40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 233 of 341  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  3398   Wed Aug 11 12:58:56 2010 JennaUpdateElectronicsRubidium clock phase noise

I took some measurements of the clock this morning, first without the box, then with the box, then without the box again. All the noise levels look pretty much the same. When I first put the box on, it was only propped up on one side, so I think the clocks got a bit overheated and the data looks ridiculous, which is the first plot. I took it off and let them cool down a bit, and then put the box on, this time with a generous 3 inch gap at the bottom all the way around, and it seemed to be fine after that.

The calibration for the data is pi (rad) /6415 (counts) /100.

Aidan: I edited this post to change the plots from Postscripts to PDFs.

Attachment 1: 08_11_Rb_crazybox.pdf
08_11_Rb_crazybox.pdf
Attachment 2: 08_11_Rb_comparison.pdf
08_11_Rb_comparison.pdf
  3400   Wed Aug 11 15:27:16 2010 JennaUpdateElectronicsRubidium clock phase noise

We unsynched the clocks by unhooking the 1pps locking. I've added it to the plot of the other measurements here, and we've divided by a factor of sqrt(2) in the calibration to get the phase noise from just one clock, so the calibration is now

pi (rad) /6415 (counts) /100/sqrt(2).

I've also added the noise of the clock according to SRS to the plot.

The units of this plot are rad/rt(Hz). I've no idea why it just says magnitude.

Attachment 1: 08_11_Rb_withspec.pdf
08_11_Rb_withspec.pdf
  3402   Wed Aug 11 16:38:02 2010 JennaUpdateElectronicsRubidium clock phase noise

Quote:

The units of this plot are rad/rt(Hz). I've no idea why it just says magnitude.

 This is a known thing (at least to me and Rana), so it's not just you.  When you put in some points like your PD Spec, the units disappear, and I've never figured out how to get them back while keeping the points.  Thanks for putting the units in your entry though.  If anyone else does know how to get the units to 'stick' where they're supposed to be, that would be helpful. 

  3409   Thu Aug 12 16:18:00 2010 JennaUpdateElectronicsRb clocks overnight

I took a look at the data from the middle of the night to see if it was significantly quieter than the data from the day, but it doesn't seem to be. The plot shows data from yesterday around 12:30pm and from this morning around 2am. It's a bit quieter at low frequencies, but not by much.

Attachment 1: rbcomp.pdf
rbcomp.pdf
  3423   Fri Aug 13 20:58:20 2010 JennaSummaryElectronicsRubidium clock phase noise measurement

 Here's an overview of the rubidium measurement:

rubidium_diagram.png

HPIM3871.JPG

 

HPIM3880.JPG

 We have two SRS FS275 Rubidium clocks which are locked together using the built-in PLL through the 1pps input/output. The default time constant for this locking is 18.2 hours because it's designed to be locked to a GPS. We changed this time constant to .57 hours (as decribed in this elog entry) to get the clocks to more reliably lock to each other. We then mix the 10MHz outputs together using a 7dbm mixer (see elog here and picture below)

HPIM3872.JPG

 

The signal then goes through an AC-coupled SR560 with a gain of 100 and LPF at 10kHz, and is then fed into the DAQ. In the first picture below you can make out what all the lights are labeled, and in the second you can see what lights are on. I couldn't get a picture that did both in one, sadly.

HPIM3878.JPG

HPIM3876.JPG

  3450   Fri Aug 20 16:41:43 2010 AlbertoUpdateElectronicsFrequency Generation Box Assembly Completed

I finished assembling the frequency generation unit for the upgrade. I tested it through to check that the power levels are as expected at the various connection (see attached png, showing in black the design power values, and in red the measured ones).

Because of some modifications made on the design along the construction, I have to recalculate the SNR along the lines.

I can now start to measure phase noise and distortion harmonics.

A document with a description of the design and the results of the characterization measurements will be available in the end.

 

Attachment 1: RFplan_6_measured_powers.png
RFplan_6_measured_powers.png
Attachment 2: DSC_2409.JPG
DSC_2409.JPG
Attachment 3: DSC_2413.JPG
DSC_2413.JPG
Attachment 4: DSC_2414.JPG
DSC_2414.JPG
Attachment 5: DSC_2415.JPG
DSC_2415.JPG
Attachment 6: DSC_2417.JPG
DSC_2417.JPG
Attachment 7: DSC_2419.JPG
DSC_2419.JPG
  3484   Sat Aug 28 08:17:51 2010 AbertoUpdateElectronicsFSS Frequency Generation Box under test

I've taken the FSS frequency generation box out of the 1Y1 rack. It's sitting on one of the electronics benches. I'm measuring its phase noise.

  3499   Tue Aug 31 17:58:38 2010 AlbertoUpdateElectronicsFSS Frequency Generation Box - Phase Noise

A few weeks ago, on Jul 24, Rana and I measured the phase noise of the FSS frequency box (aka the 'Kalmus Box'). See elog entry 3286.

That time, for some reason, we measured a phase noise higher than we expected; higher than that of the Marconi.

I repeated the measurement today using the SR785 spectrum analyzer. Here is the result:

2010-08-31_FSSPhaseNoise04modified.png

(The measurement of July 24 on the plot was not corrected for the loop gain. The UGF was at about 30 Hz)

To make sure that my measurement procedure was correct, I also measured the combined phase noise of two Marconis. I then confirmed the consistency of that with what already measured by other people in the past (i.e. Rana elog entry 823 in the ATF elog).

This time the noise seemed reasonable; closer to the Marconi's phase noise, as we would expect. I don't know why it was so bad on July 24.

The shoulder in the Marconi-to-Marconi measurement between 80Hz and 800Hz is probably due to the phase noise of the other Marconi, the one used as LO.

I'm going to repeat the measurement connecting the setup to the DAQ, and locking the Marconi to the Rubidium standard.

Ultimately, the goal is to measure the phase noise of the new Sideband Frequency Generation Box of the 40m Upgrade.

  3501   Wed Sep 1 07:52:27 2010 AlbertoConfigurationElectronicsPMC board unplugged, turned on Sorensen switches on 1Y1 rack

Today I put the FSS frequency box back into the 1Y1 rack.

To power it on, I turned on the 24V and 15V Sorensen switches in the same rack.

The PMC crystal board in the same rack should not be affected (it runs with 10V), but, to make sure it was not powered, I disconnected it from its crate. Since the board was disconnected from the EOM for the PSL table's upgrade, I wanted to avoid having the RF output floating.

We just have to remember to plug it back in, when we need it again.

  3504   Wed Sep 1 08:40:28 2010 AlbertoConfigurationElectronicsPMC board unplugged, turned on Sorensen switches on 1Y1 rack

Quote:

Today I put the FSS frequency box back into the 1Y1 rack.

To power it on, I turned on the 24V and 15V Sorensen switches in the same rack.

The PMC crystal board in the same rack should not be affected (it runs with 10V), but, to make sure it was not powered, I disconnected it from its crate. Since the board was disconnected from the EOM for the PSL table's upgrade, I wanted to avoid having the RF output floating.

We just have to remember to plug it back in, when we need it again.

 I just turned on the other Sorensen's too in 1Y1.

  3506   Wed Sep 1 11:34:39 2010 AlbertoUpdateElectronicsFSS Box Phase Noise from DAQ

I measured the phase noise of the LO output of the FSS box from the DAQ. I'm attaching the results.

As we expected, the measurement is limited by the internal phase noise of the Marconi.

2010-09-01_FSSPhaseNoise.png

The measurement was done as shown in this diagram.

2010-09-01_FSSphaseNoiseMeasurementSetup.png

  3508   Wed Sep 1 12:34:14 2010 ranaUpdateElectronicsFSS Box Phase Noise from DAQ

The differences between this setup and the one used previously is the lack of the 50 Ohm terminator in the mixer output and

that the SR560 readout with the G=100 should come before the first SR560 via T, so as not to be spoiled by the high noise of the G=1 SR560.

  3509   Wed Sep 1 16:29:28 2010 AlbertoUpdateElectronicsFSS Box Phase Noise from DAQ - Measurement setup modified

Quote:

The differences between this setup and the one used previously is the lack of the 50 Ohm terminator in the mixer output and

that the SR560 readout with the G=100 should come before the first SR560 via T, so as not to be spoiled by the high noise of the G=1 SR560.

I removed the 50 Ohm in-line terminator when I did the measurement with the SR785. The for some reason I was getting more noise, so I removed it.

Now I put it back in and I did the measurement with the DAQ. I also moved the SR560 that amplifies the signal for the DAQ, Tee'ing it with the input of the in-loop SR560.

Now the setup looks like this:

FSSphaseNoiseMeasurementSetup02.png

And the phase noise that I measure is this:

2010-09-01_FSSPhaseNoise_DAQ_02.png

Comparing it with the phase noise measured with the previous setup (see entry 3506), you can see that the noise effectively is reduced by about a factor of 2 above 10 Hz.

2010-09-01_FSSPhaseNoise_DAQ_00-02_comparison.png

  3510   Wed Sep 1 17:17:42 2010 ranaUpdateElectronicsFSS Box Phase Noise from DAQ - Measurement setup modified

With the setup now working, we should now test the power filtering for the crystal and amplifier.

  3520   Fri Sep 3 11:03:41 2010 AlbertoFrogsElectronicsCable cutting tools

I found this very interesting German maker of cool cable cutting tools. It's called Jokari.

We should keep it as a reference for the future if we want to buy something like that, ie RF coax cable cutting knives.

http://www.jokari.de/en.htm

  3522   Fri Sep 3 13:04:30 2010 KojiFrogsElectronicsCable cutting tools

Yeah, this looks nice.

And I also like to have something I have attached. This is "HOZAN P-90", but we should investigate American ones
so that we can cut the wires classified by AWG.

Quote:

I found this very interesting German maker of cool cable cutting tools. It's called Jokari.

We should keep it as a reference for the future if we want to buy something like that, ie RF coax cable cutting knives.

http://www.jokari.de/en.htm

 

Attachment 1: P90.jpg
P90.jpg
  3529   Mon Sep 6 22:09:11 2010 AlbertoUpdateElectronicsRF Frequency Generation Box heat sink installed and tested

Last week I noticed that the high power amplifiers in the Frequency Generation Box became hot after 2 hours of continuous operation with the lid of the box closed. When I measured their temperature it was 57C, and it was still slowly increasing (~< 1K/hr).
According to the data sheet, their maximum recommended temperature is 65C. Above that their performances are not guaranteed anymore.

These amplifiers aren't properly dissipating the heat they produce since they sit on a plastic surface (Teflon), and also because their wing heat dissipator can't do much when the box is closed. I had to come up with some way to take out their heat.
The solution that I used for the voltage regulators (installing them on the back panel, guaranteeing thermal conduction but electrical isolation at the same time) wouldn't be applicable to the amplifiers.

I discussed the problem with Steve and Koji and we thought of building a heat sink that would put the amplifier in direct contact with the metal walls of the box.
After that, on Friday I've got Mike of the machine shop next door to make me this kind of L-shaped copper heat sink:

DSC_2467.JPG

On Saturday, I completely removed the wing heat dissipator, and I only installed the copper heat sink on top of the amplifier. I used thermal paste at the interface.

DSC_2433.JPG
I turned on the power, left the lid open and monitored the temperature again. After 2 hours the temperature of the amplifier had stabilized at 47C.

Today I added the wing dissipator too, and monitored again the temperature with the lid open. then, after a few hours, I closed the the box.
I tracked the temperature of the amplifier using the temperature sensors that I installed in the box and which I have attached to the heat sink.
I connected the box temperature output to C1:IOO-MC_DRUM1. With the calibration of the channel (32250 Counts/Volt), and Caryn's calibration of the temperature sensor (~110F/Volt - see LIGO DOC # T0900287-00-R), the trend that I measured was this:

2010-09-06_FreqBoxAmplifierTemperatureTrend.png

Conclusion
The heat sink is avoiding the amplifier to overheat. The temperature is now compatible with that of the other component in the box (i.e., crystal oscilaltors, frequency multiplier).
Even with the lid closed the temperature is not too high.

Two things remain untested yet:
1) effect of adding a MICA interface sheet between the heat sink and the wall of the chassis. (necessary for gorund isolation)
2) effect of having all 3 amplifiers on at the same time

I am considering opening air circulation "gills" on the side and bottom of the chassis.

Also we might leave the box open and who ever wants can re- engineer the heat sink.

For posterity.
- Ideally we would like that the heat sink had the largest section area. A brick of metal on top the amplifier would be more effective. Although it would have added several pounds to the weight of the box.
- We need these amplifiers in order to have the capability to change the modulation depth up to 0.2, at least. The Mini-Circuit ZHL-2X-S are the only one available off-the-shelf, with a sufficiently low noise figure, and sufficiently high output power.

  3530   Tue Sep 7 08:56:00 2010 AlbertoUpdateElectronicsFrequency Generation Box Assembly - Phase Noise Measurements

Here are the results of my phase noise measurements on the 7 outputs of the Frequency Generation Box. (BIN=95L applied by DTT). See attached pdf for a higher definition picture.

2010-09-03_FreqBoxPhaseNoise_AllOutputsComparison_smooth.png

The plot shows that the phase noise of the 11 MHz outputs (Source, EOM modulation signal, Demodulation signal) is as low as that of the Marconi. The Marconi is limiting my measurement's resolution.

The mode cleaner signal's oscillator (29.5 MHz output, blue trace) is higher than the 11MHz above 1KHz.

The 55MHz signals have all the same phase noise (traces overlapped), and that is higher than the 11 MHz ones from about 100Hz up. i don't know what's going on.

I need to use the spare 11MHz Wenzel crsytal to have a better reference source for the measurement.

Attachment 2: 2010-09-03_FreqBoxPhaseNoise_AllOutputsComparison_smooth.pdf
2010-09-03_FreqBoxPhaseNoise_AllOutputsComparison_smooth.pdf
  3532   Tue Sep 7 13:31:49 2010 AlbertoUpdateElectronicsRF System - Frequency Distribution Box - Priority Plan

We need a distribution unit in the LSC rack to: 1) collect the demod signals coming from the Frequency Generation Box 2) adjust the power level 3) generate 2nd harmonics (for POP) 4) distribute the demod signals to the single demodulation boards.

The base line plan is the following:

Visio-RFsystem_plan_distributiont.png

The box can be build up gradually, but the priority goes to these parts:

 RFsystem_plant_distribution_priority.png

I need help for this work. I know exactly how to do it, I just don't have the time to do it all by myself.

 Besides the Distribution Box, the demodulation part of the upgrade would still require two steps:

1) upgrade the Band Pass Filters of the demodulation boards (I have all the parts)

2) cabling from the distribution box to the demod board (one-afternoon kind of job)

  3552   Thu Sep 9 12:02:03 2010 AlbertoUpdateElectronicsFrequency Generation Box - Amplitude Noise Measurements

I measured the amplitude noise of the source outputs and the EOM outputs of the Frequency Generation box.

the setup I used is shown in this diagram:

FreqBoxAmplitudeNoiseMeasurementSetup.png

(NB It's important that the cables from the splitter to the RF and LO inputs of the mixers are the same length).

The results of the measurements are shown in the following plot:

 FreqBoxAmplitudeNoise_BusbyBox_AllChannels.png

Considerations:

1) both Crystals (29.5MHz and 11MHz) have the same noise

2) the 55MHz source's noise is bigger than the 11 MHz (~2x): the frequency multiplication and amplification that happen before it, add extra noise

3) the noise at EOM outputs is ~2x bigger than that of the relative sources

 

When I have the chance, I'll plot the results of my calculations of expected noise and compare them with the measurements.

  3555   Thu Sep 9 18:53:56 2010 AlbertoConfigurationElectronicsBusby Box, Rai's Box, SR554 in the RF cabinet

I stored the Busby Box, the Rai's Box and the SR554 preamp in the RF cabinet down the Y arm.

  3565   Mon Sep 13 11:40:50 2010 AlbertoUpdateElectronicsFrequency Box Documentation Added to the SVN

I uploaded all the material about the RF frequency Generation Box into the SVN under the path:

https://nodus.ligo.caltech.edu:30889/svn/trunk/docs/upgrade08/RFsystem/frequencyGenerationBox/

I structured the directory as shown in this tree:

freqBoxSVNdierctoryStructure.png

I'm quickly describing in a section of the Rf system upgrade document with LIGO # T1000461.

  3572   Tue Sep 14 18:07:41 2010 AlbertoUpdateElectronicsFrequency Box Documentation Added to the SVN

I completed a LIGO document describing design, construction and characterization of the RF System for the 40m upgrade.

It is available on the SVN under https://nodus.ligo.caltech.edu:30889/svn/trunk/docs/upgrade08/RFsystem/RFsystemDocument/

It can also be found on the 40m wiki (http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/RF_System#preview), and DCC under the number T1000461.

  3596   Thu Sep 23 02:23:04 2010 koji,taraSummaryElectronicsTesting new TTFSS

I tested the new table top frequency stabilization system(TTFSS),
I haven’t finished it yet, and accidentally fried one amplifier in the circuit.

We received three sets of a new TTFSS system which will replace the current FSS.
It needs to be checked that the system works as specified before we can use it.

- Result

I followed the instruction written on E10000405-v1
The first test inspected how much the currents were drawn from the +/- 24 V power supply.
+24 V drew 350 mA and -24 V drew 160 mA as shown on pwr supply’s current monitor.
They exceeded the specified value which was 200 +/- 20 mA, but nothing went wrong during the test.
Nothing got overheated, all voltage outputs were correct so I proceeded.
I have gone down the list to 6, and everything works as specified.

- Correcting the document for the test procedure

I found a few errors on the instruction document. I’ll notify the author tomorrow.

- How GVA-81 amplifier on D0901894 rev A got fried

During the test, I used a mirror on a stick that looked like a dental tool to see under the board.
Unfortunately, the steel edge touched a board and caused a spark. The voltage on -24 dropped to -16.
I think this happened because the pwr supply tried to decrease the current from shorted circuit,
as I shorted it only short time ( a blink of an eye), it could not reduce the voltage to zero.
When I was checking the power supply and about to adjust the voltage back to the right value
(about 4-5 seconds after the spark,) smoke came out of the circuit.

Koji investigated the circuit and found that a GVA 81 amplifier was broken.

This was checked by applying 5V to the amp, and slightly increasing the current.
The voltage dropped to zero as the amp was broken, so its circuit was shorted.

I’ll see if I can replace this at EE lab at Downs.
If I cannot find a spare one, I’ll replace it with a resistor and resume the test procedure.
Because it amplifies LO signal, which won’t be used during the test.

  3604   Fri Sep 24 00:56:35 2010 koji, taraUpdateElectronicstesting TTFSS

We found that a transistor was broken from yesterday spark too. We partially fixed TTFSS, and it should be enough for  testing purpose.

 

From yesterday test, we found that the RF amplifier for LO signal was broken. There was no spare at the electronic shop at Downs,

so we shorted the circuit for now.  Another part which was broken too was a transistor, Q3 PZT2222A, on D0901846.

It was removed and two connections, which are for Q3's 1 and 3 legs, are shorted. Now the voltages out from the regulators are back to normal.

 

We are checking a MAX333A switch, U6A on D0901894. it seems that the voltage that controls the switch disappears.

There might be a bad connection somewhere. This will be investigated next.

  3607   Fri Sep 24 23:47:10 2010 koji, taraUpdateElectronicstesting TTFSS

  Q3, a PZT2222A transistor, on D0901846 is replaced by a GE-82. However, the board is still not fully function.

 

Since Q3, PZT2222A, was broken, I went to Wilson house and got some SP3904's for replacement. But somehow, I broke it during

installation, and did not notice it, and resumed the test. When I got to test 8 on the list, the TTFSS did not work as specified.

Koji checked and found out that -15V, Nref, Vref voltages output did not work correctly. So the SP3904 I installed was removed

and replaced with another SP3904 by Koji, and Vref is working. 

Q4 transistor is broken as well and it was replaced by GE 82.

Q1 might be broken too since -15V out is not working.

I'll go to Wilson house to get more transistors next week.

 

After the broken parts have been replaced, I have to make sure that I separate the power supply board from the rest of the circuit and

check if all V outputs are  working, then reconnect the board and check if the current input is reasonable before resume the test.

I hope the wrong input voltage problem today wouldn't damage anything else.

 

  3608   Sat Sep 25 19:01:13 2010 KojiUpdateElectronicstesting TTFSS

How much current do you need for each voltages?

GE-82 was the only PNP transister I could find in the lab. It's too old but we just like to confirm any other components are still functioning.

Similarly, we can confirm the functionality of the other components by skipping those current boost transisters,
if we don't need more than 30mA.

 

  3617   Tue Sep 28 21:11:52 2010 koji, taraUpdateElectronicsFixing the new TTFSS

We found a small PCB defect which is an excess copper shorting circuit on the daughter board,

it was removed and the signal on mixer monitor path is working properly.

 

 We were checking the new TTFSS upto test 10a on the instruction, E1000405 -V1. There was no signal at MIXER mon channel.

It turned out that U3 OpAmp on the daughter board, D040424, was not working because the circuit path for leg 15 was shorted

because of the board's defect. We can see from fig1 that the contact for the OpAmp's leg (2nd from left) touches ground.

We used a knife to scrap it out, see fig 2, and now this part is working properly.

 

Attachment 1: before.jpg
before.jpg
Attachment 2: after.jpg
after.jpg
Attachment 3: before.jpg
before.jpg
Attachment 4: after.jpg
after.jpg
  3655   Tue Oct 5 18:27:18 2010 Joonho LeeSummaryElectronicsCCD cable's impedence

Today I checked the CCD cables which is connected to the VIDEOMUX.

17 cables are type of RG59, 8 cables are type of RG58. I have not figured out the type of other cables(23 cables) yet.

The reason I am checking the cables is for replacing the cables with impedance of 50 or 52 ohm by those with impedance of 75 ohm.

After I figures out which cable has not proper impedance, I will make new cables and substitute them in order to match the impedance, which would lead to better VIDEO signal.

To check the impedance of each CCD cable, I went to the VIDEOMUX and looked for the label on the cable's surface.

Type of RG59 is designated to the cable of impedance 75ohm. I wrote down each cable's input or output channel number with observation(whether it is of type RG59 or not).

The result of observation is as follows.

Type channel number where it is connected to
Type 59 in#2, in#11, in#12, in#15, in#18, in#19, in#22, in#26, out#3, out#4, out#11, out#12, out#14, out#17, out#18, out#20, out#21
Type 58 in#17, in#23, in#24, in#25, out#2, out#5, out#7, out#19
unknown type others

 

For 23 cables that I have not figured out their type, cables are too entangled so it is limited to look for the label along each cable.

I will try to figure out more tomorrow. Any suggestion would be really appreciated.

  3694   Mon Oct 11 23:55:25 2010 Joonho LeeSummaryElectronicsCCD cables for output signal

Today I checked all the CCD cables which is connected output channels of the VIDEOMUX.

Among total 22 cables for output, 18 cables are type of RG59, 4 cables are type of RG58.

The reason I am checking the cables is for replacing the cables with impedance of 50 or 52 ohm by those with impedance of 75 ohm.

After I figures out which cable has not proper impedance, I will make new cables and substitute them in order to match the impedance, which would lead to better VIDEO signal.

 

Today, I labeled all cables connected to output channels of VIDEO MUX and disconnect all of them since last time it was hard to check every cable because of cables too entangled.

With thankful help by Yuta, I also checked which output channel is sending signal to which monitor while I was disconnecting cables.

Then I checked the types of all cables and existing label which might designate where each cable is connected to.

After I finished the check, I reconnected all cables into the output channel which each of cable was connected to before I disconnected.

 

4 cables out of 22 are type of RG58 so expected to be replace with cable of type RG59.

The result of observation is as follows. 

Ch#
where its signal is sent type
1 unknown 59
2 Monitor#2  58
3 Monitor#3 59
4 Monitor#4 59
5 Monitor#5 58
6 Monitor#6 59
7 Monitor#7 58
8 unknown / labeled as "PSL output monitor" 59
9 Monitor#9 59
10 Monitor#10 59
11 Monitor#11 59
12 Monitor#12 59
13 Unknown 59
14 Monitor#14 59
15 Monitor#15 59
16 unknown / labeled as "10" 59
17 unknown 59
18 unknown / labeled as "3B" 59
19 unknown / labeled as "MON6 IR19" 58
20 unknown 59
21 unknown 59
22 unknown 59

I could not figure out where 10 cables are sending their signals to. They are not connected to monitor turned on in control room

so I guess they are connected to monitors located inside the lab. I will check these unknown cables when I check the unknown input cables.

Next time, I will check out cables which is connected to input channels of VIDEIO MUX. Any suggestion would be really appreciated.

  3739   Mon Oct 18 22:11:32 2010 Joonho LeeSummaryElectronicsCCD cables for input signal

Today I checked all the CCD cables which is connected input channels of the VIDEOMUX.

Among total 25 cables for output, 12 cables are type of RG59, 4 cables are type of RG58, and 9 cables are of unknown type.

The reason I am checking the cables is for replacing the cables with impedance of 50 or 52 ohm by those with impedance of 75 ohm.

After I figures out which cable has not proper impedance, I will make new cables and substitute them in order to match the impedance, which would lead to better VIDEO signal.

 

Today, I check the cables in similar way as I did the last time.

I labeled all cables connected to input channels of VIDEO MUX and disconnect all of them since last time it was hard to check every cable because of cables too entangled.

Then I checked the types of all cables and existing label which might designate where each cable is connected to.

After I finished the check, I reconnected all cables into the input channel which each of cable was connected to before I disconnected.

 

4 cables out of 25 are type of RG58 so expected to be replace with cable of type RG59.

9 cables out of 25 are of unknown type. These nine cables are all orange-colored thick cables which do not have any label about the cable characteristic on the surface.

The result of observation is as follows.

Note that type 'TBD-1' is used for the orange colored cables because all of them look like the same type of cable.

 

Channel number where its signal is coming type
1 C1:IO-VIDEO 1 MC2 TBD-1
2 FI CAMERA 59
3 PSL OUTPUT CAMERA 59
4 BS  C:1O-VIDEO 4 TBD-1
5 MC1&3 C:1O-VIDEO 5 59
6 ITMX C:1O-VIDEO 6 TBD-1
7 C1:IO-VIDEO 7 ITMY TBD-1
8 C1:IO-VIDEO 8 ETMX TBD-1
9 C1:IO-VIDEO 9 ETMY TBD-1
10 No cable is connected
(spare channel)
 
11 C1:IO-VIDEO 11 RCR 59
12 C1:IO-VIDEO RCT 59
13 MCR VIDEO 59
14 C1:IO-VIDEO 14 PMCT 59
15 VIDEO 15 PSL IOO(OR IOC) 59
16 C1:IO-VIDEO 16 IMCT TBD-1
17 PSL CAMERA 58
18 C1:IO-VIDEO 18 IMCR 59
19 C1:IO-VIDEO 19 SPS 59
20 C1:IO-VIDEO 20 BSPO TBD-1
21 C1:IO-VIDEO 21 ITMXPO TBD-1
22 C1:IO-VIDEO 22 APS1 59
23 ETMX-T 58
24 ETMY-T 58
25 POY CCD VIDEO CH25 58
26 OMC-V 59

Today I could not figure out what impedance the TBD-1 type(unknown type) has.

Next time, I will check out the orange-colored cables' impedance directly and find where the unknown output signal is sent. Any suggestion would be really appreciated.

  3740   Tue Oct 19 00:24:07 2010 DmassOmnistructureElectronicsMassive restocking of the 40m

I had a number of delinquent items on the sign out list from the 40m. I returned about half, and ordered replacements for most of the other half.

I put the photodiodes on the SP table, and the 560 on the electronics  bench.

  3762   Fri Oct 22 16:59:21 2010 JenneUpdateElectronicsEpic Takeover

As the suspension work winds down (we'll be completely done once the ETMs arrive, are suspended, and then are placed in the chambers), I'm going to start working on the RF system. 

Step 1: Figure out what Alberto has been up to the last few months.

Step 2: Figure out what still needs doing.

Step 3: Complete all the items listed out in step 2.

Step 4: Make sure it all works.

Right now I'm just starting steps 1 & 2.  I've made myself a handy-dandy wiki checklist: RF Checklist.  Hopefully all of the bits and pieces that need doing will be put here, and then I can start checking them off. Suggestions and additions to the list are welcome.

  3764   Fri Oct 22 18:22:27 2010 AlbertoUpdateElectronicsEpic Takeover

Quote:

As the suspension work winds down (we'll be completely done once the ETMs arrive, are suspended, and then are placed in the chambers), I'm going to start working on the RF system. 

Step 1: Figure out what Alberto has been up to the last few months.

Step 2: Figure out what still needs doing.

Step 3: Complete all the items listed out in step 2.

Step 4: Make sure it all works.

Right now I'm just starting steps 1 & 2.  I've made myself a handy-dandy wiki checklist: RF Checklist.  Hopefully all of the bits and pieces that need doing will be put here, and then I can start checking them off. Suggestions and additions to the list are welcome.

 There's also a page dedicated to the progress in the PD upgrade process:

http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/RF_System/Upgraded_RF_Photodiodes

There you can find a pdf document with my notes on that.

  3773   Sun Oct 24 19:55:50 2010 kiwamuUpdateElectronicslonely RF amplifier on ITMX table
(Rana, Kiwamu)

Last Friday we found a lonely RF amplifier ZHL-3A on the ITMX table.
When we found him we were very sad because he's been setup unacceptably


For example, the signal input was disconnected although a 24V DC was still applied. So he has been making just a heat for a long time.
The power connector was a BNC style which is not official way.
The leg of a decoupling capacitor attached to the DC connector was apparently broken and etc,..

We salvaged him and then cleaned up those cables and the DC power supply.

We don't say like 'don't make a temporary setup', but please clean up them after finishing the work every time.
  3782   Tue Oct 26 01:53:21 2010 Joonho LeeUpdateElectronicsFuction Generator removed.

Today I worked on how to measure cable impedance directly.

In order to measure the impedance in RF range, I used a function generator which could generate 50MHz signal and was initially connected to the table on the right of the decks.

The reason I am checking the cables is for replacing the cables with impedance of 50 or 52 ohm by those with impedance of 75 ohm.

After I figures out which cable has not proper impedance, I will make new cables and substitute them in order to match the impedance, which would lead to better VIDEO signal.

 

To test the VIDEO cables, I need a function generator generating signal of frequency 50 MHz.

In the deck on the right of PSL table, there was only one such generator which was connected to the table on the right of the deck.

Therefore, I disconnected it from the cable and took it to the control room to use it because Rana said it was not used.

Then, I tired to find on how to measure the impedance of cable directly but I did not finish yet.

When I finished today works, I put the generator back to the deck but I did not connect to the previous cable which was initially connected to the generator.

 

Next time, I will finish the practical method of measuring the cable impedance then I will measure the cables with unknown impedance.

Any suggestion would be appreciated.

  3792   Wed Oct 27 09:02:29 2010 steveUpdateElectronicsHP4195A is NOT fixed

www.avalontest.com has fixed the 25MHz oscillation.  Contact: Jim Burnham 760-536-0191

Actually, NOT FIXED.

  3812   Thu Oct 28 19:10:26 2010 taraUpdateElectronicsTTFSS for 40m

I keep a set of new TTFSS for 40m in electronic cabinet along the North arm.

The set number is #6. It is working and has not been modified by me.

Other two sets,# 5 and #7, are kept at PSL lab.

  3858   Wed Nov 3 23:58:45 2010 ranaUpdateElectronicsCougars

I looked at this web page: http://www.teledyne-cougar.com/Index.asp for the RF company that Rich has recently started using.

There are ~15 amplifiers that they sell which have a NF < 2 dB and work in the 10-100 MHz band. We should call them to find out if they will package some amps for us or at least sell us a few with eval. boards so that we can make our own.

  3871   Fri Nov 5 19:33:18 2010 JenneUpdateElectronicsThe beginnings of the new phase of the RF work

Joon Ho and I took a look at the RF stuff that Alberto left, and we determined that we've got most everything that we need.  On Monday, Joon Ho will list off the stuff that we're missing, and we'll have Steve order it.

Joon Ho also replaced the temporary front panel to the RF generation box with Alberto's fancy new panel.  Pics are here (although you have to sign in as foteee to see them). 

Work on the frequency distribution box will continue on Monday.

  3890   Thu Nov 11 02:17:27 2010 KevinUpdateElectronicsREFL11 Photodiode Not Working

[Koji and Kevin]

I was trying to characterize the REFL11 photodiode by shining a flashlight on the photodiode and measuring the DC voltage with an oscilloscope and the RF voltage with a spectrum analyzer. At first, I had the photodiode voltage supplied incorrectly with 15V between the +15 and -15 terminals. After correcting this error, and checking that the power was supplied correctly to the board, no voltage could be seen when light was incident on the photodiode.

We looked at the REFL55 photodiode and could see ~200 mV of DC voltage when shining a light on it but could not see any signal at 55 MHz. If the value of 50 ohm DC transimpedance is correct, this should be enough to see an RF signal. Tomorrow, we will look into fixing the REFL11 photodiode.

  3893   Thu Nov 11 07:26:03 2010 AlbertoUpdateElectronicsREFL11 Photodiode Not Working

Quote:

[Koji and Kevin]

I was trying to characterize the REFL11 photodiode by shining a flashlight on the photodiode and measuring the DC voltage with an oscilloscope and the RF voltage with a spectrum analyzer. At first, I had the photodiode voltage supplied incorrectly with 15V between the +15 and -15 terminals. After correcting this error, and checking that the power was supplied correctly to the board, no voltage could be seen when light was incident on the photodiode.

We looked at the REFL55 photodiode and could see ~200 mV of DC voltage when shining a light on it but could not see any signal at 55 MHz. If the value of 50 ohm DC transimpedance is correct, this should be enough to see an RF signal. Tomorrow, we will look into fixing the REFL11 photodiode.

I just wanted to remind you that the most up to date resource about the RF system upgrade, including photodiodes, is the SVN.

https://nodus.ligo.caltech.edu:30889/svn/trunk/alberto/40mUpgrade/RFsystem/

There you can find everything: measurements, schematics, matlab scripts to plot and fit, etc. Poke around it to find what you need.
For instance, the schematic of the modified REFL11 photodiode is at:

https://nodus.ligo.caltech.edu:30889/svn/trunk/alberto/40mUpgrade/RFsystem/RFPDs/REFL11/REFL11Schematics/40mUpgradeREFL11schematic.pdf

Because I was doing new things all the time, the wiki is not up to date. But the SVN has all I've got.

  3904   Fri Nov 12 02:51:20 2010 KevinUpdateElectronicsPhotodiode Testing

[Jenne and Kevin]

I started testing the REFL55 photodiode. With a light bulb, I saw ~270 mV of DC voltage from the photodiode but still could not see any RF signal. I connected the RF out from the spectrum analyzer to the test input and verified that the circuit was working.

I then set up the AM laser and looked at the laser light with REFL11 and an 1811 photodiode. I was able to see an RF signal and verified that the resonant frequency is 55 MHz.

The current setup is not very reliable because the laser is not mounted rigidly. Next, I will work on making this mounting more reliable and will continue to work on finding an RF signal with a flashlight.

  3911   Fri Nov 12 20:40:51 2010 josephb, yuta, valeraConfigurationElectronicsAA voltage range

We changed the range of the two SUS AA boards in the corner from +/-2 V to +/-10 V by changing the supply voltage from +/-5 V to +/-15 V. The change was made by switching the AA power feed wires on  the cross connect. The max supply according to the spec of DRV134/INA134 is +/-18 V.

We checked the new range by applying the voltage to the input of AA and measuring the output going to the ADCs. The local damping MC1,2,3 appears to work.

  3913   Sat Nov 13 16:57:21 2010 valeraConfigurationElectronicsPRM Side OSEM transimpedance change

Now that we have increased the range of the AA to +/- 10 V I have increased the PRM side OSEM transimpedance from 29 kV/A to 161 kV/A by changing the R64 in the satellite box. The first attached plot shows the ADC input spectrum before and after the change with analog whitening turned off. The PD voltage readback went up from 0.75 to 4.2 V. The second attached plot shows the sensor, ADC, and projected shot noise with analog whitening turned on and compensated digitally. The ADC calibration is 20 V/ 32768 cts. The PRM damping loops are currently disabled.

I checked for oscillation by looking at the monitor point at the whitening board. There was no obvious oscillation on a scope - the signal was 20 mV p-p on 1 us scale which was very similar to the LL channel.

Attachment 1: PRM-SD-ADC.pdf
PRM-SD-ADC.pdf
Attachment 2: PRM-SD-Current.pdf
PRM-SD-Current.pdf
  3916   Sun Nov 14 16:26:31 2010 jenne, valeraUpdateElectronicsSRM side OSEM noise with no magnet

We realized that the SRM sensors are connected to the readout but just sitting on the BS in vacuum table with no magnets and therefore no shadows in them. We swapped the inputs to the SRM and PRM satellite boxes to use the higher transimpedance gain of the PRM side sensor. The attached plot shows the current spectrum in this configuration. The PD readback voltage was 9.5 V. Since this is close to the rail we put a slightly higher voltage into the AA of this channel to test that we can read out more ADC counts to make sure we are not saturating. The margin was 15800 vs 15400 counts with p-p of 5 counts on the dataviewer 1 second trend. We returned all cables to nominal configuration.

The calibration from A to m is 59 uA/1 mm.

Attachment 1: SRM-SD-Current-NoMagnet.pdf
SRM-SD-Current-NoMagnet.pdf
  3918   Mon Nov 15 04:57:10 2010 ranaUpdateElectronicsSRM side OSEM noise with no magnet

IF I believe this calibration and IF I believe that the noise is the same with no magnet in there, then its almost 1 nm/rHz @ 1 Hz.

I am guessing that Jenne's calculation will show that this is an unacceptably high level of OSEM sensor noise, OAF-wise.

  3933   Tue Nov 16 15:32:18 2010 valeraUpdateElectronicsOSEM noise at the output of the satellite box

 I measured the SRM OSEM (no magnets at the moment) noise out of the satellite box with a SRS785 spectrum analyzer. I inserted a break out board into the cable going from the satellite box to the whitening board. The transimpedances of the SRM OSEMs are still 29.2 kOhm. The DC voltages out of the SRM satellite box are about 1.7 V. The signal was AC coupled using SR560 with two poles at 0.03 Hz and a gain of 10.

The noise is consistent with the one measured by the ADC except for the 3 Hz peak which does not show up in the ADC spectrum from Sunday. The peak appears in several channels I looked at. The instrument noise floor was measured by terminating the SR560 with 50 Ohm.

I recommend to change all OSEM transimpedance gains from 29 to 161 kV/A. Beyond this gain one will rail the AA filter module when the magnet is fully out of the OSEM.

The OSEM noise at 1 Hz is about factor of 10 above the shot noise. The damping loops impress this noise on the optics around the pendulum resonance frequency. Also the total contribution to the MC cavity length is sqrt(12) time the single sensor as there are 12 OSEMs contributing to MC length. The ADC noise is currently close but never the less not limiting the OSEM noise below 100 Hz. It can be further reduced by getting an extra factor of 2-3 in whitening gain above ~0.3 Hz. The rms of the ADC input of the modified PRM SD (R64 = 161 kOhm) channel is 10-20 cts during the day with damping loop off and whitening on.

The transimpedance amplifier LT1125CS is also not supposed to be limiting the noise. At 1 Hz the 1/f part of the noise: In<1pA/rtHz and Vn<20nV/rtHz.

Attachment 1: osemnoise.pdf
osemnoise.pdf
  3944   Thu Nov 18 01:52:58 2010 KevinUpdateElectronicsREFL55 Transfer Functions

I measured the optical and electrical transfer functions for REFL55 and calculated the RF transimpedance. To measure the optical transfer function, I used the light from an AM laser to simultaneously measure the transfer functions of REFL55 and a New Focus 1611 photodiode. I combined these two transfer functions to get the RF transimpedance for REFL55. I also measured the electrical transfer function by putting the RF signal from the network analyzer in the test input of the photodiode.

I put all of the plots on the wiki at http://lhocds.ligo-wa.caltech.edu:8000/40m/Electronics/REFL55.

  3949   Thu Nov 18 16:42:29 2010 Joonho LeeConfigurationElectronicsQuad Video for PMCT, RCT, RCR fixed.

The far right monitor in the control room is now displaying IMCR, PMCT, RCR, RCT.

Please note that top left quad is displying PMCT even if the screen is labeled with PMCR.

 

Control room monitor #13 - #16 had been out of order since the last week.

(the monitor number is shown at : http://lhocds.ligo-wa.caltech.edu:8000/40m/Electronics/VideoMUX )

I found that the connections between camera and the cable to the VIDEO MUX were missing so I connected them.

Initially, PMCT camera was sending its signal to the small monitor on the PSL table.

I splitted the signal so that one signal is going to the small monitor and another is going to the VIDEO MUX.

The "PMCR" is shown on the screen #13 in the control room but it actually showing PMCT camera's signal.

 

This is a temporary VIDEO configuration. It will be upgraded as well when the whole VIDEO will be upgraded.

ELOG V3.1.3-