40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 234 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectdown
  5422   Thu Sep 15 18:24:54 2011 PaulUpdateSUSITMY and SRM Oplev current status - comparison with ITMY

Just to find out where we are currently, I plotted the ITMY and SRM oplev spectra along with the ETMY oplev spectra. ETMY seems to be very good, so comparing with this seemed useful, so we know how much we have to improve by. The SRM power spectrum appears to be around 2 orders of magnitude higher than ETMY over pretty much the whole measurement band. The ITMY power spectrum is not so bad as the SRM above about 60Hz. Next thing to do is to check the dark noise level for the ITMY and SRM QPDs.

Attachment 1: oplev_spectra_comparison.pdf
oplev_spectra_comparison.pdf
  5423   Thu Sep 15 18:31:27 2011 PaulUpdateSUSITMY and SRM Oplev current status - comparison with ITMY

Quote:

Just to find out where we are currently, I plotted the ITMY and SRM oplev spectra along with the ETMY oplev spectra. ETMY seems to be very good, so comparing with this seemed useful, so we know how much we have to improve by. The SRM power spectrum appears to be around 2 orders of magnitude higher than ETMY over pretty much the whole measurement band. The ITMY power spectrum is not so bad as the SRM above about 60Hz. Next thing to do is to check the dark noise level for the ITMY and SRM QPDs.

 The title of this post should of course have been " ... - comparison with ETMY" not " ... - comparison with ITMY"

  8172   Tue Feb 26 16:13:18 2013 BrettUpdateSUSITMY and ETMY mysterious loop gain difference of 2.5

While doing initial measurements for the new global damping infrastructure I discovered that the ETMY loop between the OSEM actuation and the OSEM sensors has a gain that is 2.5 times greater than the ITMY.  The result is that to get the same damping on both, the damping gain on the ETMY must be 2.5 times less than the ITMY. I do not know where this is coming from, but I could not find any obvious differences between the MEDM matrices and gains.

I uploaded a screenshot of measured transfer functions of the damped ITMY and ETMY sus's. Notice that the ETMY measurement is 2.5 times higher than the ITMY. The peak also has a lower Q, despite having the same damping filters running because of this mysterious gain difference. Lowering the damping gain of the ETMY loop by this 2.5 factor results in similar Q's.

Attachment 1: Screenshot.png
Screenshot.png
  14627   Mon May 20 22:06:07 2019 gautamUpdateSUSITMY also kicked

For good measure:

The following optics were kicked:
ITMY
Mon May 20 22:05:01 PDT 2019
1242450319
  16903   Wed Jun 8 18:16:20 2022 yutaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

To see if the ULCOIL channel of the ITMY coil driver is working or not, I swapped ITMY coil driver and ITMX coil driver by swapping DB15 cable (see Attachment #2).

With this swap, I confirmed that ITMX can be kicked with C1:SUS-ITMY_ULCOIL_OFFSET, but ITMY cannot be kicked with C1:SUS-ITMX_ULCOIL_OFFSET (see Attachment #1).

This means that the issue is not the in-air electronics.
Mystery remains again...
We need to investigate ITMY ULCOIL in the next vent.


I revereted the swap and confirmed that damping loops work fine again.

Attachment 1: Screenshot_2022-06-08_18-10-44.png
Screenshot_2022-06-08_18-10-44.png
Attachment 2: SWAP.JPG
SWAP.JPG
  16904   Thu Jun 9 23:08:39 2022 ranaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

what was the result of the inductance measurement? should be ~3.3 mH as measured from the flannge or cable that goes to the flange from sat amp.

 

  16905   Fri Jun 10 13:02:14 2022 yutaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

ITMY ULCOIL was measured to have ~3.3 mH as measured from the flange. RTFE 40m/16896 .
 

Quote:

what was the result of the inductance measurement? should be ~3.3 mH as measured from the flannge or cable that goes to the flange from sat amp.

 

 

  16908   Fri Jun 10 15:04:23 2022 ranaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

Its good that the inductance test passed. This means that the coil is OK. How does the inspection photo look? This is the one you guys took of the ITM OSEM that shows the position of the magnet w.r.t. the coil. Also, how does the free swinging spectra look? Either one of these might indicate a broken magnet, or a sticky EQ stop.

  16910   Fri Jun 10 21:10:01 2022 yutaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

We checked the photos we have, but we didn't have the photos which show ULCOIL situation clearly.

Free swing of ITMY (and others) will be done this weekend to see the OSEM spectra and resonant frequencies.

  16896   Tue Jun 7 17:26:21 2022 yutaUpdateSUSITMY ULCOIL mystery not solved

[Paco, Yuta]

We investigated the ITMY ULCOIL issue (40m/16873).
ULSEN is sensing the optic motion but ULCOIL cannot move the optic.
We confirmed that the coil input is there upto satellite amplifier output.
We also checked that ULCOIL have 3.3 mH and 16 Ohms, which are consistent with other coils.
Mystery remains...
We need to investigate ITMY ULCOIL in the next vent.

What we did:
 - Checked again that C1:SUS-ITMY_ULCOIL_OFFSET does not kick ITMY using OSEM sensor signals and oplev signals. ULSEN moves when ITMY is kicked by other coils.
 - Checked that kick gives voltage changes at coil driver and satellite amplifier output. We unplugged J1 DB25 cable from the feedthru flange and checked the signals sent to coil with oscilloscope.
 - Measured inductance (using BK PRECISION LCR meter) and resistance (using Fluke) of coils for ITMY. Below is the result. UL coil seems to be consistent with other coils. (It seems like BK PRECISION one wil give wrong resistance if the dial is set to the resistance value which is too low compared with the one you want to measure. If you want to measure 16Ω, set the dial to larger than 20Ω, not 2Ω)

Feedthru connector: ITMY1
Pin 3-15 / R = 16.3Ω / L = 3.32 mH (UL)
Pin 7-19 / R = 16.4Ω / L = 3.30 mH (UR)
Pin11-23 / R = 16.2Ω / L = 3.31 mH (LL)

Feedthru connector: ITMY2
Pin 3-15 / N/A
Pin 7-19 / R = 16.3Ω / L = 3.30 mH (SD)
Pin11-23 / R = 16.4Ω / L = 3.33 mH (LR)


Discussions:
 - UL is the only short OSEM in ITMY OSEMs.
 - ITMY have dumbells for magnets.
 - If UL magnet is off, ULSEN would not work. Something not magnetic is working for shadow sensing for UL? Dumbells?
 - ULSEN just sensing some coupling from other OSEMs?

Attachment 1: ULCoilInductance.JPG
ULCoilInductance.JPG
Attachment 2: ULCoilResistance.JPG
ULCoilResistance.JPG
Attachment 3: WrongSetting.JPG
WrongSetting.JPG
  16920   Wed Jun 15 17:03:17 2022 yutaUpdateSUSITMY ULCOIL issue solved, loose connection in sat amp box

[Anchal, Yuta]

We fixed the issue of ITMY ULCOIL not driving ITMY by replacing one of the 64pin ribbon cable in the satellite amplifier box.
We thought the coil driver and the sat amp box are OK by checking the voltage change at the output of the sat amp box by giving an offset to UL coil driver, but it was not giving a current change, probably due to too much contact resistance in the cables.
It was sneaky because it was not completely disconnected.

All the coils for our suspensions are now working!

What we did:
 - Using breakout boards, the output current of sat amp box was measured using FLUKE multimeter. It turned out that UL is not giving measurable current. We also confirmed that UR coil driver can drive UL by re-directing the current from UR coil driver to UL. This means that the UL magnet was not de-magnetized!
 - Measured the coil resistance from at the coil driver output and found that UL coil seen from there has too high resistance which cannot be measured with the multimeter, whereas UR coil was measured to be ~30 Ohms.
 - Went back to the feedthru and measured the resistance of UL coil. Upto the output of the Satellite Amp Terimator, the resistance was measured to be ~16 Ohms, but not at the input of the Satellite Amp Terimator (Attachment #1,2).
 - It turned out that #16 pin of 64pin ribbon cable in between the Satellite Amp Terimator (LIGO-D990021) and the Satellite Amp board (LIGO-D961289) at the Satellite Amp Terimator side was not good (Attachment #3).
 - Replaced the cable and confirmed that ULCOIL can kick ITMY (Attachment #4).
 - C1:SUS-ITMY_TO_COIL matrix was reverted to default values.

Next:
 - We might have to re-commission Yarm ASS again since pitch-yaw coupling have changed. -> EDIT: Checked that it works (except for ITM PIT L), including offloading offsets (writeASS_offsets.py), 18:30 local.
 - Now that LO1 LLCOIL issue is solved and LO2 stuck is solved, we should do the free swing test again to identify the resonant frequencies.
 - OSEM sensor diagonalization (input matrix), coil balancing (and F2A)

Attachment 1: Measured16Ohms.JPG
Measured16Ohms.JPG
Attachment 2: SatAmpTerminator.JPG
SatAmpTerminator.JPG
Attachment 3: BAD.JPG
BAD.JPG
Attachment 4: SUCCESSFUL_KICK.png
SUCCESSFUL_KICK.png
  12638   Wed Nov 23 16:21:02 2016 gautamUpdateLSCITMY UL glitches are back

 

Quote:

As an aside, we have noticed in the last couple of months glitchy behaviour in the ITMY UL shadow sensor PD output - qualitatively, these were similar to what was seen in the PRM sat. box, and since I was able to get that working again, I did a similar analysis on the ITMY sat. box today with the help of Ben's tester box. However, I found nothing obviously wrong, as I did for the PRM sat. box. Looking back at the trend, the glitchy behaviour seems to have stopped some days ago, the UL channel has been well behaved over the last week. Not sure what has changed, but we should keep an eye on this...

I've noticed that the glitchy behaviour in ITMY UL shadow sensor readback is back - as mentioned above, I looked at the Sat. Box and could not find anything wrong with it, perhaps I'll plug the tester box in over the Thanksgiving weekend and see if the glitches persist...

  12643   Mon Nov 28 10:27:13 2016 gautamUpdateSUSITMY UL glitches are back

I left the tester box plugged in from Thursday night to Sunday afternoon, and in this period, the glitches still appeared in (and only in) the UL channel.

So yesterday evening, I pulled the Sat. Box. out and checked the DC voltages at various points in the circuit using a DMM, including the output of the high current buffer that supplies the drive current to the shadow sensor LEDs. When we had similar behaviour in the PRM box, this kind of analysis immediately identified the faulty component as the high current buffer IC (LM6321M) in the bad channel, but everything seems in order for the ITMY box. 

I then checked the Satellite Amplifier Termination Board, which basically just adds 100ohm series resistors to the output of the PD readout, and all the resistors seem fine, the piece of insulating material affixed to the bottom of this board is also intact. I then used the SR785 in AC coupled mode to look at the high frequency spectrum at the same points I checked the DC voltages with the DMM (namely the drive voltage to the LEDs, and the PD readout voltages on the PCB as well as on the pins of the connector on the outside of the box after the termination board (leading to the DAQ), and nothing sticks out here in the UL channel either. Of course it could be that the glitches are intermittent, and during my tests they just weren't there...

I am hesitant to start pulling out ICs and replacing them without any obvious signs of failure from them, but I am out of debugging ideas...


One possibility is that the problem lies upstream of the Sat. Box - perhaps the UL channel in the Suspension PD Whitening and Interface Board is faulty. To test, I have now hooked up ITMY Sat. Box. + tester box to the signal chain of ETMY. If I can get the other tester box back from Ben, I will plug in the ETMY sat. box. + tester to the ITMY signal chain. This should tell us something...

Attachment 1: ITMY_satboxSpectra.pdf
ITMY_satboxSpectra.pdf
  12644   Tue Nov 29 11:07:37 2016 SteveUpdateLSCITMY UL glitches are back

400 days plot. Satelite amp ITMY has been swapped with ETMY

Unlabeled sat.amps are labeled. This plot only makes sense if you know the Cuh-Razy sat amp locations.

Attachment 1: gliching400d.png
gliching400d.png
  975   Mon Sep 22 12:06:58 2008 robUpdateSUSITMY UL OSEM


Last week I found the ITMY UL OSEM dead. I went around and checked the connections on the various flat ribbon cables
in the suspension control chain; pushing hard on the rack end of the long cable that goes from the sus electronics rack to the
ITMY sat amplifier fixed the problem. It's been fine since then.

NB: A visual inspection of the cable connection would not have revealed a problem. You just can't trust those flat
ribbon connectors with the hook latches.
  2024   Tue Sep 29 23:43:46 2009 robUpdateSUSITMY UL OSEM

We had a redo of elog entry 975 tonight.  The noisy OSEM was fixed by jiggling the rack end of the long cable.  Don't know exactly where--I also poked around the OSEM PD interface board.

In the attached PDF the reference trace is the noisy one.

Attachment 1: ITMYosemBAD.pdf
ITMYosemBAD.pdf
  13830   Thu May 10 11:38:19 2018 gautamUpdateGeneralITMY UL

Looking at Steve's plot, I was reminded of the ITMY UL OSEM issue. The numbers don't make sense to me though - 300um of DC shift in UL with negligible shifts in the other coils should have made a much bigger DC shift in the Oplev spot position.

Attachment 1: ITMY_UL.pdf
ITMY_UL.pdf
  5436   Fri Sep 16 16:34:54 2011 PaulUpdateSUSITMY SRM oplev telescope plan

I've calculated a suitable collimating telescope for the ITMY/SRM oplev laser, based on the specs for the soon-to-arrive 2mW laser (model 1122/P) available here: http://www.jdsu.com/ProductLiterature/hnlh1100_ds_cl_ae.pdf

Based on the fact that the 'beam size' value and 'divergence angle' value quoted don't match up, I am assuming that the beam radius value of 315um is _not_ the waist size value, but rather the beam size at the output coupler. From the divergence angle I calculated a 155um waist, (zR = 12cm). This gives the quoted beam size of about 316um at a distance of 8.5" away from the waist. This makes me think that the output coupler is curved and the waist is at the back of the laser, or at least 8.5" from the output coupler.

The collimating telescope gives a waist of size 1142um (zR=6.47m) at a distance of 1.427m away from the original laser waist, using the following lens combo:

 

L1 f=-0.15 @ 0.301m

L2 f=0.3 @ 0.409m

 

This should be fine to get a small enough spot size (1-2mm) on the QPDs.

 

Attachment 1: ITMY_SRM_telescope.png
ITMY_SRM_telescope.png
  16780   Thu Apr 14 18:34:51 2022 PacoSummaryBHDITMY Oplev reinstalled (Re: 2 in oplev mirrors incompatible with LMR2V)

[Paco, Yehonathan]

We installed ITMYOL1 and ITMYOL2 on the ITMY chamber. We aligned the ITMY OpLev beam and closed the loop successfully, we then had a second round of YARM aligment, where we brought the Y peak transmission up from 0.04 counts to 0.09 counts (up by a factor of two). We still couldn't close the YARM loop but we have a better alignment.

  10253   Tue Jul 22 15:54:19 2014 ericqUpdateSUSITMY Oplev Recentered

 ITMY oplev was nearly clipping in yaw, causing wonky behavior (POY lock popping in and out frequently). I recentered it and the arm is locking fine now. 

  5427   Thu Sep 15 22:26:32 2011 PaulUpdateSUSITMY Oplev QPD dark noise PSD

 I took a dark noise measurement for the ITMY QPD, for comparison with measurements of the oplev noise later on. Initially I was plotting the data from test points after multiplication by the oplev matrix (i.e. the OLPIT_IN1 / OLYAW_IN1), but found that the dark noise level seemed higher than the bright noise level (!?). Kiwamu realised that this is because at that test point the data is already divided by QPD SUM, thus making the dark noise level appear to be greater than the bright level, since QPD SUM is much smaller for the dark measurements. The way around this was to record the direct signals from each quadrant before the division. I took a power spectrum of the dark noise from each quadrant, then added them in quadrature, then divided by QPD SUM at the end to get an uncalibrated PSD. Next I will convert these into the equivalent for pitch and yaw noise spectra. To calibrate the plots in radians per root Hz requires some specific knowledge of the oplev path, so I won't do this until I have adjusted the path.

Attachment 1: ITM_dark_QPD_PSD.pdf
ITM_dark_QPD_PSD.pdf
  5429   Fri Sep 16 00:08:30 2011 PaulUpdateSUSITMY Oplev QPD dark and bright noise spectra

 I tried again at plotting the ITMY_QPD noise spectra in for dark and bright operation. Before we had the strange situation where the dark noise seemed higher, but Kiwamu noticed this was caused by dividing by the SUM before the testpoint I was looking at. This time I tried just multiplying by the measured SUM for bright and dark to normalise the spectra against each other. The results looks more reasonable now, the dark noise is lower than the bright noise for a start! However, the dark noise spectrum now doesn't look the same as the one I showed in my previous post.

Attachment 1: ITMY_oplev_dark_noise_vs_bright_noise.pdf
ITMY_oplev_dark_noise_vs_bright_noise.pdf
  9231   Thu Oct 10 11:46:43 2013 JenneUpdateSUSITMY OpLev Noise

For my work designing a cost function, so that I can try out new feedback servo designs on the oplevs, I wanted to know what the dark noise of an oplev is.  Since the pitch and yaw channels are divided by the sum channel, when the laser is off, the noise in the pitch and yaw channels looks much higher than it really is.  So, I collected some data from the 4 individual quadrants of the ITMY oplev, when the laser was on (but damping was off), and when the laser was off.  I used the values of the oplev input matrix to re-create the non-normalized pitch and yaw signals.  What I see is that we have some kind of real signal below 1 kHz, but we're hitting the noise at around 1 kHz.  So, we definitely don't want to use oplev error signal information above 1 kHz when designing new servos.

The last word in the title is "off".  OSEM damping was on, but the oplev damping was off.  These are uncalibrated, because the calibrations that we have to go from counts to microradians are for the normalized signals. 

ITMY_OpLev_Noise.png

  5198   Thu Aug 11 18:30:40 2011 KojiUpdateSUSITMY OSEM adjustment

[Jamie, Koji]

ITMX OSEMs were adjusted so as to have the right DC numbers and the more uniform response to POS excitation.

It is waiting for the free-swinging test.

- ITMX was moved from its position to the north side of the table.

- The table was rebalanced.

- We found that the output of the LR OSEM has an excess noise compared with the other OSEMs.
We tried to swap the LR and SD OSEMs, but the SD OSEM (placed at the LR magnet) showed
the same excess noise at around 10-50Hz.

- We found that one of the EQ stops was touching the mirror. By removing this friction, all of the OSEMs
come to show similar power spectra. Good!

 - Then we started to use LOCKIN technique to measure the sensitivity of the OSEMs to the POS excitation.

Originally the response of the OSEMs was as follows
UL 3.4 UR 4.3 
LL 0    LR 2.5   

After the adjustment of the DC values, final values became as follows
UL 3.9 UR 4.4
LL 3.9  LR 3.2

- We decided to close the light door.

  14484   Mon Mar 18 17:06:12 2019 gautamUpdateOptical LeversITMY HeNe replaced

Oplev HeNe was replaced this afternoon. We did some HeNe shuffling:

  1. A new HeNe was being used for the fiber illumination demo at EX. We took that out and decided to use it as the new ITMX HeNe. It had 2.6mW output at 632nm (measured with the Ophir power meter)
  2. Old ETMY HeNe was used for fiber illumination demo.
  3. Old ITMX HeNe was putting out no light - it will be disposed.

Attachment #1 shows the RIN and Attachment #2 and #3 show the PIT and YAW TFs with the new HeNe.

The ITMX Oplev path is still not great - the ingoing beam is within 2mm of clipping on a 2" lens used in the POX path, and there is a bunch of scattered red light everywhere. We should take the opportunity when the chamber is open to try and have a better layout (it may be tricky to optize without touching the two in-vacuum steering optics).

Quote:

I'll ask Chub to replace it this afternoon.

Attachment 1: OLRIN.pdf
OLRIN.pdf
Attachment 2: OL_PIT.pdf
OL_PIT.pdf
Attachment 3: OL_YAW.pdf
OL_YAW.pdf
  4066   Fri Dec 17 00:30:05 2010 KojiUpdateIOOITMY / SRM / BS / PRM OPLEVs aligned

[Steve and Koji]

The invac OPLEV mirrros were aligned before we get to the PMA party.

The OPLEV mirrors were adjusted in accordance with the optical layout.
Surprisingly the optical layout was enough precise such that we have the healthy red beams on the optical tables.
Steve placed the apertures at the position of the returning spots while I shook the stack to check if the range of the spot motion is sufficient.

The sole thing that has been deviated from the optical layout was that the SRM returning beam had to be reroute
as the SRM has better reflectivity on the AR surface in stead of the HR one.

  4069   Fri Dec 17 03:37:47 2010 ranaUpdateSUSITMY / SRM / BS / PRM OPLEVs aligned

Quote:

The sole thing that has been deviated from the optical layout was that the SRM returning beam had to be reroute
as the SRM has better reflectivity on the AR surface in stead of the HR one.

 I suppose that if we were really clever we would intentionally choose either the AR or HR surface so as to minimize the effect of the thermal lensing and/or thermal expansion from the locked interferometer absorption.

  2777   Tue Apr 6 22:54:34 2010 KojiUpdateSUSITMY (south) aligned

Kiwamu and Koji

ITMY (south) was aligned with regard to the 40m-long oplev with the green laser pointer. Now the cavity is waiting for the green light injected from the end table

The OSEMs were adjusted with the aligned optics, but still a bit off from the center. They need to be adjusted again.
One round-shaped counter-weight removed from the table. Some counter weights are moved.

Some tools and the level gauge were removed from the table.

BAD news: I could clearly see scatter of the green beam path because of the dusts in the arm tube. Also many dusts are seen on the ITM surface.

 

Picture of the ETM - reflection from the ITM is hitting the mirror and the suspension structures.

IMG_2362.jpg

 


1. Shoot the ITM center with the green beam.

- Two persons with walkie-talkies required for this work.

- Turn on the end green pointer. We could see the long trace of the beam sliced by the beam tube wall.

- Look at the tube peeping mirror for the CCD.

- Adjust yaw such that the beam trace on the tube wall is parallel to the arm.

- Adjust pitch such that the beam trace on the tube gets longer. This means that spot gets closer to the ITM.

- Continue pitch adjustment until some scatter appears on the ITM tower.

- Once the spot appears on the tower, you can easily adjust it on the mirror

2. Adjust pitch/yaw bias such that the reflection hits the ETM.

- Initially the ITM alignment is totally bad. ==> You clealy see the spot on the wall somewhere close to the ITM.

- Adjust pitch/yaw bias such that the spot goes farther as far as possible.

- Once you hit the suspension tower, the scatter is obviously seen from the peeping mirror.

- You can match the incident beam and the scattering of the reflection. You also can see the reflection from the ETM towards the ITM as the spot size gets huge (1/2 tube diameter).

- We found that the bias is ~-2 for pitch and ~-6 for yaw.

3. Go into the chamber. Check the table leveling.

- Open the light door.

- I found that the table is not leveled. Probably it drifted after the move of the weight (i.e. MOS removal).

- Removed one of the round-shaped weight. Moved the other weights such that the table was leveled.

4. Remove the bias for yaw and rotate suspension tower such that the reflection hit the center of the ETM.

- Removed the yaw bias. This makes the reflected spot totally off from the ETM.

- Rotate suspension tower so that the beam can approximately hit the ETM.

- Look at the peeping mirror, the beam is aligned to the ETM.

5. Adjust OSEMs

- Push/pull the OSEMs such that we have the OSEM outputs at the half of the full scale.

6. Adjust alignment by the bias again.

- Moving OSEMs changes the alignment. The pitch/yaw biases were adjusted to have the beam hitting on the ETM.

- Bias values at  the end of the work: Pitch -0.8159 / Yaw -1.2600

7. Close up the chamber

- Remove the tools and the level gauge.

- Close the light door.

  16370   Fri Oct 1 12:12:54 2021 StephenUpdateBHDITMY (3002) CAD layout pushed to Box

Koji requested current state of BHD 3D model. I pushed this to Box after adding the additional SOSs and creating an EASM representation (also posted, Attachment 1). I also post the PDF used to dimension this model (Attachment 2). This process raised some points that I'll jot down here:

1) Because the 40m CAD files are not 100% confirmed to be clean of any student license efforts, we cannot post these files to the PDM Vault or transmit them this way. When working on BHD layout efforts, these assemblies which integrate new design work therefore must be checked for most current revisions of vault-managed files - this Frankenstein approach is not ideal but can be managed for this effort. 

2) Because the current files reflect the 40m as built state (as far as I can tell), I shared the files in a zip directory without increasing the revisions. It is unclear whether revision control is adequate to separate [current 40m state as reflected in CAD] from [planned 40m state after BHD upgrade]. Typically a CAD user would trust that we could find the version N assembly referenced in the drawing from year Y, so we wouldn't hesitate to create future design work in a version N+1 assembly file pending a current drawing. However, this form of revision control is not implemented. Perhaps we want to use configurations to separate design states (in other words, create a parallel model of every changed component, without creating paralle files - these configurations can be selected internal to the assembly without a need to replace files)? Or more simply (and perhaps more tenuously), we could snapshot the Box revisions and create a DCC page which notes the point of departure for BHD efforts?

Anyway, the cold hard facts:

 - Box location: 40m/40m_cad_models/Solidworks_40m (LINK)

 - Filenames: 3002.zip and 3002 20211001 ITMY BHD for Koji presentation images.easm (healthy disregard for concerns about spaces in filenames)

Attachment 1: 3002_20211001_ITMY_BHD_for_Koji_presentation_images.easm
Attachment 2: 40m_upgrade_layout_20200611-ITMY_Beam_Dim.pdf
40m_upgrade_layout_20200611-ITMY_Beam_Dim.pdf
  2469   Wed Dec 30 20:33:36 2009 rana, albertoConfigurationCamerasITMY & MC2 Camera work

We restored the good state of the ITMY camera and neatened both the MC2 and ITMY camera.

The MC2 camera was driving a triple T jungle into some random cables and spoiling the image. We removed all T's and the MC2 camera now drives only The Matrix.

The ITMY camera was completely unmounted and T'd. So it was misaligned just by the force of gravity acting on its BNC cable. We swapped the lens for a reasonable sized one and remounted it in its can. We then used orange cable ties to secure the power and BNC cable for the MC2 and ITMY cameras so that tugging on the cables doesn't misalign the cameras. This is part of the camera's SOP.

No more driving 50 Ohm cables and T's with video cables, Steve! If you need a portable video, just use a spigot of the Matrix and then you can control it with a web browser.

DSC_1064.JPGDSC_1065.JPGDSC_1066.JPG

I also wiped out the D40's memory card after uploading all of the semi-useful files to the Picasa page.

  6600   Thu May 3 21:13:48 2012 KojiSummarySUSITMX/PRM/BS OPLEV aligned

[Jenne/Den/Koji]

We locked Xarm/Yarm and manually alignmed ITMX/ITMY/BS/ETMX/ETMY/PZT1/PZT2.

ITMY OPLEV was largely misaligned ==> The beam was centered on the QPD.

----

Then we aligned PRM using SB locking PRMI.

We noticed that OPLEV servo does not work. It made the PRM just noiser.

We went into the PRM table and found that the OPLEV beam was clipped in the vacuum chamber.
We tried to maximize the reflected beam from the window by touching the steering mirrors at the injection side.

Then the reflected beam was introduced to the center of the QPD.

After the alignment, the OPLEV QPD SUM increased to 4000ish from 200ish.
According to the OPLEV trend data, this is a nominal value of the QPD SUM.

Now the OPLEV servo does not go crazy.

 --

BS OPLEV beam was centered on the QPD.

  14584   Mon Apr 29 16:34:27 2019 gautamUpdateElectronicsITMX/IMTY mis-labelling fixed at 1X4 and 1X5

After the X and Y arm naming conventions were changed, the labelling of the electronics in the eurocrates was not changed 😞 😔 😢 . This meant that when we hooked up the new Acromag crate, all the slow ITMX channels were in fact connected to the physical ITMY optic. I ♦️fixed♦️ the labelling now - Attachments #1 and #2 show the coil driver boards and SUS PD whitening boards correctly labelled. Our electronics racks are in desperate need of new photographs.

The "Y" arm runs in the EW direction, while the "X" arm runs in the NW direction as of April 29 2018.

ITMX was freed. ITMY is being worked on is also free..

Attachment 1: IMG_7400.JPG
IMG_7400.JPG
Attachment 2: IMG_7401.JPG
IMG_7401.JPG
  799   Tue Aug 5 12:52:28 2008 YoichiUpdateSUSITMX, SRM OSEM spectra
Free swinging spectra of ITMX and SRM.
ITMX seems to be ok after yesterday's work, though the OSEM DC values are still a bit off from the normal value of 0.9.
(ITMX OSEM values: UL=1.12, UR=1.38, LR=0.66, LL=0.41, SIDE=0.66)
SRM is still clearly wrong.
Attachment 1: ITMX-2008_08_05-morning.pdf
ITMX-2008_08_05-morning.pdf
Attachment 2: SRM-2008_08_05-morning.pdf
SRM-2008_08_05-morning.pdf
  16906   Fri Jun 10 13:52:22 2022 JCUpdateOPLEV TablesITMX, ITMY, and Vertex Table Beam Paths

I have at taken photos and added arrows which signify the beam paths for ITMX, ITMY, and Vertex Oplev tables.

Attachment 1: DCE4F1D7-5AE0-491C-8AF6-F8B659C0787E_1_105_c.jpeg
DCE4F1D7-5AE0-491C-8AF6-F8B659C0787E_1_105_c.jpeg
Attachment 2: 4B24C891-654D-4C51-A8D9-D316364FCF68_1_105_c.jpeg
4B24C891-654D-4C51-A8D9-D316364FCF68_1_105_c.jpeg
Attachment 3: F5B115E5-885F-463C-9645-BB2EB73B6144_1_201_a.jpeg
F5B115E5-885F-463C-9645-BB2EB73B6144_1_201_a.jpeg
  5291   Tue Aug 23 17:45:22 2011 jamieUpdateSUSITMX, ITMY, ETMX clamped and moved to edge of tables

In preparation for tomorrow's drag wiping and door closing, I have clamped ITMX, ITMY, and ETMX with their earthquake stops and moved the suspension cages to the door-edge of their respective tables.  They will remain clamped through drag wiping.

ETMY was left free-swinging, so we will clamp and move it directly prior to drag wiping tomorrow morning.

  5055   Thu Jul 28 16:26:42 2011 steveUpdateSUSITMX, ITMY & ETMY OSEM gains adjusted

 

OSEM damping gains were adjusted by observing  real time dataviewer to get Q of 5

OSEMs were kicked up one by one with 200 counts  ~1sec. The error signal was optimized to get 1/2 of exitation amplitude at the 5th sinusoid wave.

C1: SUS-ITMX_SUSPOS_N1 gain   111      ->        65,             PIT        7.2      ->    8,           YAW        12      ->     6,          SIDE     280

                  ITMY                                      277       ->     120,                        19.2     ->     7,                             24     ->     19,                        420    ->      470

                  ETMY                                       10        ->       32,                          20      ->     3,                             20     ->     10,                          50

                  ETMX                                       22        ->      25,                             3,                                                3,                                              -170  

ETMX having problems:  1, YAW can not be excited

                                             2, SIDE has no error signal in dataviewer. Sensing voltage on MEDM screen 0.142V

 

                      

 

  5297   Wed Aug 24 12:08:56 2011 jamieUpdateSUSITMX, ETMX, ETMY free swinging

ITMX: 998245556

ETMX, ETMY: 998248032

  2367   Tue Dec 8 16:27:13 2009 JenneUpdateCOCITMX wiped

Jenne, Kiwamu, Koji, Alberto, Steve, Bob

ITMX was wiped without having to move it. 
After 'practice' this morning on ETMY, Kiwamu and I successfully wiped ITMX by leaning into the chamber to get at the front face. 

Most notable (other than the not moving it) was that inspection with the fiber light before touching showed many very small particles on the coated part of the optic (this is versus ETMY, where we saw very few, but larger particles).  The after-wiping fiber light inspection showed many, many fewer particles on the optical surface.  I have high hopes for lower optical loss here!

  4916   Thu Jun 30 01:50:02 2011 JenneUpdateSUSITMX whitening, ETMX left free swinging

While closing up the whitening shop for the night, I noticed that the ITMX whitening state (Whitening "On") is opposite that of all other suspensions (they all have Whitening "Off").  I don't know which way is correct, but I assume they should all be the same.  Once all the whitening and BO testing is done, we should make sure that they're all the way we want them to be.

Also, Koji and I are leaving ETMX free swinging.  That's the way we found it, presumably from Jamie's BO testing at the end station today.  We don't know what the optic's story is, so we're leaving it the way we found it.  Jamie (or whomever left it free swinging), can you please restore it when it is okay to do so?  Thanks!

  4125   Fri Jan 7 15:17:37 2011 steveUpdateCamerasITMX video monitor has tower wide view

The Watec 902, 1/2" CCD camera got new Tamron lens: 1/2" 10-40mm F/1.4  manual iris. IR corrective lens. It is designed to have the same focal point in the IR as

in the visible light range. However, as the depth of field in the IR range is very narrow, focus adjustment should be done carefully in the IR.

Now you can see the sus tower that will make alignment easier.

 

  5752   Fri Oct 28 03:42:50 2011 kiwamuUpdateLSCITMX table needs to be refined

(POX)

The POX beam had been 80% clipped at a black glass beam dump of the POX11 RFPD.

I steered the first mirror in the POX path to fix the clipping. Then the beam was realigned onto the RFPD.

However the beam is still very close to the black glass, because the incident angle to the second mirror is not 45 deg .

We need to refine the arrangement of the POX11 optics a bit more so that the beam will never be clipped at the black glass.

 

(POP)

 The POP optics also need to be rearranged to accommodate one more RFPD.

Additionally Rana, Suresh and I discussed the possible solutions of POP22/110 and decided to install a usual PD (PDA10A or similar) instead of a custom-made.

So a plan for the POP detectors will be something like this:

        + design an optical layout.

        + buy a 2 inch lens whose focul length is long enough (#5743)

        + rearrange the optics and install POP22/110

        + lay down a long SMA cable which sends the RF signal from POP22/110 to the LSC rack.

        + install a power splitter just before the demod board so that the signal is split into the 22MHz demoad board and 110MHz demod board.

           => make sure we have a right splitter for it.

        + install a band pass filter after the power splitter in each path.

           => A 22MHz band pass filter is already in hand. Do we have 110MHz band pass filter somewhere in the lab ?

The picture here shows the latest configuration on the ITMX table.

ITMXtable.png

Quote from #5743

RF photo diodes POP55 and POX11 are installed. The beams are aligned to the photo diodes. 

  16837   Mon May 9 18:43:03 2022 AnchalUpdateBHDITMX table layout corrected

As I went to correct the ITMX Oplev mirrors, I found that both mirrors were placed in very different positions than the design position. Part of the reason I think was to preserve outside oplev path, and party because a counterweight was in ITMXOL1 position. I had to do following steps to correct this:

  • I noted down level meter readings of the table before making any changes.
  • I removed the counter weight from near the center of the table.
  • I placed the Oplev mirrors in the nominal positions.
  • I placed the counter weight near previous position.
  • I moved a edge hanging counter weight to get back the level meter to its previous state coarsely.
  • Then I used dataviewer to find the previous OSEM PD monitor values and changed ITMX PIT and YAW to come closer to those PD values. And voila, I regained the flashing on Xarm. I nudged the ITMX pit and yaw bit more to maximize it.
  • I then went back to aligning the Oplevs properly.
  • Then I adjusted the POP mirrors to get the beam back through center of window. This was very tricky and took a lot of time.
  • Now the beam is going through near center and the oplev beams are far away enough from POP_SM5.
  • On the outside table, I noted the POP beam and the oplev beam. I corrected the pit of the returning beam to get the oplev beam at nominal height on outside table.

ITMX Sat Amp is flaky

[Anchal, Paco]

During the above work, i must have kicked the cable between the vacuum flange and the satellite amplifier box for ITMX. This disconnected all the OSEMs and Coils. We tried several things to debug this and finally found that nudging the connections on Sat Amp box brought the OSEMs and coils back online. Note that the connector was not partially out or in a state that obviously showed disconnection of the pins. I'm glad we are putting in new electronics soon for the vertex optics as well.


Next steps:

  • I showed Tega the returning oplev beam and the POP beam coming out of the ITMX chamber.
  • The Oplev beam paths need to be adjusted.
    • The ongoing beam steering mirror is blocking the returning beam, so the ongoing path needs to be changed.
    • First setup two irises to save ingoing path.
    • Then make space for the returning beam by changing the steering mirror positions.
    • Then recover the ingoing path to the center of irises.
    • Steer the returning beam to the QPD.
    • Then maximize the flashing on XARM and center the oplev to save this position.
  • POP beam needs to be directed to previous setup on far side of table.
    • The POP beam is coming out at the rising angle.
    • This is good for us if we do bit unconventional stuff and transfer the beam to other side of table at an elevated height. Given how close all the beams are coming out of the viewport, I think this is the best solution in terms of saving time.
    • Get the beam down to the old setup which was camera and photodiodes all aligned.

 

 

  12518   Mon Sep 26 19:48:09 2016 LydiaUpdateSUSITMX stuck again, ITMY whitening issue

This afternoon around 2:45, ITMX started ringing up at ~.9Hz for about a minute and then got stuck again. When I noticed this evening, I tried to free it with the alignment sliders but was unable to see any signal on UL or UR. It also looks like the damping for ITMY was turned off at the same time ITMX got stuck (not at the start of its ring up). SRM also has a spike in its motion at this time, and another one minute later that ended up with the LR OSEM at a much higher level, though the mirror does not appear to be stuck. We didn't see any strange behavior from any of the other optics.

Teng and I were working on diagnosing a problem with the ITMY UL whitening, but by the time we disconnected any applicable cables, the damping for ITMY was already off. Later we unplugged the ITMX PD whitening cables after verifying that the ITMX damping was also already off. This problem may have occured earlier, while Teng, Eric, and I were examining and pushing in the cables at 1X5 without unplugging anything.

We found that the reason for the bad phase on the ITMY free swing data is because the whitening filter for UL is not being properly turned on. We are in the process of investigating the source of this problem. Right now all the cables to the PD whitening boxes in 1X5 are switched between ITMY and ITMX.
 

Attachment 1: 44.png
44.png
Attachment 2: 26.png
26.png
  13173   Tue Aug 8 20:48:06 2017 gautamUpdateSUSITMX stuck

Somewhere between CDS model restarts and the IFO venting, ITMX got stuck.

I shook it loose using the usual bias slider technique. It appears to be free now, I was able to lock the green beam on a TEM00 mode without touching the green input pointing. The ITMX Oplev spot has also returned to within its MEDM display bounds.

  12520   Tue Sep 27 18:04:50 2016 LydiaUpdateSUSITMX slow channels down, ITMY diagonalization update

[Teng, Lydia]

When we plugged in the back cables yesterday on the whitening boxes after switching them, two of the ITMX PDMon channels (UR and LR) got stuck at 0. This caused me to believe ITMX was still stuck even when it was freed. However, it was left in a stuck state overnight and freed again today after this issue was discovered. The alignment sliders have been set to 0 as a safety net to keep ITMX from getting stuck again if c1susaux is restarted again. We switched the cables back and the problem was still there.

The ITMY UL whitening filter problem, which the cables were originally switched to diagnose, was also still there. Ericq suggested we turn off all the whitening filters in order to get diagonalization data that would not show a phase difference between coils. We ran the diagonalization again with all the dewhitening filters off and got much cleaner results, with no visible cross-coupling peaks remaining between the degrees of freedom (see attachemnt 1). We did not apply this matrix to the damping, however, because there are elements which have the wrong sign compared to the ideal matrix. Significant adjustments to the output matrix will probably need to be made if this result is to be used. We also verified that the phase problem had been solved in DTT, where we saw the same sign discrepancies as in the matrix below. 

Damping can be turned back on, using the old, non-diagonalized matrix currently in effect. There is enough free swing data to diagonalize ITMY now, so feel free to mess with it. 

Matrix (wrong signs red, suspiciously small elements orange):

           pit     yaw     pos         side    butt
UL    1.633   0.138   1.224   0.136   0.984  
UR   -0.202  -1.768   1.179   0.132  -1.028  
LR   -2.000   0.094   0.776   0.107   1.001  
LL   -0.165   2.000   0.821   0.111  -0.987  
SD    0.900   1.131  -1.708   1.000  -0.107  

 

Attachment 1: ITMY_diagsuccess.pdf
ITMY_diagsuccess.pdf
  13182   Thu Aug 10 09:31:57 2017 SteveUpdateSUSITMX sensor voltage

There must be some bad connection

Quote:

Somewhere between CDS model restarts and the IFO venting, ITMX got stuck.

I shook it loose using the usual bias slider technique. It appears to be free now, I was able to lock the green beam on a TEM00 mode without touching the green input pointing. The ITMX Oplev spot has also returned to within its MEDM display bounds.

 

Attachment 1: 9daysITMX.png
9daysITMX.png
Attachment 2: vacGlitchITMX.png
vacGlitchITMX.png
  12489   Tue Sep 13 19:02:56 2016 TengUpdateGeneralITMX sensor

[Lydia,Teng]

Something strange happened to the ITMX osem reading around 4.pm. PDT as shown below.

Also the there was no response of the reading as we adjusted the PITCH and YAW. :(

Note that we restarted the slow machine: c1susaux,c1ausex this afternoon because of the unresponced interface.

 

 

Attachment 1: 47.png
47.png
Attachment 2: 34.png
34.png
  15585   Sat Sep 19 19:14:59 2020 KojiUpdateGeneralITMX released / ETMY UR magnet knocked off

There were two SUSs which didn't look normal.

- ITMX was easily released by the bias slider -> Shake the pitch slider and while all the OSEM values are moving, turn on the damping control (with x10 large watchdog threshold)

- ETMY has UR OSEM 0V output. This means that there is no light. And this didn't change at all with the slider move.
- Went to the Y table and tried to look at the coils. It seems that the UR magnet is detached from the optic and stuck in the OSEM.

We need a vent to fix the suspension, but until then what we can do is to redistribute the POS/PIT/YAW actuations to the three coils.

Attachment 1: IMG_6218.jpeg
IMG_6218.jpeg
  5342   Tue Sep 6 11:21:33 2011 JenneUpdateSUSITMX rehung (Friday)

[Jenne, Katrin, Jamie]

I'm a bad kid, and forgot to elog my Friday morning work...

Bob gave me back ITMX after a 48hour bake at 80C + clean RGA scan Friday morning after coffee and doughnuts.  Katrin helped me put it back in the suspension wire. 

While I was leveling the optic (making sure the scribe lines on each side of the optic are at the same height off the table), Katrin cut some new viton for replacement EQ stops.  The optic was missing one lower earthquake stop (the one that Jamie noticed last week), and somehow one other rubber piece came out of the EQ stop on another lower screw while we were re-suspending the optic.  We put the new stops in, and then checked the balance of the test mass.

The oplev is still the HeNe laser that is leveled to the level optical table in the cleanroom.  The lever arm is ~1.5 meters, and over that distance the reflected beam was pointed "up" in pitch by ~1.5mm, which is less than one beam diameter of the HeNe.  This is well within our ability to correct using the OSEMs.

We then locked the test mass, and installed it in the chamber.  I approximately did the half-voltage centering of the OSEMs, leaving the fine-tuning to Kiwamu for after lunch. 

  5337   Fri Sep 2 17:52:16 2011 kiwamuUpdateSUSITMX realigned

The new ITMX was aligned by changing the DC biases.

The resultant DC biases are reasonably small.

C1:SUS-ITMX_PIT_COMM = -0.2909

C1:SUS-ITMX_YAW_COMM = -0.0617

 

The alignment was done by trying to resonate the green light in the X arm cavity.

The spot position of the green light on the ITMX mirror looked good. This was confirmed by inserting a sensor card.

I did the OSEM mid-range adjustment and the rotation adjustment but at the end the OSEM DC voltage has changed due to the DC bias operation.

The OSEM rotation was approximately optimized so that all the face shadow sensors are sensitive to the POS motion but the SIDE shadow sensor is insensitive to the POS motion.

It needs a free swinging diagnosis.

ELOG V3.1.3-