMon decreases slowly when PD input cable is disconnected, and increases slowly when connected.
      There might be some problem in the circuits.
    Looked LEMO monitor output of SOS Coil Driver Module(D010001) with oscilloscope and they seemed to be receiving correct signal from DAC.
      When ULCOIL offset is added, ch1 increased and so on.

  2. Checked the direction of SUSDOF motion when kicked with one coil.
    The result was;

kick (+) POS PIT YAW
ULCOIL + + +
URCOIL + - +
LRCOIL + - -
LLCOIL + + -


    This table tells you, when ULCOIL_OFFSET increases, SUSPOS increases and so on.
    If URCOIL and LLCOIL are swapped, they look correct.
    Also, they have opposite sign to the usual optics(e.g. MCs, BS, PRM).

  3. Changed TO_COIL matrix according to the table above(see Attachment #1). Changed signs of XXCOIL_GAINs.

  4. ETMX damped!

Plan:
  - Check the wiring after SOS Coil Driver Module and circuit around SDSEN
  - Check whitening and dewhitening filters. We connected a binary output cable, but didn't checked them yet.
  - Make a script for step 2
  - Activate new DAQ channels for ETMX (what is the current new fresh up-to-date latest fb restart procedure?)

Attachment 1: ETMXdamping.png
ETMXdamping.png
  3959   Sat Nov 20 01:58:56 2010 yutaHowToCDSeditting RT models and MEDM screens

(Suresh, Yuta)

If you come up with a good idea and want to add new things to current RT model;

 1. Go to simLink directory and open matlab;
    cd /cvs/cds/rtcds/caltech/c1/core/advLigoRTS/src/epics/simLink
    matlab


 2. In matlab command line, type;
    addpath lib

 3. Open a model you want to edit.
    open modelname

 4. Edit! CDS_PARTS has useful CDS parts.
    open CDS_PARTS
    There are some traps. For example, you cannot put cdsOsc in a subsystem

 5. Compile your new model. See my elog #3787.
 
 6. If you want to burt restore things;
    cd /cvs/cds/caltech/burt/autoburt/snapshots/YEAR/MONTH/DATE/TIME/
    burtgooey


 7. Edit MEDM screens
    cd /cvs/cds/rtcds/caltech/c1/medm
    medm


 8. Useful wiki page on making a new suspension MEDM screens;
    http://lhocds.ligo-wa.caltech.edu:8000/40m/How_to_make_new_suspension_medm_screens

  3960   Sat Nov 20 02:25:30 2010 yutaUpdateCDS2 LOCKINs for suspension models

(Suresh, Koji, Yuta)

Background:
  No AWG. No tdssine.
  ...... LOCKIN!

What we did:
  1. Added 2 LOCKINs for c1sus model.
   Currently, we cannot put cdsOsc in a subsystem.
   So, we put LOCKINs just for BS for a test.
   The signal going into LOCKIN can be anything. For now, we just put a matrix for selecting the signal and connected the input signals to the ground.

   See the following page for the current simlink diagram of c1sus model.
     https://nodus.ligo.caltech.edu:30889/FE/c1sus_slwebview_files/index.html

  2. Edited MEDM screens. (see Attachment #1)

Result:
  We succeeded in putting 2 LOCKINs and exciting BS.
  During the update, we might destroyed things. For example, fb status is red in GDS screens.
  We will wait for Joe to fix them.

Plan:
 - Fix cdsOsc and put LOCKINs for all the other optics
 - Come up with a good idea what to do with this LOCKIN. Remember, LOCKIN is not just a replacement for excitation points.
 - Enhance an oscillator so that we can put a random noise

Attachment 1: LockinRoll.png
LockinRoll.png
  3961   Sat Nov 20 03:37:11 2010 yutaSummaryCDSCDS time delay measurement - the ripple

(Koji, Joe, Yuta)

Motivation:
  We wanted to know more about CDS.

Setup:
  Same as in elog #3829.

What we did:

  1. Made test RT models c1tst and c1nio for c1iscex.
     c1tst has only 2 filter module(minimum limit of a model), 2 inputs, 2 outputs and it runs with IOP c1x01.
     c1nio is the same as c1tst except it runs(or, should run) without IOP.

  2. Measured the time delay of ADC through DAC using different machine, different sampling rate by measuring transfer functions.

  3. c1nio(without IOP) didn't seem to be running correctly and we couldn't measure the TF.
     "1 PPS" error appeared in GDS screen(C1:FEC-39_TIME_ERR).
     It looks like c1nio is receiving the signal as we could see in the MEDM screen, but the signal doesn't come out from the DAC.

TF we expected:
  All the filters and gains are set to 1.

  We have DA's TF when putting 64K signal out to analog world.
    D(f)=exp(-i*pi*f*Ts)*sin(pi*f*Ts)/(pi*f*Ts)  (Ts: sample time)

  We have AA filter and AI filter when downsampling and upsampling.
    A(f)=G*(1+b11/z+b12/z/z)/(1+a11/z+a12/z/z)*(1+b21/z+b22/z/z)/(1+a21/z+a22/z/z)       z=exp(i*2*pi*f*Ts)
  Coefficients can be found in /cvs/cds/rtcds/caltech/c1/core/advLigoRTS/src/fe/controller.c.

/* Coeffs for the 2x downsampling (32K system) filter */
static double feCoeff2x[9] =
        {0.053628649721183,
        -1.25687596603711,    0.57946661417301,    0.00000415782507,    1.00000000000000,
        -0.79382359542546,    0.88797791037820,    1.29081406322442,    1.00000000000000};
/* Coeffs for the 4x downsampling (16K system) filter */
static double feCoeff4x[9] =
    {0.014805052402446, 
    -1.71662585474518,    0.78495484219691,   -1.41346289716898,   0.99893884152400,
    -1.68385964238855,    0.93734519457266,    0.00000127375260,   0.99819981588176};


  For 64K system, we expect H=1.

  We also have a delay.
    S(f)=exp(-i*2*pi*f*dt)   (dt: delay time)

  So, total TF we expect is;
    H(f)=a*A(f)^2*D(f)*S(f)
  a is a constant depending on the range of ADC and DAC(I think). Currently, a=1/4.

  We may need to think about TF when upsampling.(D(f) is TF of upsampling 64K to analog)

Result:

  Example plot is attached.
  For other plots and the raw data, see /cvs/cds/caltech/users/yuta/scripts/CDSdelay2/ directory.
  As you can see, TFs are slightly different from what we expect.
  They show ripple we don't understand at near cut off frequency.

  If we ignore the ripple, here is the result of delay time at each condition;

data file    host    FE    IOP        rate    sample time    delay        delay/Ts
c1rms16K.dat    c1sus      c1rms    adcSlave    16K    61.0usec    110.4usec    1.8
c1scx16K.dat    c1iscex    c1scx    adcSlave    16K    61.0usec     85.5usec    1.4
c1tst16K.dat    c1iscex    c1tst    adcSlave    16K    61.0usec     84.3usec    1.4
c1tst32K.dat    c1iscex    c1tst    adcSlave    32K    30.5usec     53.7usec    1.8
c1tst64K.dat    c1iscex    c1tst    adcSlave    64K    15.3usec     38.4usec    2.5

  The delay time shown above does not include the delay of DA. To include, add 7.6usec(Ts/2).

  - delay time is different for different machine
  - number of filters (c1scx has full of filters for ETMX suspension, c1tst has only 2) doen't seem to effect much to delay time
  - higher the sampling rate, larger the (delay time)/(sample time) ratio

Plan:

 - figure out how to run a model without IOP
 - where do the ripples come from?
 - why we didn't see significant ripple at previous measurement on c1sus?

Attachment 1: c1tst16Kdelay.png
c1tst16Kdelay.png
  6654   Mon May 21 21:27:39 2012 yutaUpdateCDSMEDM suspension screens using macro

Background:
 We need more organized MEDM screens. Let's use macro.

What I did:
1. Edited /opt/rtcds/userapps/trunk/sus/c1/medm/templates/SUS_SINGLE.adl using replacements below;

sed -i s/#IFO#SUS_#PART_NAME#/'$(IFO)$(SYS)_$(OPTIC)'/g SUS_SINGLE.adl
sed -i s/#IFO#SUS#_#PART_NAME#/'$(IFO)$(SYS)_$(OPTIC)'/g SUS_SINGLE.adl
sed -i s/#IFO#:FEC-#DCU_ID#/'$(IFO):FEC-$(DCU_ID)'/g SUS_SINGLE.adl
sed -i s/#CHANNEL#/'$(IFO):$(SYS)-$(OPTIC)'/g SUS_SINGLE.adl
sed -i s/#PART_NAME#/'$(OPTIC)'/g SUS_SINGLE.adl

2. Edited sitemap.adl so that they open SUS_SINGLE.adl with arguments like
    IFO=C1,SYS=SUS,OPTIC=MC1,DCU_ID=36
instead of opening ./c1mcs/C1SUS_MC1.adl.

3. I also fixed white blocks in the LOCKIN part.

Result:
  Now you don't have to generate every suspension screens. Just edit SUS_SIGNLE.adl.

Things to do:
 - fix every other MEDM screens which open suspension screens, so that they open SUS_SINGLE.adl
 - make SUS_SINGLE.adl more cool

  6663   Tue May 22 20:46:38 2012 yutaUpdateCDSMEDM suspension screens using macro

I fixed the problem Jamie pointed out in elog #6657 and #6659.

What I did:
1. Created the following template files in /opt/rtcds/userapps/trunk/sus/c1/medm/templates/ directry.

SUS_SINGLE_LOCKIN1.adl
SUS_SINGLE_LOCKIN2.adl
SUS_SINGLE_LOCKIN_INMTRX.adl
SUS_SINGLE_OPTLEV_SERVO.adl
SUS_SINGLE_PITCH.adl
SUS_SINGLE_POSITION.adl
SUS_SINGLE_SUSSIDE.adl
SUS_SINGLE_TO_COIL_MASTER.adl
SUS_SINGLE_COIL.adl
SUS_SINGLE_YAW.adl
SUS_SINGLE_INMATRIX_MASTER.adl
SUS_SINGLE_INPUT.adl
SUS_SINGLE_TO_COIL_X_X.adl
SUS_SINGLE_OPTLEV_IN.adl
SUS_SINGLE_OLMATRIX_MASTER.adl

To open these files, you have to define $(OPTIC) and $(DCU_ID).
For SUS_SINGLE_TO_COIL_X_X.adl, you also have to define $(FILTER_NUMBER), too. See SUS_SINGLE_TO_COIL_MASTER.adl.

2. Fixed the following screens so that they open SUS_SINGLE.adl.

C1SUS_WATCHDOGS.adl
C1IOO_MC_ALIGN.adl
C1IOO_WFS_MASTER.adl
C1IFO_ALIGN.adl

  6677   Thu May 24 16:13:05 2012 yutaUpdateComputersASS scripts on new ubuntu machines

[Den, Yuta]

Background:
 ASS and many other scripts don't work on new ubuntu machines.

What we did:
1. Installed C-shell on rossa and rosalba(Ubuntu machine).
  sudo apt-get insall csh

2. Find out that
  /opt/rtcds/caltech/c1/scripts/AutoDither/alignY

runs, but
  /opt/rtcds/caltech/c1/scripts/medmrun /opt/rtcds/caltech/c1/scripts/AutoDither/alignY

doesn't run. It gives us the following error messages.

ezcawrite: error while loading shared libraries: libca.so: cannot open shared object file: No such file or directory
ezcaswitch: error while loading shared libraries: libca.so: cannot open shared object file: No such file or directory

Result:
 ASS scripts run on rossa and rosalba, but not with medmrun.
 At least ASS scripts run on pianosa(ubuntu machine) with medmrun. So we decided to wait for JAMIE to fix it.

  6709   Tue May 29 21:05:30 2012 yutaUpdateIOOPMC, MC alignment are shit

Quote:

  [Keiko, Jenne]

PMC aligned.  Suresh is fixing the measure MC spot positions script, then we'll remeasure MC spot positions.

 [Suresh, Jenne, Yuta]

We measured the MC spot positions twice tonight. Procedure for measuring them is in elog #6688.
The results were;

spot positions in mm (MC1,2,3 pit MC1,2,3 yaw):
    3.3359    3.9595    2.3171   -7.7424   -0.8406    6.4884

spot positions in mm (MC1,2,3 pit MC1,2,3 yaw):
    3.2681    4.0052    2.2808   -7.3965   -0.7624    7.1302

The spot moved by about 0.5 mm since May 25, but we concluded that this displacement is negligible and difficult to be fixed by aligning PSL beam.

We'll align Y arm and X arm next.

  6713   Wed May 30 01:35:15 2012 yutaUpdateGreen Lockingaligned Y arm green beam

[Jenne, Yuta]

We aligned the Y arm for IR (C1:LSC-TRY_OUT is now ~ 0.9), and aligned the green beam from the ETMY table. The Y arm green is now resonating in TEM00 mode, but we need some monitors (green trans or green refl) to maximize the coupling.

We noticed that the MC beam spot are oscillating at ~ 1 Hz, mostly in YAW.  This wasn't observable before the PMC realignment (elog #6708). We should find out why and fix it.

  6715   Wed May 30 15:51:22 2012 yutaUpdateIOOMC beam spot oscillation

[Koji, Suresh, Jenne, Yuta]

Background:
  We noticed that the beam spots on MC mirrors are oscillating in ~ 1 Hz yesterday. It means MC mirrors are actually oscillating. This was observable even if the WFS servo is off.

What we did:
  1. By measuring the spectra of OSEM sensor outputs, we found that MC3 is the one that is oscillating.

  2.  Oscillation at ~ 1 Hz only happened when the local damping using OSEMs are on (see Attachment 1; REF is when the damping is on).

  3.  We found that this oscillation came from insufficiency in phase margin in SUSPOS loop. So, we increased the gain, C1:SUS-MC3_SUSPOS_GAIN, from 95 to 200. It helped a little, but oscillation is still there.

  4.  We measured openloop transferfunctions of SUSPOS, SUSPIT, SUSYAW, SUSSIDE loop, and concluded that diagonalization some how went wrong. The amplitude of the oscillation (peak height in the OSEM spectra) changed by pushing the MC SUS connectors.

Plan:
  - Fix the connectors so that we don't have to push them any more.
  - Redo the diagonalization of the MC suspensions.

Attachment 1: specMC3_onoff_localdamping.pdf
specMC3_onoff_localdamping.pdf
  6718   Wed May 30 19:27:38 2012 yutaUpdateIOOMC beam spot oscillation

[Koji, Yuta]

We found that C1:SUS-MC{1,2,3}_TO_COIL_3_4_GAIN was somehow changed to -1, and feedback signal for SIDE was fedback to LLCOIL, which is apparently not correct.
We checked the snapshots on May 25 and confirmed that it was used to be 0, so we fixed it.
We suspect that it happened during the beam spot measurement, because the measurement changes the TO_COIL matrix gains.

Now, we don't see any MC beam spot oscillation.

Quote:

[Koji, Suresh, Jenne, Yuta]

Background:
  We noticed that the beam spots on MC mirrors are oscillating in ~ 1 Hz yesterday. It means MC mirrors are actually oscillating. This was observable even if the WFS servo is off.

 

  6724   Thu May 31 01:27:16 2012 yutaUpdateGreen LockingPSL and Y arm green beams aligned

[Jenne, Yuta]

We aligned the PSL green optics so that the PSL green beam and Y arm green beam interfere. 2 beams are now hitting the Y arm beat PD. The DC level from the beat PD is about 13 mV.

We didn't try to see the beat signal for today, because the temperature of the doubling crystal seemed funny. We need to look into it tommorow.

Currently, the temperature control is enabled and the set point is 36.9 deg C, but the temperature is stuck at 33.0 deg C.

  6725   Thu May 31 01:36:17 2012 yutaUpdateGreen LockingGREEN_TRX/GREEN_TRY PDs

I did the cabling for monitoring DC transmission of the green beam from the end table.
The two PDs are called GREEN TRX and GREEN TRY, and the channel names are C1:GCV-GREEN_TRX and C1:GCV-GREEN_TRY.
The two signal from the PDs go to the ADC_0 card of the c1ioo computer.

Now, C1:GCV-GREEN_TRX/Y are actually connected to the respective PDs, but green beams are not hitting on the PD. We need two pickoff mirrors.

  6726   Thu May 31 02:27:24 2012 yutaUpdateIOOscript for reliefing MC WFS

I wrote a simple script for reliefing MC WFS servo. The script is located at /opt/rtcds/caltech/c1/scripts/MC/reliefMCWFS.
It simply uses ezcaservo to minimize the offset of the WFS feedback signal using MC alignment sliders.

    ezcaservo -r C1:SUS-MC${optic}_ASC${dof}_OUT16 -s 0 -g 0.0001 -t 10 C1:SUS-MC${optic}_${dof}_COMM


I put "MC WFS relief" button on the WFS medm screen (/opt/rtcds/caltech/c1/medm/c1ioo/master/C1IOO_WFS_MASTER.adl).

  6727   Thu May 31 04:03:17 2012 yutaUpdateIOOscript for MC beam spot measurement

I wrote a wrapping script for measuring MC beam spot. We had to run several scripts for the measurement (see elog #6688), but now, you only need to run /opt/rtcds/caltech/c1/scripts/ASS/MC/mcassMCdecenter.

The measured data file will be stored in /opt/rtcds/caltech/c1/scripts/ASS/MC/dataMCdecenter/ directory, with a timestamp.
The calculated beam spot position data will be logged in /opt/rtcds/caltech/c1/scripts/ASS/MC/dataMCdecenter/logMCdecenter.txt file.
I had to edit sensemcass.m file, in order to write the result into the log file. In this way, we can keep track of the beam displacement.

Currently, the calculation script is written in the MATLAB file(sensemcass.m), which isn't very nice.
To run a MATLAB file from the command line
, you have to write something like this;

matlab -nodesktop -nosplash -r "sensemcass('./dataMCdecenter/MCdecenter201205210258.dat')"

 

  6731   Thu May 31 16:19:07 2012 yutaUpdateGreen Lockingtemperature setting for PSL doubling crystal

I fixed the temperature control of the oven for the PSL doubling crystal.
The PID settings were not good, and also, TC200 was beging DETUNED. So, I activated TUNE function and adjusted PID settings.
I'm not sure what the DETUNE function is for. The manual can be found here;
   http://www.thorlabs.com/thorproduct.cfm?partnumber=TC200

Current settings for Thorlabs TC200 are (Red ones are what I changed from the previous setting);

parameters Xend Yend PSL
TEMP SET (deg C) 37.5 35.7 36.9
P 250 250 250
I 60 60 200 (was 117)
D 25 25 40 (was 19)
(DE)TUNE on? TUNE TUNE TUNE (was DETUNE)
TMAX (deg C) 200 200 170
PMAX (Watts) 18 18 18
temperature sensor PTC100 PTC100 PTC100
  6746   Sat Jun 2 03:19:37 2012 yutaUpdateGreen LockingY green beat note found? - too small

Summary:
  I tried to find Y arm green beat in order to do the mode scan.
  I found a beat peak(see attached picture), but the amplitude seems too small.
  It is may be because the alignment/mode matching of the green beams at the PSL table is so bad. Or, the peak I found might be a beat from junk light.

What I did:
  1. Aligned Y arm to the IR beam from MC.

  2. Re-aligned Y end green beam to the Y arm using steering mirrors on the Y end table.

  3. Re-aligned PSL green optics.

  # C1:GCV-GREEN_TRY is temporary connected to the DC output of the Y green beat PD.

  4. Temperature of the PSL laser was 31.48 deg C, so I set "T+" of the Y end laser to 34.47 deg C, according to Bryan's formula (elog #4439);

  Y_arm_Temp_set = 0.87326*T_PSL + 6.9825

  5. Scanned Y end laser temperature by C1:GCY-SLOW_SERVO2_OFFSET. Starting value was 29725 and I scanned from 27515 to 31805, by 10 or 100. Laser frequency changes ~ 6 MHz / 10 counts, so it means that I scanned ~ 2.5 GHz. During the scan, I toggled C1:AUX-GREEN_Y_Shutter to make sure the green beam resonates in TEM00 mode.

  # I made a revolutionary python script for toggling channels(/opt/rtcds/caltech/c1/scripts/general/toggler.py). I made it executable.

  6. Found a tiny beat note when C1:GCY-SLOW_SERVO2_OFFSET = 29815. I confirmed it is a beat signal by blocking each PSL and Y arm green beam into the beat PD. I left  C1:GCY-SLOW_SERVO2_OFFSET = 29815.

  7. I found that Bryan's formula;

Y_arm_Temp_meas = 0.95152*T_PSL + 3.8672
Y_arm_Temp_set = 0.87326*T_PSL + 6.9825

  was actually

Y_arm_Temp_set = 0.95152*T_PSL + 3.8672
Y_arm_Temp_meas = 0.87326*T_PSL + 6.9825

  according to his graph(elog #4439). So, I set  "T+" of the Y end laser to 33.82 deg C.

  8. This time, I scanned PSL laser temperature by C1:PSL-FSS_SLOWDC. I found a tiny beat note when C1:PSL-FSS_SLOWDC = 1.0995. C1:PSL-FSS_SLOWDC has 10 V range, so I scanned ~ 10 GHz, assuming the laser frequency changes 1 GHz/K and the temperature changes 1 K/V.

  9. Re-aligned PSL green optics so that the beam hits optics at their center, and checked that the poralization of the two green beams are the same.

  10. Checked that amplifier ZFL-100LN+ on the beat PD is working correctly. The power was supplied correctly (+15 V) and measured gain was ~ 25 dBm.

  11. Exchanged BNC cable which connects the beat PD to the spectrum analyzer. Previous one we used was too long and it had -15 dB loss(measured). I exchanged to shorter one which has -2 dB loss.

Beat note amplitude estimation:
  The amplitude of the beat note observed in the spectrum analyzer was ~ -54 dBm. According to the estimation below, it seems too small.

  The measured power of the two green beams are

  P_Y = 4 uW
  P_PSL = 90 uW

  So, the power of the beat signal should be

  P_beat ~ 2 sqrt(P_Y * P_PSL) = 37 uW

  Responsivity and transimpedance of the beat PD (Broadband PD, LIGO-T0900582) are 0.3 A/W and 2 kOhm. So, the power of the electrical signal is

  W = (P_beat * 0.3 A/W * 2 kOhm / sqrt(2))^2 / 50 Ohm = 5 uW

  5 uW is -23 dBm. We have +25 dB amplifier after the PD and the loss of the BNC cable is -2 dB. So, if the two beams interfere perfectly, the peak height of the beat signal should be ~ 0 dBm. The measured value -54 dBm seems too small. According to elog #5860, measured value by Kiwamu and Katrin was -36 dBm.

Current values:
  PSL laser temperature: 31.48 deg C (PSL HEPA 100%)
  Y end laser "T+": 33.821 deg C
  Y end laser "ADJ": 0
  C1:GCY-SLOW_SERVO2_OFFSET = 29815 (was 29725)

Attachment 1: CIMG1437.JPG
CIMG1437.JPG
ELOG V3.1.3-