40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 226 of 341  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  3924   Mon Nov 15 15:02:00 2010 KojiSummaryPSLpower measurements around the PMC

[Valera Yuta Kiwamu Koji]

Kiwamu burtrestored c1psl. We measured the power levels around the PMC.

With 2.1A current at the NPRO:

Pincident = 1.56W
Ptrans_main = 1.27W
Ptrans_green_path = .104W

==> Efficiency =88%

----

We limited  the MC incident power to ~50mW. This corresponds to the PMC trans of 0.65V.
(The PMC trans is 1.88V at the full power with the actual power of 132mW)

  3955   Fri Nov 19 15:51:50 2010 KojiUpdateElectronicsREFL55 Characterizations

RF Transimpedance of 200Ohm means the residual impedance at the resonance (R_res) of 40,
if you consider the amplifier gain (G_amp) of 10 and the voltage division by the 50Ohm termination,
this corresponds to the thermal noise level of Sqrt(4 kB T R_res)*G_amp/2 = 4nV/rtHz at the analyzer, while you observed 35nV/rtHz.

35nV/rtHz corresponds to 7nV/rtHz for the input noise of the preamp. That sounds too big if you consider the voltage noise of opamp MAX4107 that is 0.75nV/rtHz.

What is the measurement noise level of the RF analyzer?

Quote:

[Koji, Rana, and Kevin]

I have been trying to measure the shot noise of REFL55 by shining a light bulb on the photodiode and measuring the noise with a spectrum analyzer. The measured dark noise of REFL55 is 35 nV/rtHz. I have been able to get 4 mA of DC current on the photodiode but have not been able to see any shot noise.

I previously measured the RF transimpedance of REFL55 by simultaneously measuring the transfer functions of REFL55 and a new focus 1611 photodiode with light from an AM laser. By combining these two transfer functions I calculated that the RF transimpedance at 55 MHz is ~ 200 ohms. With this transimpedance the shot noise at 4 mA is only ~ 7 nV/rtHz and would not be detectable above the dark noise.

The value of 200 ohms for the transimpedance seems low but it agrees with Alberto's previous measurements. By modeling the photodiode circuit as an RLC circuit at resonance with the approximate values of REFL55 (a photodiode capacitance of 100 pF and resistance of 10 ohms and an inductance of 40 nH), I calculated that the transimpedance should be ~ 230 ohms at 55 MHz. Doing the same analysis for the values of REFL11 shows that the transimpedance at 11 MHz should be ~ 2100 ohms. A more careful analysis should include the notch filters but this should be approximately correct at resonance and suggests that the 200 ohm measurement is correct for the current REFL55 circuit.

 

  3973   Tue Nov 23 10:48:31 2010 KojiUpdateIOOthe plan of the day

[Kiwamu/Koji]

- The tanks are open

Plan

[done] - Remove the PZT cable currently underlying between BS and ITMY chambers
[done] - Put this PZT cable between BS and IMC chambers. Connect it on the PZT on the IMC table (SM1)
[done]- Put the two OSEM cables between BS and ITMY chambers. Connect this cable to SRM.
  The connector for this cable at the BS side is coming from Bob's place on Wednesday. We left it disconnected for now.

- Energize all of four PZTs and check the functionality.

  4013   Mon Dec 6 11:57:21 2010 KojiSummaryall down cond.power outage

I checked the vacuum system and judged there is no apparent issue.

The chambers and annulus had been vented before the power failure.
So the matters are only on the TMPs.

TP1 showed the "Low Input Voltage" failure. I reset the error and the turbine was lift up and left not rotating.
TP2 and TP3 seem rotating at 50KRPM and the each lines show low pressur (~1e-7)
although I did not find the actual TP2/TP3 themselves.

Quote:

Looks like there was a power outage. The control room workstations were all off (except for op440m). Rosalba and the projector's computer came back, but rossa and allegra are not lighting up their monitors.

linux1 and nodus and fb all appear to be on and answering their pings.

I'm going to leave it like this for the morning crew. If it

 

  4056   Wed Dec 15 12:46:18 2010 KojiSummaryIOOFinishing up the vac work

What else?

v: Edit on Dec 15 10PM
v: Edit on Dec 16 10PM

JD:  We should check OSEMs for all optics *after* table leveling.  Some of them (esp. BS and ITMX) are currently close to their limits right now.

KA: Check green alignment.

Take photos of the tables.

Fix the leveling weights



Location    Optics            Action
--------------------------------------------------------------
@ITMX -     v POX             alignment
            v POP1/POP2       alignment
            v Table Leveling

@ITMY -     POY               mirror replacement (45deg->0deg) / alignment
            v SR2-TT          alignment
            v SRM Tower       alignment / EQ-stop release
            v SRM             alignment
            v SRM OSEM
            vvSRM OPLEV (X2)  install (VIS)/ alignment
            v ITMY OPLEV (X2)   install (VIS)/ alignment
            v OM1/OM2         install (DLC 45deg)/ alignment       
            v Table Leveling

@BSC -      v OM3             install (DLC 45deg/ alignment)
            v OM4(PZT)          neutralize, adjustment
            IPPOS steering    alignment
            v BS OPLEV        alignment
           
v PRM OPLEV(x2)     alignment
            Beam dumps
            Table Leveling

@IMC -      v REFL              mirror replacement (45deg->0deg)

@ETMX -     Al foil removal
            Table Leveling

@ETMY -     ETMY damping
            OSEM
            OPLEV
            Al foil removal
            Table Leveling

@OMC -      v OM5(PZT)        neutralize, adjustment

@ITM/ETM -  Mirror Wiping

  4058   Wed Dec 15 14:23:32 2010 KojiUpdateCDSETMY IO chassis update

Great!

I wish this board works fine at least for several days...

Quote:

I gave Alex a sob story over lunch about having to go and try to resurrect dead VME crates.  He and Rolf then took pity on me and handed me their last host interface board from their test stand, although I was warned by Rolf that this one (the latest generation board from One Stop) seems to be flakier than previous versions, and may require reboots if it starts in a bad state.

Anyways, with this in hand I'm hoping to get c1iscey damping by tomorrow at the latest.

 

  4062   Wed Dec 15 23:10:40 2010 KojiUpdateIOOSRM Oplev / Dark Steering mirrors installed

I helped the vacuum installation work in the evening.

- Three steering mirrors after the SRM (OM1-OM3) were installed on the table. OM1 and OM2 were aligned.
  OM3 is in-place but not aligned to the OM4 (PZT).

- The ITMY oplev setup was disintegrated. The SRM/ITMY oplev beams were prepared.

- The SRM oplev mirrors were placed on the table and aligned.

- The ITMY oplev mirrors were placed on the table but not in-place.

  4066   Fri Dec 17 00:30:05 2010 KojiUpdateIOOITMY / SRM / BS / PRM OPLEVs aligned

[Steve and Koji]

The invac OPLEV mirrros were aligned before we get to the PMA party.

The OPLEV mirrors were adjusted in accordance with the optical layout.
Surprisingly the optical layout was enough precise such that we have the healthy red beams on the optical tables.
Steve placed the apertures at the position of the returning spots while I shook the stack to check if the range of the spot motion is sufficient.

The sole thing that has been deviated from the optical layout was that the SRM returning beam had to be reroute
as the SRM has better reflectivity on the AR surface in stead of the HR one.

  4067   Fri Dec 17 00:55:30 2010 KojiUpdateIOOThe dark port beams reached the AP table

[Koji and Kiwamu]

We obtained two dark port beams on the AP table: OMC REFL and AS

- First, IPANG and BS were aligned so as to have the beams on the center of the ETMs.

- Then ITMX/ITMY/PRM/SRM were aligned to have fringes in a single spot anywhere.

- As we already had the dark port beam on the steering mirrors on the BS table, today the PZT mirrors were adjusted.
This work was the beam steering between the BS table to the OMC table. After some tweaking of the mirror mounts, 
the spot on the last PZT mirror was found.

As we have not touched any of the OMC optics since they were aligned well, the alignment has been adjusted by the nobs of the PZT steering mirrors.
Once the beam is on the output mode matching telescope (OMMT), the work was quite easy thanks to the beam shrinking by the OMMT.

Note that the dark port beam is slightly clipped by the green steering mirror. The steering mirror will be moved next time.

After the alignment, we indeed obtained OMC REFL and AS beams on the AP table.
The fringes were visible on the OMC REFL CCD.

We keep the dark port setup on the OMC (in-vac) and AP tables so that they can be the reference of the dark port alignment.
In principle we can align the beams onto the OMC by the two PZT mirrors.


What is left?

Our minimum success of this vent is to setup the X arm cavity which is needed for the green locking.
This setup was already realized. So we fulfilled the condition to close the tank even if the damping of
the ETMY is not achieved. (But we should try)

Tomorrow, we make a light touches to POY, Green, IPPOS, and check the table leveling, clamping, etc, in general.

JD:  We should check OSEMs for all optics *after* table leveling.  Some of them (esp. BS and ITMX) are currently close to their limits right now.

KA: Check green alignment. / Take photos of the tables. / Fix the leveling weights


Location    Optics            Action
--------------------------------------------------------------
@ITMY -     POY               mirror replacement (45deg->0deg) / alignment

@BSC -      Green steering    alignment
            IPPOS steering    alignment
            Beam dumps
            Table Leveling

@ETMX -     Al foil removal
            Table Leveling

@ETMY -     ETMY damping
            OSEM
            OPLEV
            Table Leveling

@ITM/ETM -  Mirror Wiping

  4072   Sat Dec 18 23:33:06 2010 KojiUpdateelogrestarted

Did the same.

Quote:

The process was taking up 100% of the CPU and not responding via web. The .log file showed the last action was somebody reading/editing one of Jenne's entries from August regarding TT ECD. The restart script didn't work, so I had to do a 'kill -9' to get it to die.

 

  4073   Sun Dec 19 11:19:42 2010 KojiUpdateelogrestarted

Did it again. It seemed that Google bot came to the elog and tried to obtain "http://nodus.ligo.caltech.edu:8080/robots.txt". That was the last of the log.
Bot came from the AJW's homepage. Also Google FeedFecther came to the elog.

  4076   Mon Dec 20 10:47:29 2010 KojiUpdateIOOPlan for closing the vacuum chambers

Monday

  • Place the bars on the in-vac tables to mark the positions of the test mass suspensions. (ITMX/ITMY/ETMX/ETMY)
  • Check the table leveling again (ITMX/ITMY/ETMX/ETMY/BSC)
  • Align the whole interferometer.
  • Check the OPLEV spots by either QPDs or apertures
  • Check the OSEM values (MC1/2/3, BS, PRM, SRM, ITMX, ITMY, ETMX, ETMY)
  • Energize OMC PZTs.
    • We have removed the cards at the back of the HV driver.
    • Insert the card and check the connection.
    • Adjust the DC values at the middle of the range.
      -> They have an internal bias circuit to provide +75V at the outputs. (D060287).
      The actual voltages confirmed.
    • Adjust the physical knobs of the PZTs such that we can see the spots at the OMCR cam
  • If everything is fine, attach the access connector.
  • If still everythig is fine, put the BS heavy door.

Tuesday

- Do the following list for all of the testmass chambers.

  • Check if the OSEMs and the OPLEV are still fine.
  • Inspect the surface of the mirror with a laser pointer or a fiber coupled halogen light.
  • Blow the mirrors by the ionization gun.
  • Inspect the mirror surface again.
  • Move the suspension tower close to the door.
  • Make a single drag-wipe with iso
  • Move the SOS tower at the original place.
  • Check the OSEMs and the OPLEVs. Adjust the alignment.
  • Put the heavy door.

- Start slow pumping

  4088   Wed Dec 22 15:47:22 2010 KojiUpdateVACTank closing procedure

[Jenne Kiwamu Joe Osamu Steve Koji]

Yesterday (21st), we closed the BSC and the four testmass chambers.

We splitted the team into three.

- Wiping team (Jenne/Kiwamu)
- Suspension team (Osamu/Koji)
- Door closing team (Joe/Steve)

While the wiping team was working, the suspension team prepared the next suspension.
Once the mirror was wiped, the suspension team restored that suspension at the position of the markings on the table.

After the wipe of the first mirror, the wiping team got experienced and they were the fastest among the teams.
So the wiping team worked as the second suspension team when necessary.

All of us became the closing team after the last suspension has been restored.

We checked that we still have the Michelson fringes and the oplev pointings.

In total, the work was very efficient such that we only took four hours for the entire process.

We left the suspension marking on the optical tables because they are quite useful.

  4091   Thu Dec 23 03:15:11 2010 KojiUpdateelogelogd is getting killed by Suresh

ELOG has crashed and I restarted it.

Actually the filtering is not effective so far as elog is not using apache but has its own web server inside.
So this just block the access to port 30889 (=SVN, Dokuwiki, etc).

Quote:

After another elog crash, I've blacklisted the domain that Suresh is using by editing the apache httpd.conf. Let's see what happens now.

 

  4096   Thu Dec 23 22:13:50 2010 KojiUpdateGeneralPZT HV turned on

The four IOO PZTs have been turned on in order to confirm the alignment of the IFO.

Once they are turned on, the spots (ITMX/ITMY/PRM/SRM) on the REFL CCD have been easily found.

When the X-arm was aligned to the green beam, it is easily locked to TEM00. Also some LG modes were visible.
i.e. There is some room to improve the mode matching.
The transmitted green at the PSL table is a bit too high and clipped by the first mirror on the table.

No IR flashes were found in either arms.

------------------

The below are the range and the set values of the strain gauge readback for the PZTs.
When the closed loop buttons are activated the PZTs are fixed at those values, if no one touches the set point dials.

            Min   Max   SetP | Display on the module
PZT1 Yaw    2.20  9.95  6.08 | Broken
PZT1 Pitch -0.011 8.89  4.40 | 1.58

PZT2 Yaw    0.737 9.94  5.37 | 2.17
PZT2 Pitch  0.010 9.42  4.71 | 1.89

  4104   Tue Jan 4 11:06:32 2011 KojiUpdateIOOPower into Mode Cleaner increased

- Previously MC TRANS was 9000~10000 when the alignment was good. This means that the MC TRANS PD is saturated if the full power is given.
==> Transimpedance must be changed again.

- Y1-45S has 4% of transmission. Definitively we like to use Y1-0 or anything else. There must be the replaced mirror.
I think Suresh replaced it. So he must remember wher it is.

- We must confirm the beam pointing on the MC mirrors with A2L.

- We must check the MCWFS path alignment and configuration.

- We should take the picture of the new PSL setup in order to update the photo on wiki.

Quote:

What was the point:

I twiddled with several different things this evening to increase the power into the Mode Cleaner.  The goal was to have enough power to be able to see the arm cavity flashes on the CCD cameras, since it's going to be a total pain to lock the IFO if we can't see what the mode structure looks like.

Summed-up list of what I did:

* Found the MC nicely aligned.  Did not ever adjust the MC suspensions.

* Optimized MC Refl DC, using the old "DMM hooked up to DC out" method.

* Removed the temporary BS1-1064-33-1025-45S that was in the MC refl path, and replaced it with the old BS1-1064-IF-2037-C-45S that used to be there.  This undoes the temporary change from elog 3878.  Note however, that Yuta's elog 3892 says that the original mirror was a 1%, not 10% as the sticker indicates. The temporary mirror was in place to get enough light to MC Refl while the laser power was low, but now we don't want to fry the PD.

* Noticed that the MCWFS path is totally wrong.  Someone (Yuta?) wanted to use the MCWFS as a reference, but the steering mirror in front of WFS1 was switched out, and now no beam goes to WFS2 (it's blocked by part of the mount of the new mirror). I have not yet fixed this, since I wasn't using the WFS tonight, and had other things to get done.  We will need to fix this.

* Realigned the MC Refl path to optimize MC Refl again, with the new mirror.

* Replaced the last steering mirror on the PSL table before the beam goes into the chamber from a BS1-1064-33-1025-45S to a Y1-45S.  I would have liked a Y1-0deg mirror, since the angle is closer to 0 than 45, but I couldn't find one.  According to Mott's elog 2392 the CVI Y1-45S is pretty much equally good all the way down to 0deg, so I went with it.  This undoes the change of keeping the laser power in the chambers to a nice safe ~50mW max while we were at atmosphere.

* Put the HWP in front of the laser back to 267deg, from its temporary place of 240deg.  The rotation was to keep the laser power down while we were at atmosphere.  I put the HWP back to the place that Kevin had determined was best in his elog 3818.

* Tried to quickly align the Xarm by touching the BS, ITMX and ETMX.  I might be seeing IR flashes (I blocked the green beam on the ETMX table so I wouldn't be confused.  I unblocked it before finishing for the night) on the CCD for the Xarm, but that might also be wishful thinking.  There's definitely something lighting up / flashing in the ~center of ETMX on the camera, but I can't decide if it's scatter off of a part of the suspension tower, or if it's really the resonance. 

What happened in the end:

The MC Trans signal on the MC Lock screen went up by almost an order of magnitude (from ~3500 to ~32,000).  When the count was near ~20,000 I could barely see the spot on a card, so I'm not worried about the QPD.  I do wonder, however, if we are saturating the ADC. Suresh changed the transimpedance of the MC Trans QPD a while ago (Suresh's elog 3882), and maybe that was a bad idea? 

Xarm not yet locked. 

Can't really see flashes on the Test Mass cameras. 

 

  4111   Wed Jan 5 10:45:51 2011 KojiUpdateelogrestarted

Google bot  crashed the elog again. Then, I found that Google bot (and I) can crash elogd by trying to show the threaded view.
There looks similar issue reported to the elog forum, the author did not think this is a true bag.

Note: This happens only for the 40m elog. The other elogs (ATF/PSL/TCS/SUS/Cryo) are OK for the threaded view.

Quote:

Did it again. It seemed that Google bot came to the elog and tried to obtain "http://nodus.ligo.caltech.edu:8080/robots.txt". That was the last of the log.
Bot came from the AJW's homepage. Also Google FeedFecther came to the elog.

 

  4119   Thu Jan 6 00:03:05 2011 KojiUpdateCamerasAligned the Xarm, no big deal

Nice, nice!

The power budget for the FPMI is here. The expected Intracavity power and the transmission are at  most ~8W and 100uW, respectively.

 

  4121   Thu Jan 6 10:47:11 2011 KojiUpdateelogELOG fixed (re: restarted)

Fixed the 40m elog crashing with the threaded display.

This morning I found that Google bot crashed the elog again. I started the investigation and found the threaded mode is fine if we use the recent 10 entries.

I gradually copied the old entries to a temporary elog and found that a deleted elog entry on August 6 had a corrupted remnant in the elog file. This kept crashed the threaded mode.

Once this entry has been eliminated again, the threaded mode got functional.

I hope this eliminates those frequent elog crashing.

Quote:

Google bot  crashed the elog again. Then, I found that Google bot (and I) can crash elogd by trying to show the threaded view.
There looks similar issue reported to the elog forum, the author did not think this is a true bag.

Note: This happens only for the 40m elog. The other elogs (ATF/PSL/TCS/SUS/Cryo) are OK for the threaded view.

Quote:

Did it again. It seemed that Google bot came to the elog and tried to obtain "http://nodus.ligo.caltech.edu:8080/robots.txt". That was the last of the log.
Bot came from the AJW's homepage. Also Google FeedFecther came to the elog.

 

 

  4140   Wed Jan 12 01:38:52 2011 KojiUpdateIOOPut MC PZT offset onto MC board, instead of on awkward cart

I can not think of any reason that the input impedance of 13kOhm between the pos/neg inputs produces such a big change at the output. In any case, the differential voltage between the pos/neg inputs produces a big output. But the output was just 2V or so. This means that the neg input was actually about zero volt. This ensures the principle of the summing amplifier of this kind.

Because the input impedance of the summing node (the additional resister you put at the negative input) is not infinity, the voltage divider is not perfect and shows 10% reduction of the voltge (i.e. the output will have +4.5V offset instead of +5V). But still it is not enough to explain such a small output like 2.3V.

What I can think of is that the earlier stages somehow have the offset for some reason. Anyway, it is difficult to guess the true reason unless all of the nodes around the last stage are checked with the multimeters.

At least, we can remove the voltage divider and instead put a 10k between -15V and the neg input in order to impose +5V offset at the output. This costs 1.5mA instead of 10mA.

Quote:

[Larisa and Jenne]

We wanted to get rid of the awkward cart that was sitting behind the 1Y1 rack.  This cart was supplying a +5V offset to the PZT driver, so that we could use the MC length signal to feedback to lock the laser to the MC cavity.  Instead, we put the offset on the last op amp before the servo out on the Mc Servo Board.  Because we wanted +5V, but the board only had +5, +15, -15V as options, and we needed -5 to add just before the op amp (U40 in the schematic), because the op amp is using regular negative feedback, we made a little voltage divider between -15V and GND, to give ourselves -5V.  We used the back side of the voltage test points (where you can check to make sure that you're actually getting DC voltage on the board), and used a 511Ohm and 1.02kOhm resistor as a voltage divider. 

Then we put a 3.32kOhm resistor in ~"parallel" to R124, which is the usual resistor just before the negative input of the op amp.  Our -5V goes to our new resistor, and should, at the output, give us a +5V offset. 

Sadly, when we measure the actual output we get, it's only +2.3V.  Sadface.

We went ahead and plugged the servo out into the PZT driver anyway, since we had previously seen that the fluctuation when the mode cleaner is locked was much less than a volt, so we won't run into any problems with the PZT driver running into the lower limit (it only goes 0-10V).

Suresh has discovered that the op amp that we're looking at, U40 on the schematic, is an AD829, which has an input impedance of a measely 13kOhm.  So maybe the 3.32kOhm resistors that we are using (because that's what had already been there) are too large.  Perhaps tomorrow I'll switch all 3 resistors (R119, R124, and our new one) to something more like 1kOhm.  But right now, the MC is locked, and I'm super hungry, and it's time for some arm locking action.

I've attached the schematic.  The stuff that we fitzed with was all on page 8.

 

 

  4145   Wed Jan 12 22:19:54 2011 KojiUpdateIOOMC flakiness solved

[Koji Suresh Kiwamu]

Suresh modified the MC board to have +5V offset at the output. (To be reported in the separated elog)

The MC lock has not been obtained at this point. An investigation revealed that there was very small (~5mVpp) PDH signal.

Kiwamu removed his triple resonant adapter and put the 50Ohm termination insted.
This restored the signal level normal although this changed the demodulation phase about 20deg.
We left the demodulation phase as it is because this is a temporary setup and the loss of the signal is not significant.

Now the MC is steadily locked with the single super boost.

  4155   Fri Jan 14 12:29:57 2011 KojiUpdateLockingNext steps for the green

These are the next steps for a better operation of the arm locking. They are suitable for the day time activities

Reconfiguration of the X-End table

- End transmission power monitor (CDS model exists, need to configure the PD)

- IR steering mirror for the transmon

- Restore/align end green beam

- Relocate the end trans CCD

- Connect the video output cable for the X-end CRT monitor

LSC Whitening

- LSC Whitening binary IO connection

 


They are not urgent but also good things to do

MC servo characterization

- Error signal: frequency noise

- Loop characterization

Arm cavity characterization with cavity sweep

- Arm finesse for 1064nm and 532nm

- Arm FSR measurement with 1064 (and optionally with 532nm simultaneously)

- Arm g-factor for 1064nm and 532nm

  4156   Fri Jan 14 12:34:08 2011 KojiUpdateLSCX arm locked with C1LSC digital control

My feeling was that the saturation was caused by the LSC whitening filter which was always on.
Once the LSC whitening filter is controlled from C1LSC, we would be able to remove the attenuator.

Quote:

  - attenuation of RF signal

  Since the PDH signal taken by C1LSC's ADC had been saturated somewhat, we introduced a ND filter of 10 on the photo diode to attenuate the RF signal.

As a result the amplitude of the PDH signal on dataviewer became more reasonable. No more saturations.

 

  4169   Wed Jan 19 10:45:00 2011 KojiUpdateElectronicsPOX Transfer Functions

TF looks fine except for the large peak at around 200MHz which has been reported by Rana. The time series and the spectrum without the light are pathetic...

I still prefer to see the fit by LISO as the pole/zero fitting of LISO as the fit result is more physically understandable.
Anyone can ask me about the instruction how to use LISO

I guess Idc of 24mA would be just a mistake. It looks like ~0.2mA from the plot that sounds normal for the transimpedance of 2kOhm.

Question: What is the HWHM of the reesonance when you have f0 and Q.

 

  4188   Sat Jan 22 02:03:55 2011 KojiUpdateGreen LockingExamining the stability of VCO PLL at low frequencies

Damn. If this figure is true, we were looking at wrong signal. We should look at the feedback signal to the VCO.

  4190   Sat Jan 22 02:23:26 2011 KojiUpdateGreen Lockingsome more progress

What is the point to use the error instead of the feedback? It does not make sense to me.

If the cable is flaky why we don't solder it on the circuit? Why we don't put a buffer just after the test point?

It does not make sense to obtain the error signal in order to estimate the freeruning noise without the precise loop characterization.
(i.e. THE FEEDBACK LOOP TRINITY: Spectrum, Openloop, Calibration)

RA: I agree that feedback would be better because we could use it without much calibration. But the only difference between the "error signal" and the "feedback signal" in this case is a 1.6:40 pole:zero stage with DC gain of 0 dB. So we can't actually use either one without calibration and the gain between these two places is almost the same so they are both equally bad for the SNR of the measurement. I think that Suresh and Kiwamu are diligently reading about PLLs and will have a more quantitative result on Monday afternoon.

 

  4193   Mon Jan 24 10:19:21 2011 KojiUpdateGreen LockingX arm locked !

Well... The ALS loop is engaged and the error was suppressed.
So, how is the IR error signal stabilized when the IR is brought in to the resonance?

I can see the linear trend of 0.1V/s from 5s to 10s.  This corresponds to 100kHz/s and 13nm
for the residual beat drift and the arm length motion, respectively. That sounds huge. The DC gain must be increased.

  4197   Tue Jan 25 00:09:54 2011 KojiUpdateGeneralJenne laser is at PSL Lab

I found Tara's elog entry that Jenne laser is at PSL Lab.
Since we recently use it frequently, we should be aware where it is now.

  4202   Tue Jan 25 21:57:59 2011 KojiUpdateGreen LockingSlow servo for green laser

1. The dewhitening filter CH6 had no output. I disconnected the cable and put it to the monitor out of the AI filter.
So the dewhitening is not in the loop.

2. I have made a thermal control filter

BANK1: pole 0Hz, zero 1mHz / LF boost stage
BANK2: pole 1mHz, zero 30mHz / LPF stage
BANK3: pole 1Hz, zero 0.1Hz / phase compensation stage
Gain: 0.05

It seems working with the gain of 0.05. As the thermal is very strong, the output has less than 10.
This means the we are effectively only using ~4bit. We need external filter.

Note that output of 30000counts were about 3V at  CH6.

3. Measured End PZT feedback with and without the thermal control. The UGF seems to be 0.2Hz.
The suppression at 10mHz is ~100. This is so far OK.

Quote:

I implemented a slow servo for green laser thermal control on c1scx.mdl. Ch6,7 of ADC and ch6 of DAC are assigned for this servo as below;

 

Ch6 of ADC: PDH error signal

CH7 of ADC: PZT feedback signal

CH6 of DAC: feedback signal to thermal of green laser

 

Note that old EPICS themal control cable is not hooked anymore.

I made a simple MEDM screen(...medm/c1scx/master/C1SCX_BCX_SLOW.adl) linked from GREEN medm screen (C1GCV.adl) on sitemap.

During this work, I noticed that some of the epics switch is not recovered by autoburt. What I noticed is filter switch of SUSPOS, SUSPIT, SUSYAW, SDSEN, and all coil output for ETMX.

I had no idea to fix them, probably Joe knows. I guess other suspensitons has the same problems.

 

Attachment 1: 110125_Xend_thermal.pdf
110125_Xend_thermal.pdf
  4203   Tue Jan 25 22:49:13 2011 KojiUpdateCDSFront End multiple crash

STATUS:

  • Rebooted c1lsc and c1sus. Restarted fb many times.
  • c1sus seems working.
  • All of the suspensions are damped / Xarm is locked by the green
  • Thermal control for the green is working
  • c1lsc is frozen
  • FB status: c1lsc 0x4000, c1scx/c1scy 0x2bad
  • dataviewer not working

1. DataViewer did not work for the LSC channels (liek TRX)

2. Rebooted LSC. There was no instruction for the reboot on Wiki. But somehow the rebooting automatically launched the processes.

3. However, rebooting LSC stopped C1SUS processes working

4. Rebooted C1SUS. Despite the rebooting description on wiki, none of the FE processes coming up.

5. Probably, I was not enough patient to wait for the completion of dorphine_wait? Rebooted C1SUS again.

6. Yes. That was true. This time I wait for everything going up automatically. Now all of c1pemfe,c1rfmfe,c1mcsfe,c1susfe,c1x02fe are running.
FB status for c1sus processes all green.

7. burtrestored c1pemfe,c1rfmfe,c1mcsfe,c1susfe,c1x02fe with the snapshot on Jan 25 12:07, 2010.

8. All of the OSEM filters are off, and the servo switches are incorrectly on. Pushing many buttons to restore the suspensions.

9. I asked Suresh to restore half of the suspensions.

10. The suspensions were restored and damped. However, c1lsc is still freezed.

11. Rebooting c1lsc freezed the frontends on c1sus. We redid the process No. 5 to No.10

12. c1x04 seems working. c1lsc, however, is still frozen. We decided to leave C1LSC in this state.

 

  4204   Wed Jan 26 02:18:12 2011 KojiUpdateSUSETMX length to angle matrix

I have put an offset of 1000 counts to C1:SUS-ETMX_ALS_OFFSET. This actually misalign the mirror a lot.

While the offset is applied. I adjusted the balance of the coil matrix.
UL 1.580 UR 0.620
LL 0.420 LR 1.380

> ezcaread C1:SUS-ETMX_TO_COIL_0_0_GAIN
C1:SUS-ETMX_TO_COIL_0_0_GAIN = 1.58
> ezcaread C1:SUS-ETMX_TO_COIL_0_1_GAIN
C1:SUS-ETMX_TO_COIL_0_1_GAIN = 0.62
> ezcaread C1:SUS-ETMX_TO_COIL_0_2_GAIN
C1:SUS-ETMX_TO_COIL_0_2_GAIN = 0.42
> ezcaread C1:SUS-ETMX_TO_COIL_0_3_GAIN
C1:SUS-ETMX_TO_COIL_0_3_GAIN = 1.38

Now, we can keep TEM00 for green with +/-1000counts of push although the fast step of the offset make the lock lost.

It turned out that the step longitudinal input temporary misalign the mirror in pitch because the length and pitch are coupled.
I guess that we don't excite pitch if we push the mirror slowly. Eventually, we need f2p transfer function adjusted in the output matrix.

Kiwamu told us that:
(2)  Length to Alignment coupling. Pushing ETMX causes a misalignment.

 

  4207   Wed Jan 26 12:03:45 2011 KojiUpdateCDSFront End multiple crash

This is definitely a nice magic to know as the rebooting causes too much hustles.

Also, you and I should spend an hour in the afternoon to add the suspension swtches to the burt requests.

Quote:

I killed the dead c1lsc model by typing:

sudo rmmod c1lscfe

I then tried starting just the front end model again by going to the /opt/rtcds/caltech/c1/target/c1lsc/bin/ directory and typing:

sudo insmod c1lscfe.ko

This started up just the FE again

 

  4211   Thu Jan 27 11:04:27 2011 KojiUpdateGreen Lockingbeat freq scan

Experiment in the night of Jan 26.

o The arm was locked for the IR beam and was aligned for it.
o The green was aligned to the arm
o The beat freq was observed with the RF analyzer and the webcam.
o Engaged the ALS servo
o Compared the fluctuation of the beat freq with and without ALS
o Scanned the beat freq in order to find an IR resonance

The beat freq was scanned. A resonance for IR was found.
However, the residual motion of the arm was not within the line width of the IR resonance.

 To Do
- Improve the ALS servo (==>Koji)
- VCO noise characterization (==>Suresh is on it)
- Calibrate the PLL feedback (i.e. ALS error) into Hz/rtHz (==>Suresh)
- Calibrate the end green PZT fb into Hz/rtHz (==>Osamu is on it)
- Tuning of the suspension filters to reduce the bounce mode coupling.


DETAILS

o How to lock the arm with IR

  • Coarsely align the arm without lock. Transmittion was ~300 with MCTRANS ~40000
  • REFL11I is the error signal. unWhiten filter (FM1) should be on.
  • Unlock the MC and null the error and the arm trans offset by running the following commands

ezcaservo -g -0.1 -r C1:LSC-REFL11_I_OUTPUT C1:LSC-REFL11_I_OFFSET
ezcaservo -g -0.1 -r C1:LSC-REFL11_Q_OUTPUT C1:LSC-REFL11_Q_OFFSET
ezcaservo -g 0.1 -r C1:LSC-TRX_OUTPUT C1:LSC-TRX_OFFSET

  • Confirm the input matrix to pass REFL11I to MC path (why don't we use XARM path...?)

ezcawrite C1:LSC-MTRX_81 1.0

  • Servo configuration
    • For acquisition: Gain of 2. Only FM1 (1000:10) has to be on.
    • After the acquisition (TRX>200): The gain is to be changed to 1. FM2 and FM3 can be turned on for the LF boost.
  • Actuator matrix: connect MC path to ETMX and MC2

ezcawrite C1:LSC-OM_MTRX_18 1.0
ezcawrite C1:LSC-OM_MTRX_78 1.0

 

o How to align the green beam

  • After the alignment I went the end and aligned the last two steering mirrors.


o The beat freq monitor

  • Put the RF analyzer at the RF splitter of the RFPD output.
  • Used Zonet webcam (http://192.168.113.201:3037) for the remote monitoring

 

o How to engage the ALS servo

  • Preparation:
    • VCO PLL feedback comes to X_FINE path.
    • Put an offset of -850 to cancel too big offset (when the VCO is unlocked)
    • Use Y_FINE channel for the offset addtion. FM1 is 10mHz LPF in order to make the offset smooth.
    • Add X_FINE and Y_FINE by the matrix.
  • Control
    • Turn off X_FINE out. Leave Y_FINE output turned on.
    • Turn on ETMX ALS path.
    • Servo setting: FM1 1000:30 ON, others OFF, gain1
    • Wait for the beat comes in to the locking range at around 80MHz.
    • If the peak is too far, sweep Y_FINE offset in order to . Or change GCV slow thermal offset to let the beat freq jump.
    • You may have ambiguity of the feedback sign depending on which green has higher freq.
    • After the capture of the ALS lock, increse the gain up to 20. Turn on 0.1:boost at FM3.

 

o Comparison of the stability of the beat freq (Attachment3)

  • The spectra of the VCO PLL feedback was measured.
  • First of all, the signal was measured without ALS (blue).
    The PLL lost lock quite frequently, so the careful adjustment of the offset was necessary.Still I think there was slight saturation upconversion.
  • Then, the ALS was turned on (red). The gain was 20. This is an in-loop evaluation of the servo. The suppression was ~1000 at 1Hz.

o Beat freq scanning

  • The following command was used for the beat note scanning 

ezcastep -- "C1:GCV-YARM_FINE_OFFSET" "5,500"

  • Once the IR transmission was found, the scan was stopped.
  • Because the resultant rms stability of the arm was not within the line width of the cavity, the smooth resonant curve was not obtained.
  • From the shape of the error signal the peak-to-peak displacement (f>1Hz) was estimated to be +/-0.7nm. The dominant displacement
    in the period is 16Hz component.

 

Attachment 1: arm_scan.pdf
arm_scan.pdf
Attachment 2: arm_cav_scan3.png
arm_cav_scan3.png
Attachment 3: 110126_ALS_inloop.pdf
110126_ALS_inloop.pdf
  4215   Thu Jan 27 21:43:37 2011 KojiUpdateGreen Lockingno transmission of ALS signals

No signal is transmitted from C1:GCV-SCX_ETMX_ALS (on c1gcv) to C1:GCV-SCX_ETMX_ALS (on c1scx)

I can't find RFM definition for ALS channels in c1rfm. Where are they???

  4221   Fri Jan 28 13:05:56 2011 KojiConfigurationComputersscript path fixed

We had some issues in terms of the script paths. I have fixed it by replacing /cvs/cds/caltech/scripts to /cvs/cds/rtcds/caltech/c1/scripts

Here is the output of diff

----------------------------------------------


rossa:caltech>diff cshrc.40m cshrc.40m.20110128
44,47c44,45
< # OBSOLETE set path = ($path /cvs/cds/caltech/scripts/general)
< # OBSOLETE set path = ($path /cvs/cds/caltech/scripts/general/netgpibdata)
< set path = ($path /cvs/cds/rtcds/caltech/c1/scripts/general)
< set path = ($path /cvs/cds/rtcds/caltech/c1/scripts/general/netgpibdata)
---
> set path = ($path /cvs/cds/caltech/scripts/general)
> set path = ($path /cvs/cds/caltech/scripts/general/netgpibdata)
50,51c48
< # OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules:/cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules:/cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
61,64c58,59
< #OBSOLETE setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/caltech/scripts/general/netgpibdata:$PATH
< setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/rtcds/caltech/c1/scripts/general/netgpibdata:$PATH
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/caltech/scripts/general/netgpibdata:$PATH
> setenv SCRIPTS /cvs/cds/caltech/scripts
87,88c82
< #OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
99,100c93
< #OBSOLETE setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
< setenv SCRIPTPATH /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/scripts/general/netgpibdata
---
> setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
103,104c96
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv SCRIPTS /cvs/cds/caltech/scripts
135,137c127
< #OBSOLETE alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
< alias listenDARM '/cvs/cds/rtcds/caltech/c1/scripts/c1/listenDARM'
<
---
> alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
156,157c146
< #OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules
167,168c156
< #OBSOLETE setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
< setenv SCRIPTPATH /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/scripts/general/netgpibdata
---
> setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
172,173c160
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv SCRIPTS /cvs/cds/caltech/scripts
198,199c185
< #OBSOLETE alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
< alias listenDARM '/cvs/cds/rtcds/caltech/c1/scripts/c1/listenDARM'
---
> alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
288,295c274,277
< #OBSOLETE alias makefiltscreen '/cvs/cds/caltech/scripts/Admin/makeFilterScreen.pl'
< #OBSOLETE alias makelockinscreen '/cvs/cds/caltech/scripts/Admin/makeLockInScreen.pl'
< #OBSOLETE alias f_and_r '/cvs/cds/caltech/scripts/Admin/find_and_replace.pl'
< #OBSOLETE alias plotrgascan '/cvs/cds/caltech/scripts/RGA/plotrgascan'
< alias makefiltscreen '/cvs/cds/rtcds/caltech/c1/scripts/Admin/makeFilterScreen.pl'
< alias makelockinscreen '/cvs/cds/rtcds/caltech/c1/scripts/Admin/makeLockInScreen.pl'
< alias f_and_r '/cvs/cds/rtcds/caltech/c1/scripts/Admin/find_and_replace.pl'
< alias plotrgascan '/cvs/cds/rtcds/caltech/c1/scripts/RGA/plotrgascan'
---
> alias makefiltscreen '/cvs/cds/caltech/scripts/Admin/makeFilterScreen.pl'
> alias makelockinscreen '/cvs/cds/caltech/scripts/Admin/makeLockInScreen.pl'
> alias f_and_r '/cvs/cds/caltech/scripts/Admin/find_and_replace.pl'
> alias plotrgascan '/cvs/cds/caltech/scripts/RGA/plotrgascan'

  4228   Sun Jan 30 19:26:03 2011 KojiSummaryGreen LockingPrototype freq divider

A prototype freq divider has been made which works up to ~40MHz.

74HC4060 (14bit binary ripple counter) divides the freq of the input signal, which is comverted by the comparator LT1016
into the rectangular signal. The division rate is 2^14.

Attachment1: Circuit diagram

Attachment2:
Photo, the prototype bread board

Attachment3:
Photo, the spectrum of the freq divided output. The 40MHz input has been divided into 2.4k.
There are the 3rd and 5th harmonics seen. The peak was pretty sharp but the phase noise was not evaluated yet.


The circuit was made on the prototype bread board which is apparently unsuitable for RF purposes.
Indeed, it was surprising to see its working up to 40MHz...

In order to increase the maximum freq of the system we need the following considerations

  • RF PCB board
  • Input RF buffer (or amplifier) with a 50Ohm input impedance.
  • Faster comparator. LT1016 has the response time of 10ns, which is not enough fast.
  • Faster counter. Faster chip 74HC4020 has already been ordered.
Attachment 1: freq_divider.pdf
freq_divider.pdf
Attachment 2: IMG_3813.jpg
IMG_3813.jpg
Attachment 3: IMG_3814.jpg
IMG_3814.jpg
  4235   Tue Feb 1 15:09:41 2011 KojiOmnistructureGeneralProjector - fixed

The projector in the controls room has been fixed the orange blinking of the status LED.

What we needed was to push "Volume -" and "Menu" for 5 sec.
This resets the timer of the lamp. When the timer reaches 2500 hours, it automatically start sabotaging.

We've got the spare lamp. It is in the top drawer of the computer cabinet on which the label makers are.

  4237   Wed Feb 2 03:27:20 2011 KojiSummaryGreen Locking85MHz Freq divider

The freq divider was built and installed in the beat detection path.

Attachment 1: Circuit diagram

  • Input stage:  Wideband RF amp with DC block at the input and the output. The gain is 10dB typ.
  • 2nd stage: Ultra fast comparator AD9696. Note: AD9696 is an obsolete IC and there are only a few extra at Wilson house.
    The output is TTL/CMOS compatible.
  • 3rd stage: 14bit binary ripple counter (fmax~100MHz.)

Note: I have added 7805/7905 regulators to the circuit as I could not find -5V supply on the 1X1/2 racks.

Attachment 2: Packaging

  • The box is german made Eurocard size box from Techno-Isel Linear Motion http://www.techno-isel.com/lmc/Products/EnclosureProfiles11055.htm
    The box is excellent but I didn't like the fixing bolts as they are self-tapping type. I tapped the thread and used #6-32 screws.
     
  • The prototyping board is BPS's (BusBoard Prototype System http://www.busboard.us/)  SP3UT. The card size is 160mm x 100mm.
    The other side is a ground plane and the small holes on the board are through holes to the ground plane.
    This particular card was not easy to use.
     
  • The input is SMA. Unfortunately, it is not isolated. The output is an isolated BNC.
     
  • The supply voltage of +/-15V is given by the 3pin D-connector. The supply voltages have been obtained from the cross connect of 1X1.

Attachment 3: Input specification

  • The input frequency is 10MHz~85MHz. At lower frequency chattering of the comparator against the multiple zero crossing of the (relatively) slow sinusoidal waves.
  • The input amplitude. There are no apparent degradation of the freq jitter when the input power was larger than -30dBm.

 

Attachment 1: freq_divider.pdf
freq_divider.pdf
Attachment 2: IMG_3816.JPG
IMG_3816.JPG
Attachment 3: IMG_3818.JPG
IMG_3818.JPG
  4238   Wed Feb 2 09:56:55 2011 KojiSummaryGreen LockingInstalled the freq divider and Rana's PFD

- The freq divider and Rana's PFD were hooked up to the ADCs. (Attachment 1)
(I leave the analog PFD not explained in this entry.)
For this purpose, the VCO feedback signal has been disconnected and the beat signal was moved from the VCO loop to the analog PFD.

The output level of the splitter was +12dBm and was too high for the freq divider.
So, I had to stupidly add an attenuator of 10dB before the box.

- Gain of the digital PFD LPF

The LPF of the digital PFD had the gain of -4096 to let the output signal indicate the direct frequency reading.

The gain has been changed to -67.108864
such that the output shows the direct reading of the beat freq in the unit of MHz

-4096*2^14/10^6 = -67.108864

 

- Attachment 2 shows the acquired beat note through the freq divider.
The blue is the beat note between "green locked" and "IR locked only to MC" (i.e. MC vs XARM)
The red is the beat note with the both beam locked to the arm

The freq divider is a bit flaky in some freq region as the divided output sometimes shows freq jumps or the captured at a freq.
I still don't know why it happens. We have to check why this happens.

Attachment 1: freq_divider_installation.pdf
freq_divider_installation.pdf
Attachment 2: 110201_freq_divider_output.pdf
110201_freq_divider_output.pdf
  4239   Wed Feb 2 10:44:26 2011 KojiSummaryGreen LockingFreq fluctuation measured by the freq divider and Rana's analog PFD

The freq fluctuation of the beat note has been measured with the following condition

  • The IR beam only locked to the MC. The green beam locked to the arm
  • Both of the IR and green locked to the x-arm

Calibration
- The output of the freq divider is already calibrated to have the unit of MHz.

- The transfer function between the analog PFD channel and the digital PFD output was measured to be -23dB = 0.7.
  The gain of the XARM-FINE channel was changed to 0.7 such that the output is calibrated in MHz.

Results

- I have not checked the analog noise level of the analog PFD path. We may need more whitening gain (by icreasing the gain of SR560).

- The analog PFD is always better than the digital PFD above 20Hz.

- Both the digital and analog PFD showed good agreement below 20Hz.
  Note the measurement was not simultaneous.

- When the arm is locked with the ETMX being actuated , the fluctuation of the arm length must be stabilized by a huge factor
(~10^5 according to Kiwamu's entry) However, we only could see the stabilization factor of 30.

As this residual is the difference of the freq noise felt by the IR and the green,
this is a real issue to be tackled.

- The RMS fluctuations of the arm with and without the IR beam being locked are 2MHz and 0.1MHz,
which correcponds to the arm length motion of 250nm and 13nm, respectively.
Ed: I had to use 532nm in stead of 1064nm. The correct numbers are 130nm and 7nm.

- Without the IR locked, The typical peak-to-peak fluctuation of the beat freq was 10MHz.

Attachment 1: 110201_green_freq_fluctuation.pdf
110201_green_freq_fluctuation.pdf
  4240   Wed Feb 2 12:55:34 2011 KojiSummaryGreen LockingFreq fluctuation measured by the freq divider and Rana's analog PFD

I found that some flakiness of the beat signals comes from the RF components for the beat detection.
They are touching the racks in an indefinite way. If we move the components the output of the analog PFD
goes crazy.

Once Kiwamu is back I will ask him to clean up all of the green setting in an appropriate way.

 

  4244   Thu Feb 3 11:13:52 2011 KojiUpdateElectronicsPOY Shot Noise and Dark Spectrum

I wonder why POY11 has the dark noise level of 90nV/rtHz that is 5 times larger than that of POX (18nV/rtHz)
even though the Q are the same (~15) and the transimpedance is better (3.9k instead of 2k).

What cause this high noise level?
What is the expected dark noise level?

Quote:

[Koji and Kevin]

I measured the shot noise of POY and fit the data to determine the RF transimpedance at 11 MHz and the dark current. The transimpedance is (3.860 +- 0.006) kΩ. I realize that there are not many data points past the dark current but I did not want to take any further data because the light bulb was getting pretty bright. If this is a problem, I can try to redo the measurement using a lens to try to focus more of the light from the bulb onto the photodiode.

I also measured the spectrum and recorded a time series of the RF signal with the light to the photodiode blocked. These measurements do not show any large oscillations like the ones found for POX.

The plots of the measurements are on the wiki at http://lhocds.ligo-wa.caltech.edu:8000/40m/Electronics/POY.

 

  4277   Sun Feb 13 02:33:37 2011 KojiUpdateElectronicsREFL11 Photodiode replaced

Suresh is saying 375mW and 0.375mW. Let's wait for his update of the actual power.

Also he is not using EPICS, there may be the factor of two missing for now.

Quote:

I also checked to see if we have a DC output from the new PD.  With 375mW of 1064nm light incident we have 15mV of output.  Which matches well with the typical Reponsivity of 0.8V/A reported in the datasheet and our REFL11 ckt .  The schematic of the ckt is also attached here for easy reference.  The various factors are

V_dc = 0.375 mW x 0.8 V/A x 10 Ohm x 5 = 15mV

 

  4283   Mon Feb 14 01:40:14 2011 KojiOmnistructureCDSName of the green related channels

I propose to use C1:ALS-xxx_xxx for the names of the green related channels, instead of GCV, GCX, GCY, GFD...

Like C1:SUS or C1:LSC, we name the channels by the subsystems first, then probably we can specify the place.

We can keep the names of the processes as they are now.

  4340   Tue Feb 22 23:40:31 2011 KojiUpdateIOOMC mode mach improvement

As per Kiwamu's request I made a light touch to the input steering and the mode matching lens.

Here V_ref and V_trans are C1:IOO-MC_RFPD_DCMON and C1:IOO-MC_TRANS_SUM, respectively.

Result: Visibility = 1 - V_ref(resonant) / V_ref(anti_reso) = 1 - 0.74 / 5.05 = 85%

What has been done:

  • Alignment of the steering mirrors before and after the last mode matching lens
       V_ref: 2.7 ==> 2.2, V_trans: 34000 ==> 39000
  • Moving of the last mode matching lens away from the MC (+ alignment of the steering mirrors)
       V_ref: 2.2 ==> 0.74, V_trans: 39000 ==> 55000
Attachment 1: IOO_MMT_110222.png
IOO_MMT_110222.png
  4359   Fri Feb 25 14:50:16 2011 KojiSummaryGeneralto do list

- Put priority on the list

- Put names on the items

- Where is the CDS TO DO ==> Joe

-

- Remote disconnection of the greeen PDH 

- What is the situation of the PD DC for the LSC PDs?

- SUS Satelite box Resister replacement ==> Jamie

- IMC mode matching ==> Jamie/Larisa 

- Mechanical shutters everywhere

- SRM OPLEV Connection

- MC OAF

- Better LSC whitening boards

- DAFI 

Quote:
 Anything else ?

  4360   Sat Feb 26 00:25:38 2011 KojiUpdateIOOMC servo improvement

[Rana / Koji]

The MC servo loop has been investigated as the MC servo was not an ideal state.

With the improved situation by us, the attached setting is used for the MC and the FSS.
The current UGF is 24kHz with phase margin is ~15deg, which is unbearably small.
We need to change the phase compensation in the FSS box some time in the next week.


- We found the PD has plenty of 29.5MHz signal in in-lock state. This was fixed by reducing the LO power and the modulation depth.

- The LO power for the MC demodulator was ~6dBm. As this was too high for the demodulator, we have reduced it down to 2dBm
by changing attenuator to 12dB (at 6 oclock of the dial) on the AM stabilization box.

- The RF power on the MC PD was still too high. The PD mush have been saturated. So the modulation slider for 29.5MHz was moved
from 0.0 to 5.0. This reduced the 29.5MHz component. (But eventually Koji restored the modulation depth after the servo shape has been modified.)

- The openloop gain of the loop has been measured using EXC A/TEST1/TEST2. The UGF was ~5kHz with the phase mergin of ~10deg. 

- This quite low phase margin is caused by the fact that the loop has f^-2 shape at around 4k-100kHz. The reference cavity has
the cavity pole of 40kHz or so while the IMC has the pole of ~4kHz. Basically we need phase lead at  around 10-100kHz.

- We decided to turn off (disable) 40:4000 boost of the MC servo to earn some phase. Then MC did not lock. This is because the LF gain was not enough.
So put Kevin's pomona box in the FAST PZT path (1.6:40). By this operation we obtain ~75deg (max) at 560Hz, ~35deg at 5kHz, ~20deg at 10kHz.

- In this setup the UGF is 24kHz. Still the phase margin is ~15kHz. This phase lag might be cause by 1)  the MC servo circut 2) PMC cavity pole

NEXT STEP

- Put/modify phase lead in the FSS box.
- Measure the PMC cavity pole
- Measure and put notch in the PZT path
- Increase the UGF / measure the openloop TF

Attachment 1: fss_servo.png
fss_servo.png
Attachment 2: mc_servo.png
mc_servo.png
  4366   Wed Mar 2 04:01:51 2011 KojiUpdateIOOMC servo improvement

[Koji / Rana]

- Since the MC servo had UGF up to ~20kHz and huge servo bump at 50kHz, we needed more phase between 20kHz to 100kHz.

- Today a phase compensation filter in a Pomona box has been inserted between the MC servo box and the FSS box.
  This is a passive filter with zero@14kHz and pole@140kHz. We obtain ~60deg at around 50kHz.

- After the insertion, the lock of the MC was achieved immediately. The overall gain as well as the PZT fast gain was tweaked
  such that the PC feedback is reduced down to 1~2.

- The OLTF has been measured.
  The insertion of the filter change increased the UGF to 130kHz even with "40:4kHz" and double super boost turned on.

  The phase margin is 54deg. Quite healthy.

- Rana modified the existed Auto Locker script.
  It is now continuously running on op340m!
  We made a couple of testsif it correctly relock the MC and it did. VERY COOL.

-----------------

NEXT STEPS
- Measure the PMC cavity pole
- Measure the circuit TF and try to shave off the phase lag.
- Measure the PZT resonance of the NPRO and put notch in the PZT path
- Increase the UGF / measure the openloop TF

Attachment 1: IMG_3904.jpg
IMG_3904.jpg
Attachment 2: MC_OLTF.pdf
MC_OLTF.pdf
  4399   Thu Mar 10 14:29:05 2011 KojiUpdateGreen LockingIntensity noise limits the beatnote sensitivity

We can modify the freq divider circuit to make it a comparator.

Quote:

The next steps we should do are :

    - to investigate a cause of the intensity fluctuation
          * end green laser
          * suspensions' angular motions
          * doublecheck the RIN contribution if it's from the PSL or the X arm in the beatnote RFPD to make sure the RIN is dominated by the X arm transmitted light
  
    - to think about how to make the system insensitive to the intensity noise
          - bring the beat frequency to the zero cross point of the MFDs ?
          - PLL ?

Quote:

We are limited by the intensity noise of the X arm transmitted green light.

 

  4417   Mon Mar 21 13:26:25 2011 KojiUpdatePSLPMC Trans/RFPDDC

PMC TRANS/REFL on MEDM showed red values for long time.
TRANS (a.k.a C1:PSL-PSL_TRANSPD) was the issue of the EPICS db.

REFL (a.k.a. C1:PSL-PMC_RFPDDC) was not physically connected.
There was an unknown BNC connected to the PMC DC output instead of dedicated SMA cable.
So they were swapped.

Now I run the following commands to change the EPICS thresholds:

ezcawrite C1:PSL-PMC_PMCTRANSPD.LOLO 0.8
ezcawrite C1:PSL-PMC_PMCTRANSPD.LOW 0.85
ezcawrite C1:PSL-PMC_PMCTRANSPD.HIGH 0.95
ezcawrite C1:PSL-PMC_PMCTRANSPD.HIHI 1

ezcawrite C1:PSL-PMC_RFPDDC.HIHI 0.05
ezcawrite C1:PSL-PMC_RFPDDC.HIGH 0.03
ezcawrite C1:PSL-PMC_RFPDDC.LOW 0.0
ezcawrite C1:PSL-PMC_RFPDDC.LOLO 0.0

As these commands only give us the tempolary fix, /cvs/cds/caltech/target/c1psl/psl.db was accordingly modified for the permanent one.

grecord(ai,"C1:PSL-PMC_RFPDDC")
{
        field(DESC,"RFPDDC- RFPD DC output")
        field(DISV,"1")
        field(SCAN,".1 second")
        field(DTYP,"VMIVME-3113")
        field(INP,"#C0 S32 @")
        field(EGUF,"10")
        field(EGUL,"-10")
        field(EGU,"Volts")
        field(PREC,"3")
        field(LOPR,"-10")
        field(HOPR,"10")
        field(AOFF,"0")
        field(LINR,"LINEAR")
        field(LOW,"0.0")
        field(LSV,"MINOR")
        field(LOLO,"0.0")
        field(LLSV,"MAJOR")
        field(HIGH,"0.03")
        field(HSV,"MINOR")
        field(HIHI,"0.05")
        field(HSV,"MAJOR")
}

grecord(ai,"C1:PSL-PMC_PMCTRANSPD")
{
        field(DESC,"PMCTRANSPD- pre-modecleaner transmitted light")
        field(DISV,"1")
        field(SCAN,".1 second")
        field(DTYP,"VMIVME-3123")
        field(INP,"#C0 S10 @")
        field(EGUF,"10")
        field(EGUL,"-10")
        field(EGU,"volts")
        field(PREC,"3")
        field(LINR,"LINEAR")
        field(HOPR,"10")
        field(LOPR,"-10")
        field(AOFF,"0")
        field(LOW,"0.8")
        field(LSV,"MINOR")
        field(LOLO,"0.85")
        field(LLSV,"MAJOR")
        field(HIGH,"0.95")
        field(HSV,"MINOR")
        field(HIHI,"1.00")
        field(HSV,"MAJOR")
}

ELOG V3.1.3-