ID |
Date |
Author |
Type |
Category |
Subject |
2650
|
Tue Mar 2 12:20:54 2010 |
kiwamu | Update | PSL | stray beam |
In order to block stray beams, I have put some beam dumps and razor blades on the PSL table.
There were three undesired spots in total. I found two spots on the south side door of the PSL room, close to Mach-Zehnder.
Another spots was on the middle of the north door. Now they all are blocked successfully. |
2651
|
Tue Mar 2 23:11:43 2010 |
Koji | Update | SUS | ITMX hung |
Jenne and Koji
We successfully hung ITMX on the SOS. Side magnet is ~2mm off from the center of the OSEM. ITMX aligned using the QPD. The OSEMs changes the alignment. It looks that something magnetic is inside the OSEM PD or LED.
Reguled ITMY side magnet.
Cleaned up the lab for the safety inspection. |
2652
|
Wed Mar 3 02:57:29 2010 |
Jenne | Update | SUS | ITMX hung |
Quote: |
Jenne and Koji
We successfully hung ITMX on the SOS. Side magnet is ~2mm off from the center of the OSEM.
Reguled ITMY side magnet.
Cleaned up the lab for the safety inspection.
|
Some details on the side magnet situation from today:
To glue the magnets+dumbbells to the optics, we use the magnet-dumbbell gluing fixture. This fixture is supposed to have teflon 'pads' for the optic to sit on while you align it in the fixture, however the fixture which we received from MIT (it's Betsy's....but it came via MIT) only had one of the 4 teflon pads.
Kiwamu and I decided (last week, when we first glued ITMX's magnets) that it would be bad news to let the AR face of the optic sit on bare metal, so we fashioned up some teflon pads using stock in a cabinet down the Yarm. We were focused on thinking about the face magnets, and didn't think about how the thickness of the teflon affected the placement of the side magnet. We chose some teflon that was too thin by ~1mm, so the optic sat too low in the fixture, resulting in the side magnet being glued too close to the HR side of the optic (this is all along the Z - axis, where Z is the direction of beam propagation).
Why it ended up being 2mm off instead of only 1mm I don't really have an explanation for, other than perhaps tightening the set screws to hold the optic (by the barrel) in the fixture pushes the optic up. I observed this happening when I didn't put any effort into keeping the optic flat on the teflon pads, but I thought that I made sure the optic was seated nicely in the fixture before starting to glue. When I glued the new ITMY side magnet tonight I tried to make sure that the optic was seated nicely in the fixture. We'll see what happens.
Before gluing the new ITMY side magnet (and now it's set for all future magnet gluings....), I found 4 teflon pads of all the correct thickness. It turns out that we have a magnet gluing fixture of our own, which I found in the cabinets in the clean room. This fixture had all 4 teflon pads, so I stole them and put them into the one that we're using for this round of upgrade / suspension hangings. The height of all future side magnets should be correct. The thickness of the pads in the 'spare' fixture matched the one which came with the fixture from MIT as closely as I could feel by putting them on the same flat surface next to each other and feeling if there was a step.
A side note about this magnet gluing fixture that I found: It has the word "TOP" etched into it, to prevent exactly my problem with the ITMY side magnets in the first place. Unfortunately the threads for the set screws which hold the optic are shot (or something is funny with them), so we can't just use this fixture.
Gluing notes regarding the standoffs and guiderods:
There's more glue than I'd like on the guiderods / standoff for ITMX. The glue was starting to get a little tacky when I glued the standoff in place after we balanced the optic, so it was hard to get it in the right place. I'm confident we have a good epoxy contact, and we don't have much glue that I think it'll be a big problem. Certainly I'll be a lot better at manuvering my glue-stick a.k.a skinny piece of wire around the suspension tower to get to the standoff for the rest of the optics that we're hanging, and I won't have glued something like ITMY side magnet immediately beforehand, which took enough time that the glue started to get tacky (not very tacky, just barely noticeably tacky).
I'd say that most gluing activities should be completed within ~10-15min of mixing the glue, after spending ~2min stirring to make sure it's nice and uniform. It doesn't dry fast enough to be a huge rush, but you should get right on the gluing once the epoxy has been mixed. |
2653
|
Wed Mar 3 18:32:25 2010 |
Alberto | Update | 40m Upgrading | 11 MHz RFPD elctronics |
** Please add LISO file w/ component values.
I designed the circuit for one of the 11 MHz photodiodes that we're going to install in the 40m Upgrade.
This is a simple representation of the schematic:
gnd # | # Cw2 # | # n23 # | # Lw2 # | # n22 # | # Rw2 # | |\ # n2- - - C2 - n3 - - - - | \ # | | | | |4106>-- n5 - Rs -- no # iinput Rd L1 L2 R24 n6- | / | | # nin - | | | | | |/ | Rload # Cd n7 R22 gnd | | | # | | | | - - - R8 - - gnd # gnd R1 gnd R7 # | | # gnd gnd # # #
I chose the values of the components in a realistic way, that is using part available from Coilcraft or Digikey.
Using LISO I simulated the Tranfer Function and the noise of the circuit.
I'm attaching the results.
I'll post the 55MHz rfpd later. |
Attachment 1: rfpd11_v2_TF.pdf
|
|
Attachment 2: rfpd11_v2_Noise.pdf
|
|
2654
|
Thu Mar 4 02:25:14 2010 |
Jenne | Update | COC | Further details on the magnet story, and SRM guiderod glued |
[Koji, Jenne]
First, the easy story: SRM got it's guiderod & standoff glued on this evening. It will be ready for magnets (assuming everything is sorted out....see below) as early as tomorrow. We can also begin to glue PRM guiderods as early as tomorrow.
The magnet story is not as short.....
Problem: ITMX and ITMY's side magnets are not glued in the correct places along the z-axis of the optic (z-axis as in beam propagation direction).
ITMX (as reported the other day) has the side magnet placement off by ~2mm. ITMX side was glued using the magnet fixture from MIT and the teflon pads that Kiwamu and I improvised.
It was determined that the improvised teflon pads were too thin (maybe about 1m thick), so I took those out, and replaced them with the teflon pads stolen from the 40m's magnet gluing fixture. (The teflon pad from the MIT fixture and the ones from the MIT fixture are the same within my measuring ability using a flat surface and feeling for a step between them. I haven't yet measured with calipers the MIT pad thickness). The pads from the 40m fixture, which were used in the MIT fixture to glue ITMY side last night were measured to be ~1.7mm thick.
Today when Koji hung ITMY, he discovered that the side magnet is off by ~1mm. This improvement is consistent with the switching of the teflon pads to the ones from the 40m fixture.
We compared the 40m fixture with the one from MIT, and it looks like the distance from the edge of where the optic should sit to the center of the hole for the side magnet is different by ~1.1mm. This explains the remaining ~1mm that ITMY is off by.
We should put the teflon pads back into the 40m fixture, and only use that one from now on, unless we find an easy way to make thicker teflon pads for the fixture we received from MIT. (The pads that are in there are about the maximum thickness that will fit). I'm going to use my thickness measurements of SRM (taken in the process of gluing the guiderods) to see what thickness of pads / what fixture we want to actually use, but I'm sure that the fixture we found in the 40m is correct. We can't use this fixture however, until we get some clean 1/4-28 screws. I've emailed Steve and Bob, so hopefully they'll have something for us by ~lunchtime tomorrow.
The ITMX side magnet is so far off in the Z-direction that we'll have to remove it and reglue it in the correct position in order for the shadow sensor to do anything. For ITMY, we'll check it out tomorrow, whether the magnet is in the LED beam at all or not. If it's not blocking the LED beam enough, we'll have to remove and reglue it too.
Why someone made 2 almost identical fixtures, with a 1mm height difference and different threads for the set screws, I don't know. But I don't think whoever that person was can be my friend this week. |
2655
|
Thu Mar 4 08:43:35 2010 |
Alberto | Update | 40m Upgrading | 11 MHz RFPD elctronics |
Quote: |
** Please add LISO file w/ component values.
|
oops, forgotten the third attachment...
here it is |
Attachment 1: rfpd11_v2.fil
|
# Resonant RF diode front end
#
# gnd
# |
# Cw2
# |
# n23
# |
# Lw2
# |
... 60 more lines ...
|
2656
|
Thu Mar 4 19:53:56 2010 |
Alberto | Update | 40m Upgrading | 11MHz PD designed adjusted for diode's resistance; 55 MHz RFPD designed |
I read a few datasheets of the C30642GH photodiode that we're going to use for the 11 and 55 MHz. Considering the values listed for the resistance and the capacitance in what they define "typical conditions" (that is, specific values of bias voltage and DC photocurrent) I fixed Rd=25Ohms and Cd=175pF.
Then I picked the tunable components in the circuit so that we could adjust for the variability of those parameters.
Finally with LISO I simulated transfer functions and noise curves for both the 11 and the 55MHz photodiodes.
I'm attaching the results and the LISO source files.
|
Attachment 1: rfpd55_Noise.pdf
|
|
Attachment 2: rfpd55_TF.pdf
|
|
Attachment 3: rfpd11_v2_TF.pdf
|
|
Attachment 4: rfpd11_v2_Noise.pdf
|
|
Attachment 5: rfpd11_v2.fil
|
Attachment 6: rfpd55.fil
|
2657
|
Thu Mar 4 22:07:21 2010 |
rana | Update | 40m Upgrading | 11MHz PD not yet designed |
Use 10 Ohms for the resistance - I have never seen a diode with 25 Ohms.
p.s. PDFs can be joined together using the joinPDF command or a few command line options of 'gs'. |
2658
|
Fri Mar 5 11:21:18 2010 |
steve | Update | SUS | used OSEMs are magnetic |
Quote: |
Jenne and Koji
We successfully hung ITMX on the SOS. Side magnet is ~2mm off from the center of the OSEM. ITMX aligned using the QPD. The OSEMs changes the alignment. It looks that something magnetic is inside the OSEM PD or LED.
Reguled ITMY side magnet.
Cleaned up the lab for the safety inspection.
|
The brand new OSEM LED and PD can be picked up with a weak magnet. These ferrous metals of LEDs and PDs will be magnetized by sitting in the sus next to the
magnets for years. I hanged optics with new OSEMs and never saw this effect before.
We have to demagnetize them. |
2659
|
Fri Mar 5 18:04:56 2010 |
rana | Update | SUS | used OSEMs are magnetic |
The OSEM LEDs and PDs from Honeywell have always had some ferromagnetic material in them. These are the same OSEMs we had since 2000.
You must be thinking of the really old 20th century plastic OSEMs. |
2660
|
Sun Mar 7 07:01:21 2010 |
rana | Update | WienerFiltering | Guralp Huddle Test software |
We need to do a new huddle test of the Guralps for the Wiener filtering paper. The last test had miserable results.
I tried to use recent data to do this, but it looks like we forgot to turn the Guralp box back on after the power outage or that they're far off center.
So instead I got data from after the previous power outage recovery.
I tried to use our usual Wiener filter method to subtract Guralp1-Z from Guralp2-Z, but that didn't work so well. It was very sensitive to the pre-weighting.
Instead I used the new .m file that Dmass wrote for subtracting the phase noise from his doubling noise MZ. That worked very well. It does all of the subtraction in the frequency domain and so doesn't have to worry about making a stable or causal filter. As you can see, it beats our weighted Wiener filter at all frequencies.

The attached plot shows the Guralp spectra (red & green), the residual using time-domain Wiener filtering (black) and the Dmass f-domain code (yellow).
As soon as Jenne brings in her beer cooler, we're ready to redo the Huddle Test.
|
2661
|
Sun Mar 7 23:05:39 2010 |
rana | Update | PEM | Seismic witnesses near MC1 tank moved |
Quote: |
Since we're going to open the MC1 tank tomorrow, I've moved the MC1 accelerometers and the Guralp over to underneath MC2 for the vent. I'll reconnect them later.
|
I've put both Guralps next to the Ranger and connected them to the breakout box. The data is now good.
I found that the Ranger was not centered and so it was stuck (someone kicked it in the last 2 weeks apparently). I recentered the mass according to the procedure in the manual. Its now moving freely.
In order to do a better huddle test, I increased the gain of the Ranger's SR560 preamp to 100 from 10 and put it on the low noise setting. I also enabled a 2x lowpass at 3 kHz for no good reason.
I couldn't find what the actual value of the gain of the Guralp breakout box is, but I assume its 10. With this assumption the calibrations are this:
Guralp: 800 V/(m/s) * 10 (V/V) * 16384 cts/V => 7.63e-9 (m/s)/count (0.03 - 40 Hz)
Ranger: 345 V/(m/s) * 100 (V/V) * 16384 cts/V => 1.77e-9 (m/s)/count (above 1Hz)
To account for the fact that I am not damping the Ranger with an external damping resistor, I have changed the calibration poles and zeros: in DTT we now use 2 poles @ 0 Hz and a complex pair at 1 Hz:
G = 1.77e-9
Poles = 0, 0
Zeros = 0.15 0.9887
I think that the Guralp gain is too high by a factor of 2. To really do this right, we should attach a known voltage to the input pins of the Guralp breakout and then read off the amount of counts. |
Attachment 1: seis.png
|
|
2662
|
Mon Mar 8 18:15:27 2010 |
rana | Update | PEM | Styrofoam Cooler on the Seismos |
I put Jenne's cooler over the seismometers. Kiwamu put the copper foil wrapped lead brick on top of the cooler to hold it down. I also put another (unwrapped) lead brick on top of the Guralp cables outside of the cooler. Frank gave me a knife with which I cut a little escape hole in the bottom of the cooler lip for the Guralp cables to sneak out of. |
Attachment 1: SeismometersHuddled.jpg
|
|
2663
|
Tue Mar 9 09:04:20 2010 |
steve | Update | PEM | keep vacuum chamber closed |
They are sandblasting at CES: our particle counts are very high. DO NOT OPEN CHAMBER! |
Attachment 1: sandblasting.jpg
|
|
2665
|
Tue Mar 9 12:06:53 2010 |
rana, Jenne | Update | PEM | Styrofoam Cooler on the Seismos |
Looks like the GUR2_X signal is bad. Jenne says that we need to center it mechanically before the signals will become useful again. Maybe Steve will do this - instructions are in the manuel ? |
2666
|
Wed Mar 10 15:02:58 2010 |
rana | Update | PEM | Styrofoam Cooler on the Seismos |
This is the spectra and coherence from a quiet time last night. I've lowered the Guralp cal by a factor of 2 to account for the fact that the gain in the breakout box is actually 20 and not 10 as I previously said.
The AD620 stage in the front part has a gain of 10 and then there's a single-to-differential stage in the output which gives us a gain of 2. The DTT cal in counts is now 3.8e-9 (m/s)/count.
The second plot shows the Guralp and Ranger signals at the ADC input (converted from counts to Volts for usefulness). The thick grey line is the expected noise of the Guralp breakout box
(mainly the AD620) propagated to the ADC (via multiplication by 2). It looks like the preamp board should not be a problem as long as we can reach the AD620 limit.
So the excess noise in the Guralp is not the fault of the preamp, but more likely the mounting and insulation of the seismometers. |
Attachment 1: Seismic-Ref_100310.png
|
|
Attachment 2: Untitled.gif
|
|
2668
|
Thu Mar 11 17:51:04 2010 |
Koji | Update | SUS | Recent status of SOSs |
Jenne, Koji
Recent status of SOSs:
We completed one of the suspension (ITMY).
ITMX: 6 Magnets, standoffs, and guide rod glued / balance to be confirmed / needs to be baked
ITMY: 6 Magnets, standoffs, and guide rod glued / balance confirmed / needs to be baked
SRM: 6 Magnets, one standoff, and guide rod glued, / waiting for the release from the gluing fixture.
PRM: one standoff, and guide rod glued / waiting for the magnet gluing.
We think we solved all the problems for hanging the suspensions.
--- Magnet gluing fixture ---
- There is the two kinds of fixtures. Neither does work propery in the original form!
- The height of the side magnets should be finely adjusted by changing the teflon sheets beneath the optics in the fixture.
- Be aware of the polarity of the fixture in terms of the side magnets
- Wrongly glued magnets (and others) can be removed by a razor blade with some amount of acetone.
- The pickle picker frequently knocks the magnets down during the release. Don't s be down in the dumps too much.
--- Suspending the mirror ---
- The wire winches must be carefully attached to the suspension tower such that the wires are not streached during fastening the clamps.
- There are a couple variations of the drawings for SOS. The one we have has #4-40 for the earthquake stops at the bottom.
Zach and Mott made the EQ stops with the right size.
|
2669
|
Fri Mar 12 13:52:18 2010 |
Zach | Update | elog | elog restarted |
The elog was down and I ran the restart script. |
2671
|
Sat Mar 13 21:30:22 2010 |
rana | Update | PEM | Styrofoam Cooler on the Seismos |

|
2672
|
Sat Mar 13 22:16:03 2010 |
rana | Update | WienerFiltering | Guralp Huddle Test software |
I used some recent better data to try for better Z subtraction.
Dmass helped me understand that sqrt(1-Coherence) is a good estimate of the theoretical best noise subtraction residual. This should be added to DTT. For reference the Jan statistic is the inverse of this.
This should get better once Steve centers the Guralps. |
Attachment 1: guralpznoise.png
|
|
2673
|
Mon Mar 15 09:43:47 2010 |
steve | Update | PEM | more sandblasting today |
Do not open IFO vacuum envelope today! They are sandblasting again at CES |
2674
|
Mon Mar 15 16:39:36 2010 |
steve | Update | PEM | Guralp2 centered |
Quote: |

Guralp 2 centered.The mass position offsets are: E-W 0.05V, N-S 0V, Z 0.4V
Guralp 1: E-W -0.1V, N-S -0.25V, Z 0V measured, not adjusted
The GUR2_X channel has an offset. See plot below when seismometers are disconnected. This offset has to be removed.
NOTE: this huddle is on bad-soft ground-lenoleum tile from prehistoric Flintstone age
|
|
Attachment 1: grlp2ffst.jpg
|
|
2675
|
Tue Mar 16 04:22:02 2010 |
Jenne | Update | Environment | Earthquake, Mag 4.4 |
Earthquake Details
Magnitude |
4.4 |
Date-Time |
- Tuesday, March 16, 2010 at 11:04:00 UTC
- Tuesday, March 16, 2010 at 04:04:00 AM at epicenter
|
Location |
33.998°N, 118.072°W |
Depth |
18 km (11.2 miles) |
Region |
GREATER LOS ANGELES AREA, CALIFORNIA |
Distances |
- 2 km (1 miles) ENE (58°) from Pico Rivera, CA
- 4 km (3 miles) ESE (115°) from Montebello, CA
- 4 km (3 miles) SSW (207°) from Whittier Narrows Rec. Area, CA
- 9 km (5 miles) NE (39°) from Downey, CA
- 9 km (6 miles) SSW (206°) from El Monte, CA
- 17 km (11 miles) ESE (112°) from Los Angeles Civic Center, CA
|
Location Uncertainty |
horizontal +/- 0.4 km (0.2 miles); depth +/- 0.9 km (0.6 miles) |
Parameters |
Nph=122, Dmin=5 km, Rmss=0.37 sec, Gp= 25°,
M-type=local magnitude (ML), Version=2 |
Source |
|
Event ID |
ci14601172
|
-----------------------------------------
MC1 and MC3 seem to have kept themselves together, but all the other optics' watchdogs tripped. |
Attachment 1: EQ_16Mar2010.png
|
|
2676
|
Tue Mar 16 05:10:39 2010 |
koji | Update | Environment | Earthquake, Mag 4.4 |
Some of the suspensions got watchdog tripped -> enabled -> damped.
The MC mirrors got slightly misaligned.
|
Attachment 1: 100316_MC_SUS.png
|
|
2677
|
Tue Mar 16 09:37:30 2010 |
steve | Update | SUS | eq 4.4 seen by oplevs and osems |
The oplev plots clearly show the alignment effect of this eq. |
Attachment 1: opleveq4.4.jpg
|
|
Attachment 2: eq4.4.jpg
|
|
Attachment 3: opleveq4.4d3.jpg
|
|
2678
|
Thu Mar 18 08:49:51 2010 |
steve | Update | PEM | Guralp2 centered again ? |
Someone adjusted the Guralp2 mass position last night??
NO |
Attachment 1: grlp2xadj.jpg
|
|
2679
|
Thu Mar 18 10:46:51 2010 |
Koji | Update | ABSL | PLL reconstructed |
Last night (Mar 17) I checked the PLL setup as Mott have had some difficulty to get a clean lock of the PLL setting.
- I firstly found that the NPRO beam is not going through the Faraday isolator well. This was fixed by aligning the steering mirrors before the Faraday.
- The signal from the RF PD was send to the RF spectrum analyzer through a power splitter. This is a waist of the signal. It was replaced to a directional coupler.
- Tee-ing the PZT feedback to the oscilloscope was producing the noise in the laser frequency. I put the oscilloscope to the 600Ohm output of the SR560, while connectiong the PZT output to the 50Ohm output.
- In addition, 6dB+6dB attenuators have been added to the PZT feedback signal.
Now the beating signal is much cleaner and behave straight forward. I will add some numbers such as the PD DC output, RF levels, SR560 settings...
Now I am feeling that we definitely need the development of really clean PLL system as we use PLL everywhere! (i.e. wideband PD, nice electronics, summing amplifiers, stop poking SR560, customize/specialize PDH box, ...etc) |
2680
|
Thu Mar 18 12:27:56 2010 |
Alberto | Update | ABSL | PLL reconstructed |
Quote: |
Last night (Mar 17) I checked the PLL setup as Mott had some difficulty to get a clean lock of the PLL setting.
- I firstly found that the NPRO beam is not going through the Faraday isolator well. This was fixed by aligning the steering mirrors before the Faraday.
- The signal from the RF PD was send to the RF spectrum analyzer through a power splitter. This is a waist of the signal. It was replaced to a directional coupler.
- Tee-ing the PZT feedback to the oscilloscope was producing the noise in the laser frequency. I put the oscilloscope to the 600Ohm output of the SR560, while connectiong the PZT output to the 50Ohm output.
- In addition, 6dB+6dB attenuators have been added to the PZT feedback signal.
Now the beating signal is much cleaner and behave straight forward. I will add some numbers such as the PD DC output, RF levels, SR560 settings...
Now I am feeling that we definitely need the development of really clean PLL system as we use PLL everywhere! (i.e. wideband PD, nice electronics, summing amplifiers, stop poking SR560, customize/specialize PDH box, ...etc)
|
I also had noticed the progressive change of the aux NPRO alignment to the Farady.
I strongly agree about the need of a good and robust PLL.
By modifying the old PDH box (version 2008) eventually I was able to get a PLL robust enough for my purposes. At some point that wasn't good enough for me either.
I then decided to redisign it from scratch. I'm going to work on it. Also because of my other commitments, I'd need a few days/1 week for that. But I'd still like to take care of it. Is it more urgent than that? |
2681
|
Thu Mar 18 13:40:35 2010 |
Koji | Update | ABSL | PLL reconstructed |
We use the current PLL just now, but the renewal of the components are not immediate as it will take some time. Even so we need steady steps towards the better PLL. I appreciate your taking care of it.
Quote: |
Quote: |
Last night (Mar 17) I checked the PLL setup as Mott had some difficulty to get a clean lock of the PLL setting.
- I firstly found that the NPRO beam is not going through the Faraday isolator well. This was fixed by aligning the steering mirrors before the Faraday.
- The signal from the RF PD was send to the RF spectrum analyzer through a power splitter. This is a waist of the signal. It was replaced to a directional coupler.
- Tee-ing the PZT feedback to the oscilloscope was producing the noise in the laser frequency. I put the oscilloscope to the 600Ohm output of the SR560, while connectiong the PZT output to the 50Ohm output.
- In addition, 6dB+6dB attenuators have been added to the PZT feedback signal.
Now the beating signal is much cleaner and behave straight forward. I will add some numbers such as the PD DC output, RF levels, SR560 settings...
Now I am feeling that we definitely need the development of really clean PLL system as we use PLL everywhere! (i.e. wideband PD, nice electronics, summing amplifiers, stop poking SR560, customize/specialize PDH box, ...etc)
|
I also had noticed the progressive change of the aux NPRO alignment to the Farady.
I strongly agree about the need of a good and robust PLL.
By modifying the old PDH box (version 2008) eventually I was able to get a PLL robust enough for my purposes. At some point that wasn't good enough for me either.
I then decided to redisign it from scratch. I'm going to work on it. Also because of my other commitments, I'd need a few days/1 week for that. But I'd still like to take care of it. Is it more urgent than that?
|
|
2684
|
Thu Mar 18 21:42:26 2010 |
Koji | Update | ABSL | PLL reconstructed |
I checked the setup further more.
- I replaced the PD from NewFocus 1GHz one to Thorlabs PDA255.
- I macthed the power level of the each beam.
Now I have significant fraction of beating (30%) and have huge amplitude (~9dBm).
The PLL can be much more stable now.
Koji |
2685
|
Fri Mar 19 18:00:14 2010 |
jenne | Update | PEM | Guralp2 centered again |
[Jenne, Sanjit]
It looks like Steve used a GND-12V supply to power the Guralp through the little breakout box (the box is for checking the centering of the mass). This is BAD. The Guralps want +/- 12V.
We centered all of the channels on Gur2, and checked the channels on Gur1, so we'll see how they're feeling after a while. |
2686
|
Fri Mar 19 21:15:33 2010 |
rana | Update | PEM | Guralp2 centered again |
This trend of the last 200 days shows that GUR2 has been bad forever...until now anyways. |
Attachment 1: Untitled.png
|
|
2687
|
Fri Mar 19 23:03:41 2010 |
rana | Update | PEM | Guralp2 centered again |
I went and double-checked and aligned the styrofoam cooler at ~5:00 UTC. It was fine, but we really need a better huddling box. Where's that granite anyway?
Here's the new Huddle Test output. This time I show the X-axis since there's some coherence now below 0.1 Hz.
You'll also notice that the Wiener filter is now beating the FD subtraction. This happened when I increased the # of taps to 8000. Looks like the noise keeps getting lower as I increase the number of taps, but this is really a kind of cheat if you think about it carefully. |
Attachment 1: huddlez.png
|
|
2689
|
Sun Mar 21 19:25:29 2010 |
rana | Update | PEM | Guralp2 centered again |
From this morning, now in calibrated units, and with the Güralp self noise spec from the Güralp manual. |
Attachment 1: huddlez.png
|
|
2690
|
Sun Mar 21 20:08:20 2010 |
kiwamu, rana | Update | PSL | EOM wasit size |
We are going to set the waist size to 0.1 mm for the beam going through the triple resonant EOM on a new PSL setup.
When we were drawing a new PSL diagram, we just needed to know the waist size at the EOM in order to think about mode matching.

This figure shows the relation between the waist size and the spot size at the aperture of the EOM.
The x-axis is the waist size, the y-axis is the spot size. It is clear that there is a big clearance at 0.1 mm waist size. This is good.
Also it is good because the waist size is much above the damage threshold of the EO crystal (assuming 1W input).
The attached file is the python code for making this plot. |
Attachment 2: waist.py.zip
|
2691
|
Sun Mar 21 21:02:39 2010 |
Koji | Update | PSL | EOM waist size |
You don't need a lengthy code for this. It is obvious that the spot size at the distance L is minimum when L =
zR, where zR is the Rayleigh range. That's all.
Then compare the spot size and the aperture size whether it is enough or not.
It is not your case, but if the damage is the matter, just escape to the large zR side. If that is not possible
because of the aperture size, your EOM is not adequate for your purpose. |
2694
|
Mon Mar 22 11:37:09 2010 |
steve | Update | PEM | jackhammering |
There was more jackhammering this morning just about 20 ft north-west of the beamsplitter chamber, outside. |
Attachment 1: jackhammering2.jpg
|
|
2696
|
Mon Mar 22 22:11:26 2010 |
Mott | Update | ABSL | PLL reconstructed |
It looks like the PLL drifted alot over the weekend, and we couldn't get it back to 9 dBm. We switched back to the new focus wideband PD to make it easier to find the beat signal. I replaced all the electronics with the newly fixed UPDH box (#17) and we aligned it to the biggest beat frequency we could get, which ended up being -27 dBm with a -6.3V DC signal from the PD.
Locking was still elusive, so we calculated the loop gain and found the UGF is about 45 kHz, which is too high. We added a 20 dB attenuator to the RF input to suppress the gain and we think we may have locked at 0 gain. I am going to add another attenuator (~6 dB) so that we can tune the gain using the gain knob on the UPDH box.
Finally, attached is a picture of the cable that served as the smb - BNC adaptor for the DC output of the PD. The signal was dependent on the angle of the cable into the scope or multimeter. It has been destroyed so that it can never harm another innocent experiment again! |
Attachment 1: IMG_0150.JPG
|
|
2697
|
Mon Mar 22 23:37:32 2010 |
Mott | Update | ABSL | PLL reconstructed |
We have managed to lock the PLL to reasonable stability. The RF input is attenuated by 26 dBm and the beat signal locks very close to the carrier of the marconi (the steps on the markers of the spectrum analyzer are coarse). We can use the marconi and the local boost of the pdh box to catch the lock at 0 gain. Once the lock is on, the gain can be increased to stabilize the lock. The locked signals are shown in the first photo (the yellow is the output of the mixer and the blue is the output to the fast input of the laser. If the gain is increased too high, the error signal enters an oscillatory regime, which probably indicates we are overloading the piezo. This is shown in the second photo, the gain is being increased in time and we enter the non-constant regime around mid-way through.
Tomorrow I will use this locked system to measure the PZT response (finally!). |
Attachment 1: 2010-03-22_23.14.00.jpg
|
|
Attachment 2: 2010-03-22_23.24.50.jpg
|
|
2698
|
Tue Mar 23 00:31:51 2010 |
Koji | Update | IOO | MC realigned |
This is the first touch to the MC mirrors after the earthquake on 16th.
- I made an aluminum access connector so that we can work on the MC even the door is open. We still can be able to open the aluminum tube. The photos are attached. Steve, could you please look it at a glance whether the seal is enough or not.
- MC resonances were flashing. Align MC2 and MC3 so that we have many TEM00s.
- Found c1vmesus2 gone mad. Restarted remotely according to the wiki entry.
- Reset the MC coil output matrix to 1. (Previously, balance was adjusted so that A2L was minimized.)
- Excite MC2 Pitch/Yaw at 8 and 9 Hz, looking at the peaks in the MC-MCL output. Move MC2 Pitch/Yaw so that the peak
is reduced. (*)
- MC1/MC3 were aligned so that we get the maximum transmission (or minimum reflection). (**)
- Repeat (*) and (**)
So far, I have aligned in Yaw such that the yaw peak is minimized. |
Attachment 1: IMG_2346.jpg
|
|
Attachment 2: IMG_2347.jpg
|
|
2699
|
Tue Mar 23 09:37:36 2010 |
steve | Update | IOO | vac envelope has to be sealed as antproof for overnight |
Quote: |
This is the first touch to the MC mirrors after the earthquake on 16th.
- I made an aluminum access connector so that we can work on the MC even the door is open. We still can be able to open the aluminum tube. The photos are attached. Steve, could you please look it at a glance whether the seal is enough or not.
- MC resonances were flashing. Align MC2 and MC3 so that we have many TEM00s.
- Found c1vmesus2 gone mad. Restarted remotely according to the wiki entry.
- Reset the MC coil output matrix to 1. (Previously, balance was adjusted so that A2L was minimized.)
- Excite MC2 Pitch/Yaw at 8 and 9 Hz, looking at the peaks in the MC-MCL output. Move MC2 Pitch/Yaw so that the peak
is reduced. (*)
- MC1/MC3 were aligned so that we get the maximum transmission (or minimum reflection). (**)
- Repeat (*) and (**)
So far, I have aligned in Yaw such that the yaw peak is minimized.
|
This seal is good for daily use- operation only. The IFO has to be sealed with light metal doors every night so ants and other bugs can not find their way in.
Our janitor Kevin is mopping the hole IFO room floor area with 5% ant killing solution in water in order to discourage bugs getting close to our openings of the vented chamber.
You may be sensitive to this chemical too. Do not open chamber till after lunch. |
Attachment 1: pc3.JPG
|
|
Attachment 2: pc4.JPG
|
|
2700
|
Tue Mar 23 09:55:20 2010 |
Koji | Update | IOO | vac envelope has to be sealed as antproof for overnight |
Roger.
Quote: |
This seal is good for daily use- operation only. The IFO has to be sealed with light metal doors every night so ants and other bugs can not find their way in.
|
|
2701
|
Tue Mar 23 10:11:13 2010 |
steve | Update | PEM | small air cond unit failed yesterday |
Old control room air condition failed yesterday around noon. It was blowing 80-85F hot air for about 2-3 hours at racks 1Y4-7 and the entry room 103 |
Attachment 1: 20datm.jpg
|
|
2702
|
Tue Mar 23 15:38:26 2010 |
Alberto | Update | elog | elog just restarted |
I found the elog down and I restarted it.
Then, after few seconds it was down again. Maybe someone else was messing with it. I restarted an other 5 times and eventually it came back up. |
2703
|
Tue Mar 23 18:44:46 2010 |
Mott | Update | ABSL | PLL reconstructed |
After realigning and getting the lock today, I tried to add in the SR785 to measure the transfer function. As soon as I turn on the piezo input on the PDH box, however, the lock breaks and I cannot reacquire it. We are using an SR650 to add in the signal from the network analyzer and that has worked. We also swapped the 20 dB attenuator for a box which mimics the boost functionality (-20 dB above 100 Hz, 0 dB below 6Hz). I took some spectra with the SR750, and will get some more with the network analyzer once Alberto has finished with it.
The SR750 spectra is posted below. The SR750 only goes up to 100 kHz, so I will have to use the network analyzer to get the full range. |
Attachment 1: NPRO_PLL_freqresp.png
|
|
2704
|
Tue Mar 23 22:46:43 2010 |
Alberto | Update | 40m Upgrading | REFL11 upgraded |
I modified REFL11 according to the changes lsited in this schematic (see wiki / Upgrade 09 / RF System / Upgraded RF Photodiodes ).
I tuned it to be resonant at 11.06MHz and to have a notch at 22.12MHz.
These are the transfer functions that I measured compared with what I expected from the LISO model.

The electronics transfer function is measured directily between the "Test Input" and the "RF Out" connector of the box. the optical transfer function is measured by means of a AM laser (the "Jenne laser") modulated by the network analyzer.
The AM laser's current was set at 20.0mA and the DC output of the photodiode box read about 40mV.
The LISO model has a different overall gain compared to the measured one, probably because it does not include the rest of the parts of the circuit other than the RF out path.
I spent some time trying to understand how touching the metal cage inside or bending the PCB board affected the photodiode response. It turned out that there was some weak soldering of one of the inductors. |
2705
|
Wed Mar 24 02:06:24 2010 |
Koji | Update | IOO | vac envelope has to be sealed as antproof for overnight |
Matt and Koji:
We closed the light doors of the chambers.
Quote: |
Roger.
Quote: |
This seal is good for daily use- operation only. The IFO has to be sealed with light metal doors every night so ants and other bugs can not find their way in.
|
|
|
2706
|
Wed Mar 24 03:58:18 2010 |
kiwamu, matt, koji | Update | Green Locking | leave PLL locked |
We are leaving the PLL as it is locked in order to see the long term stability. And we will check the results in early morning of tomorrow.
DO NOT disturb our PLL !!
(what we did)
After Mott left, Matt and I started to put feedback signals to the temperature control of NPRO.
During doing some trials Matt found that NPRO temperature control input has an input resistance of 10kOhm.
Then we put a flat filter ( just a voltage divider made by a resistor of ~300kOhm and the input impedance ) with a gain of 0.03 for the temperature control to inject a relatively small signal, and we could get the lock with the pzt feedback and it.
In addition, to obtain more stable lock we then also tried to put an integration filter which can have more gain below 0.5Hz.
After some iterations we finally made a right filter which is shown in the attached picture and succeeded in obtaining stable lock.
|
Attachment 1: DSC_1402.JPG
|
|
2707
|
Wed Mar 24 04:22:51 2010 |
kiwamu, matt | Update | Green Locking | two NPRO PLL |
Now some pedestals, mirrors and lenses are left on the PSL table, since we are on the middle way to construct a PLL setup which employs two NPROs instead of use of PSL laser.
So Please Don't steal any of them. |
2710
|
Wed Mar 24 14:52:02 2010 |
Alberto | Update | Green Locking | two NPRO PLL |
Quote: |
Now some pedestals, mirrors and lenses are left on the PSL table, since we are on the middle way to construct a PLL setup which employs two NPROs instead of use of PSL laser.
So Please Don't steal any of them.
|
Can I please get the network analyzer back? |