40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 120 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  2392   Thu Dec 10 18:27:48 2009 MottUpdateGeneralUpdated R & T Measurements

Attached are updated plots of the T&R Measurements for a variety of mirrors, and diagrams for the setup used to make the measurements.

T is plotted for the 1064 nm measurement, since these mirrors are highly reflective at 1064, and either R or R&T are plotted for the 532 nm measurement, depending on how larger the R signal is.

As with the previous set of plots, the error bars here are purely statistical, and there are certainly other sources of error not accounted for in these plots.  In general, the T measurement was quite stable, and the additional errors
are probably not enormous, perhaps a few percent.

The mirrors are:

Y1-1037-00.50CC

Y1-2037-45S

Y1-2037-45P

Y1S-1025-0

Y1S-1025-45

 

Attachment 1: Y1S-0.png
Y1S-0.png
Attachment 2: Y1S-45.png
Y1S-45.png
Attachment 3: Y45P.png
Y45P.png
Attachment 4: Y45S.png
Y45S.png
Attachment 5: Y150CC.png
Y150CC.png
Attachment 6: Setup.png
Setup.png
  2401   Fri Dec 11 17:36:37 2009 kiwamuUpdateGeneralIFO restoring plan

Alberto, Jenne, Kiwamu

 

We together will lead the IFO restoring and the following is our plan.

- - - - -|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#.0     |  measuring the free swinging spectra                     (weekend by kiwamu)   DONE

#.1     |  turn ON the PZTs for steering mirror and so on.         (Dec.14 Mon.) DONE

#. 1            |    lock around PSL  DONE

#.2     |  deal with mechanical shutter                            (Dec.14 Mon.)DONE

#.3     |  lock MCs                                                (Dec.14 Mon.)DONE

#.4     |  align the IFO                                           (Dec.15 Tue.)DONE

#.5     |  lock full IFO                                           (Dec.15 Tue.)DONE

- - - - -|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 

Thank you.

  2415   Mon Dec 14 19:33:04 2009 AlbertoUpdateGeneralArm Cavity Poles measured again after cleaning the optics last week

Last week we vented and we cleaned the main optics of the arm cavities.

I measured the frequency of the cavity poles for both the arm cavities to see how they changed (see previous elog entry 2226). These the results:

fp_X = 1616 +/- 14 Hz

fp_Y = 1590 +/- 4 Hz

The error is the statistical error that I got with the Matlab NonLinearLeastSquare fitting function.
 
I calculated the cavity pole frequencies by measuring the transfer function between a photodiode located at the end of the arms (either X or Y) and another photodiode placed after the mode cleaner. Both diodes where Thorlabs PDA255.
(Last time, I had measured that the pair of diode had a flat calibration).
 
With the SR785 I measured the transfer function by exciting the OMC_ISS_EXC input cable.
For both arms I set to 1V the excitation amplitude. I repeated the measurements for different excitation amplitudes without observing any changes.
I then fitted the data with the NonLinearLeastSquare function of matlab. The script I wrote to do that is attached to this entry in a compressed file.
The files also contains the PDF with the output plots and the data from both set of measurements performed before and after the cleaning.
The data is commented in a file called measurements.log.
 
In the end I disabled again the test switch on the ISS MEDM screen.
I disconnected the excitation cable from the OMC_ISS_EXC input cable.
I removed the photodiode that measured the Mode Cleaner transmission from the PSL clearing the way for the beam to get back to its path to the RFAM photodiode.
Attachment 1: XarmTF01_fit.pdf
XarmTF01_fit.pdf
Attachment 2: YarmTF01_fit.pdf
YarmTF01_fit.pdf
Attachment 3: ArmCavityFinesseMeasurment.tar.gz
  2416   Mon Dec 14 22:32:56 2009 KojiUpdateGeneralArm cavity loss ~ result

I like to ask someone to review the calculation on the wiki.

In the calculation, the round trip loss and the front mirror T are the unknown variables.
The end mirror T of 10ppm was assumed. (End mirror T)+(Round trip loss) is almost invariant, and T_end does not change the other results much.

Arm cavity loss measurement (Dec. 14, 2009)

X Arm:
  • Arm visibility (given): 0.897 +/- 0.005 (20 pts) (2.5%UP!!)
  • Cut off freq (given): 1616 +/- 14 [Hz] (2.1%UP!!)
  • Finesse (derived): 1206 +/- 10 (2.1%UP!!)
  • Round Trip loss (estimated): 127 +/- 6 [ppm] (28%DOWN!!)
  • Front Mirror T (estimated): 0.00506 +/- 0.00004
Y Arm:
  • Arm visibility (given): 0.893 +/- 0.004 (20 pts) (2.1%UP!!)
  • Cut off freq (given): 1590 +/- 4 [Hz] (8.2%UP!!)
  • Finesse (derived): 1220 +/- 3 (8.2%UP!!)
  • Round Trip loss (estimated): 131 +/- 6 [ppm] (37%DOWN!!)
  • Front Mirror T (estimated): 0.00500 +/- 0.00001 

Previous measurement (Oct 07, 2009 & Nov 10, 2009)

X Arm:  

  • Arm visibility (given): 0.875 +/- 0.005 (34 pts)
  • Cut off freq (given): 1650 +/- 70 [Hz]
     
  • Finesse (derived): 1181 +/- 50
  • Round Trip loss (estimated): 162 +/- 10 [ppm]
  • Front Mirror T (estimated): 0.0051 +/- 0.0002

Y Arm: 

  • Arm visibility (given): 0.869 +/- 0.006 (26 pts)
  • Cut off freq (given): 1720 +/- 70 [Hz]
     
  • Finesse (derived): 1128 +/- 46
  • Round Trip loss (estimated): 179 +/- 12 [ppm]
  • Front Mirror T (estimated): 0.0054 +/- 0.0002
  2418   Tue Dec 15 05:29:31 2009 AlbertoUpdateGeneralArm Cavity Poles measured again after cleaning the optics last week

 

 The Y arm cavity pole moved down by 130 Hz, whereas the X arm moved by only 34 Hz. I wonder if that is because Kiwamu spent much more time on cleaning ITMY than on any other optic.

  2419   Tue Dec 15 17:16:22 2009 KojiUpdateGeneralTable distance measurements

During the vent we have tried to measure the distances of the optical tables for BS-ITMX and BS-ITMY.
We need to take into account the difference between the AutoCAD drawing and the reality.

X direction distance of the table center for BS and ITMX:
84.086" (= 2135.8mm)
(This is 84.0000" in AutoCAD drawing)

Y direction distance of the table center for BS and ITMX:
83.9685" (= 2132.8mm)
(This is 83.5397" in AutoCAD drawing)

We used two scales attached each other in order to measure the distance of the certain holes on the tables.

We got more numbers that were estimated from several separated measurements.
I think they were not so accurate, but just as a record, I also put the figure as an attachment 2.

Attachment 1: Table_distance_by_metal_scale.pdf
Table_distance_by_metal_scale.pdf
Attachment 2: Table_distance_by_chambers.pdf
Table_distance_by_chambers.pdf
  2446   Tue Dec 22 15:49:31 2009 kiwamuUpdateGenerale-log restarted

I found the e-log has been down around 3:40pm, then I restarted the e-log. Now it's working.

Thanks.

  2452   Sat Dec 26 19:22:13 2009 KojiSummaryGeneralMode coupling of two astigmatic beams

In this note, amplitude and power couplings of two astigmatic (0,0)-th order gaussian modes are calculated.

Attachment 1: mode_coupling.pdf
mode_coupling.pdf mode_coupling.pdf
  2467   Wed Dec 30 10:58:48 2009 AlbertoUpdateGeneralAll watchdogs tripped this morning

This morning I found all the watchdogs had tripped during the night.

I restored them all.

I can't damp ITMX. I noticed that its driving matrix is all 1s and -1s as the the right values had been lost in some previous burtrestoring.

  2468   Wed Dec 30 18:01:03 2009 Alberto, RanaUpdateGeneralAll watchdogs tripped this morning

WQuote:

This morning I found all the watchdogs had tripped during the night.

I restored them all.

I can't damp ITMX. I noticed that its driving matrix is all 1s and -1s as the the right values had been lost in some previous burtrestoring.

 

Rana fixed the problem. He found that the side damping was saturating. He lowered the gain a little for a while, waited for the the damping to slow down the optic and then he brought the gain back where it was.

He also upadted the MEDM screen snapshot.

  2470   Wed Dec 30 22:17:07 2009 kiwamuUpdateGeneralCamera input and monitor output

The input channels of the cameras and the output channels for the monitors are summarized on the wiki.

The channel table on the wiki is very helpful when you want to make a change in the video matrix.

thank you.

  2474   Mon Jan 4 17:26:01 2010 MottUpdateGeneralT & R plots for Y1 and Y1S mirrors

The most up-to-date T and R plots for the Y1 and Y1S mirrors, as well as a T measurement for the ETM, can be found on:

http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/Optics/RTmeasurement

 

  2499   Sun Jan 10 23:22:56 2010 JenneSummaryGeneralScattering Measurements of 35W Beam Dumps

On Friday, Rana and I measured the scatter coming from the 35W beam dumps.

(These are the ones with big aluminum heat sinks on the back that kind of look like little robots with 2 legs...inside the horn is a piece of polished silicon at Brewster's Angle.)

 

SETUP:

For the measurement, we used the Scatterometer setup at the 40m on the small optical table near MC2. 

We used a frequency of 1743 Hz for the Chopper, and this was also used as the reference frequency for the SR830 Lock-In Amplifier. 

The settings on the Lock-In were as follows:

Input A

24dB/octave

AC coupled

Floating input

"Low Noise"

Time Constant = 1sec

'Scope reading Output A, Output A set to 'Display', and A's display set to "R" (as in magnitude).

Sensitivity changed throughout the experiment, so that's quoted for each measurement.

 

MEASUREMENTS:

White Paper Calibration - white paper placed just in front of Beam Dump.  Sensitivity = 500microVolts.  Reading on 'scope = 7V

Laser Shuttered.  Sensitivity = 500microVolts. 'scope reading = 9mV.

Black Glass at Beam Dump location.  Sensitivity = 500microVolts.  Reading on 'scope = 142mV.   (DON'T touch the glass....measure the same setup with different sensitivity)

Black Glass at Beam Dump location (Not Touched since prev. measurement). Sensitivity = 10microVolts. Reading on 'scope = 6.8V

Laser Shuttered. Sensitivity = 10microVolts. 'scope Reading = 14mV +/- 10mV (lots of fluctuation).

Black Glass Wedge Dump at Beam Dump location. Sensitivity = 10microVolts. 'scope = 100mV.

Beam Dump with original shiny front plate. Sensitivity = 10microVolts.  'scope railing at 11V

Beam Dump with front plate removed. Sensitivity = 10microVolts. 'scope reading = 770mV

Beam Dump, no front plate, but horn's opening surrounded by 2 pieces of Black Glass (one per side ~1cm opening), BG is NOT flush with the opening...it's at an angle relative to where the front plate was.  Sensitivity = 10microV. 'scope = 160mV +/- 20mV.

Beam Dump, no front plate, only 1 piece of Black Glass. Sensitivity = 10microV. 'scope reading = 260mV.

Beam Dump, no front plate, 2 pieces of Black Glass, normal incidence (the BG is flush with where the front plate would have been). Sensitivity = 10microV. 'Scope reading = ~600mV

 

CALIBRATION:

Using our calibration numbers (Black Glass measured at 2 different sensitivities, not touching the setup between the measurements), we can find the calibration between our 2 different sets of measurements (at 500microV and 10microV), to compare our Beam Dump with regular white paper. 

BG at 500uV was 142mV.  BG at 10uV was 6.8V.    6.8V/0.142V = 47.9 

So the white paper, which was measured at 500uV sensitivity, would have been (7V * 47.9) = 335 V in 10uV sensitivity units. 

This is compared to the BG wedge dump at 10uV sensitivity of 100mV, and the Beam Dump reading of 770mV, and the Beam Dump with-black-glass-at-the-opening reading of 160mV.

So our Silicon/Steel horn dump is ~8x worse than a Black Glass wedge and (335 / 0.77) = 435x better than white paper.

We used regular white paper as a calibration because it has a Lambertian reflectance. For some general idea of how to do these kinds of scatter measurements, you can look at this MZ doc.

Assuming that our white paper had a BRDF of (1/pi)/steradian, we can estimate some numbers for our setup:

Sensitivity (signal with the laser shuttered) = (0.02 / 335 / pi) = 2 x 10^-5 / sr.   This is ~3x worse than the best black glass surfaces.

Our wedge = (0.1 / 335 / pi) = 1 x 10^-4 / sr.  Needs a wipe.

Our Silicon-Steel Horn = (0.75 / 335 / pi) = 7 x 10^-4 / steradian.

Our measurements were all made at a small angle since we are interested in scatter back along the incoming beam. We were using a 1" lens to collect the scatter onto a PDA55. The distance from the beam to the center of the lens was ~2" and the detector's lens was ~20" from the front of the horn. So that's an incident angle of ~3 deg.

CONCLUSIONS:

* It seems that any front plate other than Black Glass is probably worse than just having no front plate at all.

* If we put in a front plate, it shouldn't be normal to the incident beam.  Black Glass at normal incidence was almost at the same level as having no front plate. So if we're going to bother with a front plate, it should be about 30deg or 40deg from where the original front plate was.

* No front plate on the Dump is about 7x a Black Glass wedge dump.

* The silicon looks like it might have some dust on it (as well as the rest of the inside of the horn).  We should clean everything.  (Maybe with deionized nitrogen?)

* We should remeasure the Beam Dump using polished steel at a small (30-40deg) angle as the front plate. 

 

ATTACHMENTS:

 * Photos taken with the Olympus camera, which has its IR blocker removed.

* In the photo you can see that we have a lot of reflection off of the horn on the side opposite from the silicon.

* The 2nd picture is of the scatterometer setup.

Attachment 1: P1090014_copy.JPG
P1090014_copy.JPG
Attachment 2: ScatterometerSetup.png
ScatterometerSetup.png
  2500   Mon Jan 11 09:18:44 2010 AlbertoUpdateGeneralMeasurement running

I'm working on the AbsL experiment. A measurement which involved the PRC locked is running at the moment.

Please make sure of not interfering with the interferometer until it is done. Thank you.

  2507   Tue Jan 12 09:14:52 2010 steveSummaryGeneralScattering Measurements of 35W Beam Dumps

 

 What was the power level, polarization and beam size at beam trap?

  2568   Wed Feb 3 11:13:15 2010 steveConfigurationGeneralplaned power outage for Sat. Feb 20

The electrical shop has to connect the new power transformer at CES. This means we will have no AC power for ~8 hrs on Saturday, February 20

Is this date good for us to power down ALL equipment in the lab?

Rana:  Yes

  2585   Wed Feb 10 16:27:47 2010 steveConfigurationGeneral IFO beam heights

IN VACUUM beam heights are ALL 5.5"  This is measured from the top of the optical table to the center of all TMs, mirrors and other optical components. This beam is ~36" above the floor.

PSL (inside of enclosure) main-output  beam: PMC, MZ, RC and ISS  are at 3" heights. IOO Angle & Position, MC-Trans and RFAM qpds are at 4"

ALL OTHER beam heights at atmosphere and  different ISCT (interferrometer sensing, control optical table)s are at 4"

 

 

  2612   Thu Feb 18 10:10:43 2010 steveConfigurationGeneral480 V AC power turned off

Only the 40m cranes are running on 480VAC The electricians are rewiring this transformer on the mezzanine so it was shut down.

I tested all three cranes before the 480V power was turned off. The last thing to do with the cranes to wipe them down before use.

It will happen on next Tuesday morning.

  2617   Fri Feb 19 13:28:44 2010 KojiUpdateGeneralPrep for Power Supply Stop

- ETMX/ETMY oplev paths renewed. The nominal gain for ETMY YAW was reversed as a steering mirror has been put.
- Oplevs/QPDs cenrtered except for the MCT QPD.
- SUS snapshots updated
- QPD/Aligment screenshots taken

40m Wiki: Preparation for power supply stop

Attachment 1: screen_shot.png
screen_shot.png
  2620   Sun Feb 21 17:44:35 2010 ranaUpdateGeneralPrep for Power Supply Stop
  • Turned on the RAID attached to linux1 (its our /cvs/cds disk)
  • Turned on linux1 (it needed a keyboard and monitor in order to be happy - no fsck required)
  • Turned on nodus (and started ELOG) + all the control room machines
  • Turned on B/W monitors
  • Untaped fridge


  • Found several things OFF which were not listed in the Wiki...
  • Turned ON the 2 big isolation transformers (next to Steve's desk and under the printer). These supply all of the CDS racks inside.
  • ~75% of the power strips were OFF in the CDS racks ?? I turned on as many as I could find (except the OMC).
  • Switched on and keyed on all of the FE and SLOW crates in no particular order. Some of the fans sound bad, but otherwise OK.
  • Turned on all of the Sorensens that are labeled.
  • Turned ON the linear supplies close to the LSC rack.
  • ON the Marconis - set them according to the labels on them (probably out-dated).
  • After restoring power to the PSL enclosure (via the Isolation Transformer under the printer) turned the Variac ON and HEPA on full speed.
  • Plugged in the PSs for the video quads. Restored the Video MUX settings - looks like we forgot to save the correct settings for this guy...


PSL


1) Turned on the chiller, then the MOPA, then the RC's Heater power supply.
2) Shutter is open, laser is lasing, PMC is locked.
3) RC temperature is slowly rising. Will probably be thermalized by tomorrow.

Sun Feb 21 20:04:17 2010
Framebuilder is not mounting its RAID frames - in fact, it doesn't mount anything because the mountall command is failing on the RAID with the frames. The Jetstor RAID is also not responding to ping. Looks like the JetStor RAID which has all of our frames is still on the old 131 network, Joe.
  2621   Mon Feb 22 07:25:58 2010 ranaUpdateGeneralPrep for Power Supply Stop

Autoburts have not been working since the network changeover last Thursday.

Last snapshot was around noon on Feb 11...  


It turns out this happened when the IP address got switched from 131.... to 192.... Here's the horrible little piece of perl code which was failing:

$command = "/usr/sbin/ifconfig -a > $temp";
   system($command);

   open(TEMP,$temp) || die "Cannot open file $temp\n";
   $site = "undefined";
   #                                                                                                     
   # this is a horrible way to determine site location                                                   
   while ($line = <TEMP>) {
     if ($line =~ /10\.1\./) {
       $site = "lho";
     } elsif ($line =~ /10\.100\./) {
       $site = "llo";
     } elsif ($line =~ /192\.168\./) {
       $site = "40m";
     }
   }
   if ($site eq "undefined") {
     die "Cannot Determine Which LIGO Observatory this is\n";

I've now put in the correct numbers for the 40m...and its now working as before. I also re-remembered how the autoburt works:

1) op340m has a line in its crontab to run /cvs/cds/caltech/burt/autoburt/burt.cron (I've changed this to now run at 7 minutes after the hour instead of at the start of the hour).

2) burt.cron runs /cvs/cds/scripts/autoburt.pl (it was using a perl from 1999 to run this - I've now changed it to use the perl 5.8 from 2002 which was already in the path).

3) autoburt.pl looks through every directory in 'target' and tries to do a burt of its .req file.

Oh, and it looks like Joe has fixed the bug where only op440m could ssh into op340m by editing the host.allow or host.deny file (+1 point for Joe).

But he forgot to elog it (-1 point for Joe).®

  2622   Mon Feb 22 09:45:34 2010 josephbUpdateGeneralPrep for Power Supply Stop

Quote:

Autoburts have not been working since the network changeover last Thursday.

Last snapshot was around noon on Feb 11...  


It turns out this happened when the IP address got switched from 131.... to 192.... Here's the horrible little piece of perl code which was failing:

$command = "/usr/sbin/ifconfig -a > $temp";
   system($command);

   open(TEMP,$temp) || die "Cannot open file $temp\n";
   $site = "undefined";
   #                                                                                                     
   # this is a horrible way to determine site location                                                   
   while ($line = <TEMP>) {
     if ($line =~ /10\.1\./) {
       $site = "lho";
     } elsif ($line =~ /10\.100\./) {
       $site = "llo";
     } elsif ($line =~ /192\.168\./) {
       $site = "40m";
     }
   }
   if ($site eq "undefined") {
     die "Cannot Determine Which LIGO Observatory this is\n";

I've now put in the correct numbers for the 40m...and its now working as before. I also re-remembered how the autoburt works:

1) op340m has a line in its crontab to run /cvs/cds/caltech/burt/autoburt/burt.cron (I've changed this to now run at 7 minutes after the hour instead of at the start of the hour).

2) burt.cron runs /cvs/cds/scripts/autoburt.pl (it was using a perl from 1999 to run this - I've now changed it to use the perl 5.8 from 2002 which was already in the path).

3) autoburt.pl looks through every directory in 'target' and tries to do a burt of its .req file.

Oh, and it looks like Joe has fixed the bug where only op440m could ssh into op340m by editing the host.allow or host.deny file (+1 point for Joe).

But he forgot to elog it (-1 point for Joe).®

I knew there was going to be a script somewhere with a hard coded IP address.  My fault for missing it.  However, in regards to the removal of op340m's host.deny file, I did elog it here.  Item number 5.

  2625   Mon Feb 22 11:42:48 2010 KojiUpdateGeneralPrep for Power Supply Stop

Turned on the power supply for the oplev lasers.
Turned on the power of the aux NPRO.
Turned on some of the Sorensen at 1X1.
Fixed the thermal output to round -4.0.
Locked PMC / MZ.

Waiting for the computers recovering.

  2630   Tue Feb 23 06:47:57 2010 KojiUpdateGeneralIFO situations / low power MC lock

Work on 22nd Monday:

[MC recovery]

- Tried to lock MC after the computer recovery by Joe.
- A lot of higher modes. I can touch the input periscope or the MC mirrors.
- First tried to align the MC mirrors. MC1 was aligned against the MC REFL PD. MC2/3 was aligned to maximize the transmitted power.
- After the alignment, I got the MC Trans Sum ~8V. Also I saw the flashing of the arm cavities. I decided to take this alignment although the beam looks little bit clipped by the faraday.

[IFO alignment recovery]

- Aligned the arms for TEM00 manually.
- Arm alignment script seems not working now. This could come from the move of the end QPDs
- PRMI/DRMI were aligned. All alignment values saved.

[Low power MC]

[Optical config]

- I fixed the MCT CCD camera. It is quite useful to align the MC.

- Inserted HWP+Cube PBS+HWP combo in the MC incident path.
- First HWP and PBS adjust the light power. The second HWP is fixed at 342deg such that it restores the poralization to S.
- The incident power was measured by the SCIENTECH power meter. Offset of 3mW was subtracted in the table below.

HWP1 angle P_MC_incident comment
126deg 1.03W Max
100 0.39  
90 0.098 Low power max
85 0.021 Low power nominal

- HWP1 85deg is the nominal.

- I needed to touch the steering mirror (indicated by the picture) to obtain TEM00.
  The alignment of the HWPs and the cube PBS didn't change the mode. Thermal lense of the cube?

- I could not lock the MC with the incident power below 100mW. So the BS in the MC REFL path was replaced by a total reflector (Y1-45S).
- This increased the power on the MC REFL PD x10 of the previous. NOW WE ARE CONSTRAINED BETWEEN 81deg~90deg. DON'T ROTATE FURTHER!
- The original BS was stored on the AP table as shown in the picture.
- This total reflector disabled the MC WFS QPDs. We can't use them.

[Lock of the MC with 20mW incident]
- Disable the MC autolocker.
- Disable the MC WFS.
- Run
  /cvs/cds/caltech/scripts/MC/mcloopson
- Turn on the MCL servo.
- Set the MCL gain to 1.5 (it was nominally 0.3 for the high power)
- Just wait until lock.

[Gain boost after the lock] ...If you like to have more gain
- There was almost no room to increase the MCL gain.
- MC_REFL_GAIN can be increased from +6dB to +20dB
  ezcawrite "C1:IOO-MC_REFL_GAIN" 20
- MC_VCO_GAIN can be increased from -3dB to +2dB
  ezcawrite "C1:IOO-MC_VCO_GAIN" 2
- Crank the FSS gains
  ezcawrite C1:PSL-FSS_MGAIN `ezcaread -n C1:PSL-STAT_FSS_NOM_C_GAIN`
  ezcawrite C1:PSL-FSS_FASTGAIN `ezcaread -n C1:PSL-STAT_FSS_NOM_F_GAIN`

[If lock is lost]
- Run
  /cvs/cds/caltech/scripts/MC/mcdown

Attachment 1: MC_incident.png
MC_incident.png
Attachment 2: MC_REFL.png
MC_REFL.png
  2632   Tue Feb 23 14:56:24 2010 steveUpdateGeneralETMX optical table mass

Our janitor dropped one 48" long  fluorescent tube on the top cover of ETMX-isct. This accident made glasses fly all over the place.

He cleaned up nicely, but please beware of small glass pieces around ETMX chamber.

We did not clean up on the table in order to reserve oplev and green ITMX pointing alignment.

Plot below shows that the alignment was not effected.

 

 

Attachment 1: etmxmass.jpg
etmxmass.jpg
  2639   Thu Feb 25 11:21:06 2010 KojiUpdateGeneralTanks opened

[Steve, Bob, Joe, Zach, Alberto, Kiwamu, Koji]

We opened the OMC-IMC access connector, ITMX North door, and ITMY West door.
We worked from 9:30-11:00.
The work was quite smooth thanks to the nice preparation of Steve as usual.

Thank the team for the great work!

 

  2643   Fri Feb 26 11:48:36 2010 KojiUpdateGeneralMC incident beam shift

Last night I worked on the MC incident beam such that we can hit the center of the MC mirrors.

Steve and I checked the incident beam on MC1. We found the beam is ~5mm south.
This was not too critical but it is better to be realigned. I moved the steering mirror on the OMC
table (in vac). We kept the MC resonated. After the maximization of the resonance, I realigned the
MC1 and MC3 such that the resonance in dominated by TEM00.

Jenne, Kiwamu, and I then closed the light door on to the OMC/IMC.

I will make more detailed entry with photos in order to explain what and how I did.

  2645   Sun Feb 28 16:45:05 2010 ranaSummaryGeneralPower ON Recovery
  1. Turned ON the RAID above linux1.
  2. Hooked up a monitor and keyboard and then turned ON linux1.
  3. After linux1 booted, turned ON nodus - then restarted apache and elog on it using the wiki instructions.
  4. Turned on all of the control room workstatiions, tuned Pandora to Johnny Cash, started the auto package updater on Rosalba (517 packages).
  5. Started the startStrip script on op540m.
  6. turned on RAID for frames - wait for it to say 'SATA', then turn on daqctrl and then fb40m and then daqawg and then dcuepics
  7. turned on all the crates for FEs, Sorensens, Kepcos for LSC, op340m, mafalda was already on
  8. fb40m again doesn't mount the RAID again!
  9. I turned on fb40m2 and that fixes the problem. The fb40m /etc/vfstab points to 198.168.1.2, not the JetStor IP address.
  10. I plugged in the Video Switch - its power cord was disconnected.
  11. FEs still timing out saying 'no response from EPICS', but Alberto is now here.

Sun Feb 28 18:23:09 2010

Hi. This is Alberto. Its Sun Feb 28 19:23:09 2010

  1. Turned on c1dcuepics, c0daqctrl and c0daqawg. c0daqawg had a "bad"status on the daqdetail medm screen. The FEs still don't come up.
  2. Rebooted c1dcuepics and power cycled c0daqctrl and c0daqawg. The problem is still there.
  3. Turned on c1omc. Problem solved.
  4. Rebooted c1dcuepics and power cycled c0daqctrl and c0daqawg. c0daqawg now good. The FE are coming up.
  5. Plugged in the laser for ETMY's oplev
  6. Turned on the laser of ETMX's oplev from its key.

 Monday, March 1, 9:00 2010 Steve turns on PSL-REF cavity ion pump HV at 1Y1

  2664   Tue Mar 9 09:32:31 2010 KojiSummaryGeneralWideband measurement of Fast PZT response

I have measured a wideband response of the fast PZT in the LWE NPRO 700mW in the Alberto's setup.
This is a basic measurement to determine how much phase modulation we can obtain by actuating the fast PZT,
primarily for the green locking experiment.

RESULT

  • Above 200kHz, there are many resonances that screws up the phase.
     
  • Modulation of 0.1rad can be easily obtained even at 10MHz if the modulation frequency is scanned.
     
  • Change of the laser frequency in DC was observed depending on the modulation frequency.
    i.e. At the resonance the laser frequency escaped from the RF spectrum analyzer.
    This may induced by the heat dissipation in the PZT causing the temperature change of the crystal.
     
  • Some concerns: Is there any undesired AM by the PZT modulation?

---

METHOD

1. Locked the PLL of for the PSL-NPRO beating at 20MHz.

2. Added the modulation signal to the NPRO PZT input.
I used the output of the network analyzer sweeping from 100kHz to 1MHz.

3. Measured the transfer function from the modulation input to the PLL error signal.
The PLL error is sensitive to the phase fluctuation of the laser. Found that the first resonance is at 200kHz.
The TF is not valid below 3kHz where the PLL suppresses the modulation.

4. Single frequency modulation: Disconnected the PLL setup.
Plug Marconi into the fast PZT input and modulate it at various frequencies.
Observing with the RF spectrum analyzer, I could see strong modulation below 1MHz.
It turned out later that the TF measurement missed the narrow peaks of the resonances due to the poor freq resolution.

Also the modulation depth varies frequency by frequency because of the resonances.
Scanned the frequency to have local maximum of the modulation depth. Adjusted the
modulation amplitude such that the carrier is suppressed
(J0(m)=0 i.e. m~2.4). As I could not obtain
the carrier suppression at above 1MHz, the height of the carrier and the sidebands were measured.

The modulation frequency was swept from 100kHz to 10MHz.

5. Calibration. The TF measured has been calibrated using the modulation depth obtained at 100Hz,
where the resonance does not affect the response yet.

The responce of the PZT was ~10MHz/V below 30kHz. Looks not so strange although this valure is
little bit high from the spec (2MHz/V), and still higher than my previous experience at TAMA (5MHz/V).
Note that this calibration does not effect to the modulation depth of the single freq measurement as they are independent.

Attachment 1: PZT_response.png
PZT_response.png
  2709   Wed Mar 24 12:40:25 2010 daisukeConfigurationGeneralPeriscope for green laser delivery from the BSC to PSL table

The periscope design for beam elevation of the green beams is posted. The design for the 90 deg steering version is also coming.

(2010-03-29: update drawings by daisuke)

90deg version: http://nodus.ligo.caltech.edu:8080/40m/2725

40m_periscope.png

Attachment 2: 40m_periscope_A_100329.pdf
40m_periscope_A_100329.pdf 40m_periscope_A_100329.pdf 40m_periscope_A_100329.pdf 40m_periscope_A_100329.pdf
Attachment 3: 40m_periscope_A_dwg_100329.zip
  2725   Mon Mar 29 01:45:26 2010 daisukeConfigurationGeneralPeriscope version B for green laser ...

Here the design of the periscope for the 90 deg steering version is posted.

straight version http://nodus.ligo.caltech.edu:8080/40m/2709

Attachment 1: 40m_periscope_B.png
40m_periscope_B.png
Attachment 2: 40m_periscope_B_100329.pdf
40m_periscope_B_100329.pdf 40m_periscope_B_100329.pdf 40m_periscope_B_100329.pdf 40m_periscope_B_100329.pdf
Attachment 3: 40m_periscope_B_dwg_100329.zip
  2746   Thu Apr 1 00:43:33 2010 MottUpdateGeneralPZT response for the innolight

Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.

 

**EDIT**: As Koji pointed out, the calibration factor on this plot is WRONG.  See my more recent update for the correctly calibrated plot.

Attachment 1: Innolight_Bode.png
Innolight_Bode.png
  2747   Thu Apr 1 07:17:15 2010 KojiUpdateGeneralPZT response for the innolight

The shape of the TF looks nice but the calibration must be wrong.

Suppose 1/f slope with 10^-4 rad/V at 100kHz. i.e. m_pm = 10/f rad/V
This means m_fm = 10 Hz/V. This is 10^6 times smaller than that of LWE NPRO.

(Edit: Corrected some numbers but it is not significant)

Quote:

Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.

 

  2748   Thu Apr 1 10:21:58 2010 MottUpdateGeneralPZT response for the innolight

Quote:

The shape of the TF looks nice but the calibration must be wrong.

Suppose 1/f slope with 10^-4 rad/V at 10kHz. i.e. m_pm = 1/f rad/V
This means m_fm = 1 Hz/V. This is 10^7 times smaller than that of LWE NPRO.

Quote:

Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.

 

 Koji is absolutely right.  I just double checked my matlab code, and saw that I divided when I should have multiplied.  The correctly calibrated plots are attached here for the Innolight and the lightwave.  Kiwamu and I will measure the amplitude and the jitter today.

Attachment 1: Innolight_Response.png
Innolight_Response.png
Attachment 2: Lightwave_response.png
Lightwave_response.png
  2749   Thu Apr 1 10:47:48 2010 KojiUpdateGeneralPZT response for the innolight

Innolight: 100rad/V @ 100kHz  => 1e7/f rad/V => 10MHz/V

LWE: 500rad/V @ 100kHz =>  5e7/f rad/V => 50MHz/V

They sound little bit too big, aren't they?

  2750   Thu Apr 1 12:07:22 2010 ranaUpdateGeneralPZT response for the innolight

The Lightwave NPRO should be around 5 MHz/V. 

The Innolight PZT coefficient is ~1.1 MHz/V.

(both are from some Rick Savage LHO elog entries)

  2754   Thu Apr 1 18:05:29 2010 MottUpdateGeneralPZT response for the innolight

 

 We realized that we had measured the wrong calibration value; we were using the free-running error signal with the marconi far from the beat frequency, which was very small.  When we put the Marconi right at the beat, the signal increased by a factor of ~12 (turning our original calibration of 10 mV/rad into 120 mV/rad).  The re-calibrated plots are attached. 

Attachment 1: Innolight_Response_calFix.png
Innolight_Response_calFix.png
Attachment 2: Lightwave_response_calFix.png
Lightwave_response_calFix.png
  2755   Thu Apr 1 18:44:40 2010 KojiUpdateGeneralPZT response for the innolight

Innolight 10 rad/V @ 100kHz => 1e6/f rad/V => 1MHz/V

LWE 30 rad/V @ 100kHz => 3e6/f rad/V => 3MHz/V

---------

BTW, don't let me calculate the actuator response everytime.

The elog (=report) should be somewhat composed by the following sections

Motivation - Method - Result (raw results) - Discussion (of the results)

Quote:

  We realized that we had measured the wrong calibration value; we were using the free-running error signal with the marconi far from the beat frequency, which was very small.  When we put the Marconi right at the beat, the signal increased by a factor of ~12 (turning our original calibration of 10 mV/rad into 120 mV/rad).  The re-calibrated plots are attached. 

 

  2756   Thu Apr 1 19:59:32 2010 MottUpdateGeneralPZT response for the innolight

 

 We measured the Amplitude Modulation response of the PZTs, to find regions with large phase modulation but small amplitude modulation.

We did this by blocking 1 arm of the PLL, feeding the source output of the Network Analyzer into the PZT input of the laser in question, and reading the output of the PD on the NA.  We calibrated by dividing by the DC voltage of the PD (scaled by the ratio of the AC gain to DC gain of the New Focus PD).

The AM response of the Innolight looks fairly smooth up to ~1MHz, and it is significantly below the PM response for most of its range.  The region between 20 and 30 kHz shows very good separation of about 10^3 rad/RIN (and up to 10^5 rad/RIN at ~21.88 kHz, where there is the negative spike in the AM response). The region between 1.5 MHz and 2MHz also looks viable if it is desirable to actuate at higher frequencies.

The Lightwave offers very good AM/PM separation up to about 500 kHz, but becomes quite noisy about 1MHz.

Attachment 1: Innolight_AM_Response.png
Innolight_AM_Response.png
Attachment 2: Innolight_AM_PM.png
Innolight_AM_PM.png
Attachment 3: InnoVsLW_PM.png
InnoVsLW_PM.png
Attachment 4: Innolight_AM_Response.png
Innolight_AM_Response.png
Attachment 5: Lightwave_AM_PM.png
Lightwave_AM_PM.png
  2763   Sun Apr 4 17:32:07 2010 AlbertoMetaphysicsGeneralnew y-arm?

Quote:

There's several more of the this vintage in one of the last cabinets down the new Y-arm.

 Hold on, did the arms get re-baptized?

  2845   Mon Apr 26 12:24:58 2010 josephbUpdateGeneralDaily Downs update

Talked with Jay briefly this morning.

We are due another 1-U 4 core (8 CPU) machine, which is one of the ones currently in the test stand.  I'm hoping sometime this week I can convince Alex to help me remove it from said test stand.

The megatron machine we have is definitely going to be used in the 40m upgrade (to answer a question of Rana's from last Wednesday's meeting).  Thats apparently the only machine of that class we get, so moving it to the vertex for use as the LSC or SUS vertex machine may make sense.  Overall we'll have the ASS, OMC, Megatron (SUS?), along with the new 4 1-U machines, for LSC, IO, End Y and End X.  We are getting 4 more IO chassis, for a total 5.  ASS and OMC machine will be going without full new chassis.

Speaking of IO chassis, they are still being worked on.  Still need a few cards put in and some wiring work done.  I also didn't see any other adapter boards finished either.

  3063   Thu Jun 10 10:58:02 2010 KojiUpdateGeneralLaTeXlabs

I could not dare to share my google doc with this site...

Quote:

Quote:

BTW, latex launched this new thing for writing pdfs. doesnot require any installations.  check  http://docs.latexlab.org

 so cool!

 

  3064   Thu Jun 10 11:10:21 2010 AlbertoUpdateGeneralLaTeXlabs

Quote:

I could not dare to share my google doc with this site...

Quote:

Quote:

BTW, latex launched this new thing for writing pdfs. doesnot require any installations.  check  http://docs.latexlab.org

 so cool!

 

Just in case,  granted access to Google docs can be revoked any time from here:

https://www.google.com/accounts/IssuedAuthSubTokens

  3082   Wed Jun 16 18:14:13 2010 AidanUpdateGeneralGlass cover from overhead light smashed on PSL table

I was giving a tour of the 40m yesterday. We were looking at the PSL table. About 30 seconds after I turned the lights on a glass cover from one of the lights (NW corner) popped out of its holder and smashed on the table.

I've cleaned up all the broken glass I could see but there may be some small shards there. Please use caution in that area.

Attachment 1: DSC_1769.JPG
DSC_1769.JPG
Attachment 2: DSC_1768.JPG
DSC_1768.JPG
  3085   Fri Jun 18 13:42:52 2010 KojiHowToGeneralUpdate your work

All SURFs (and all others as always) are supposed to post the update of your status on the elog.

In fact, I already heard that Sharmila had been working on the serial connection to TC-200 and made some results. All of us like to hear the story.

  3103   Wed Jun 23 12:31:36 2010 GopalUpdateGeneral6.16.10-6.23.10 Weekly Update

Summary of This Week's Activities:

6/16: LIGO Orientation; First Weekly Meeting; 40m tour with Jenne; Removed WFS Box Upper Panel, Inserted Cable, Reinstalled panel

6/17: Read Chapter 1 of Control Systems Book; LIGO Safety Meeting; Koji's Talk about PDH Techniques, Fabry-Perot Cavities, and Sensing/Control; Meeting w/ Nancy and Koji

6/18: LIGO Talk Part II; Glossed over "LASERS" book; Read Control Systems Book Chapter 2; Literary Discussion Circle

6/21: Modecleaner Matrix Discussion with Nancy; Suggested Strategy: construct row-by-row with perturbations to each d.f. --> Leads to some questions on how to experimentally do this.

6/22: Learned Simulink; Learned some Terminal from Joe and Jenne; LIGO Meeting; Rana's Talk; Christian's Talk; Simulink Intro Tutorial

6/23 (morning): Simulink Controls Tutorial; Successfully got a preliminary feedback loop working (hooray for small accomplishments!)

 

Outlook for the Upcoming Week:

Tutorials (in order of priority): Finish Simulink Tutorials, Work through COMSOL Tutorials

Reading (in order of priority): Jenne's SURF Paper, Controls Book, COMSOL documentation, Lasers by Siegman.

Work: Primarily COMSOL-related and pre-discussed with Rana

  3142   Wed Jun 30 11:35:06 2010 Gopal UpdateGeneral6.23.10 - 6.30.10 Weekly Update

Summary of this Week's Activities:

6/23: LIGO Safety Tour; Simulink Controls Tutorial

6/24: Simulink Diagram for Feedback Loop; Constructed Pendulum Transfer Function; Discussion with Dr. Weinstein

6/25: Prepare for pump-down of vacuum chamber; crane broken due to locking failure; worked through COMSOL tutorials

6/28: Ran through Python Tutorials; Began learning about Terminal

6/29: Wrote Progress Report 1 First Draft

6/30: Began editing Progress Report 1

  3218   Wed Jul 14 12:31:11 2010 nancyUpdateGeneralWeekly Update

Summary of this week's work Wednesday - Aligned the mode cleaner with Koji, and then measured the beam characteristics at MC2 end. Koji then taught me how to read the WFS signals Thursday - wrote a script to measure the signals and calculated the coefficients relating mirror movement and DC signals of WFS. To know the possibility of the control, found SVD of the coeff matrix, and condition number. Friday - Set up the measurement of QPD linear response using a laser outside the cavity. Took data. Monday - did the calculations and plotting for the above experiment. Then played around with the MEDM screens , and also tried to see what happens to the Power Spectrum of WFS signals by changing the coefficients in teh matrix. (failed) Tuesday - played around with WFS, tried seeing what it does when switched on at different points, and also what it does when I disturb the system while WFS has kept it locked.

Today - had switched off the WFS sensors yesterday night after locking the MC as wanted to know that how does MC behave when no WFS gain is applied. I checked in the morning, the MC was locked all night. I am now proceding with my calculations for the sensing matrix
  3251   Tue Jul 20 15:06:48 2010 josephb, bobOmnistructureGeneralNew speakers in ceiling in control room

After the crane training, Bob attached speakers to the ceiling right next to the projector, for use with presentations.

  3284   Sat Jul 24 13:13:41 2010 rana, steve, albertoUpdateGeneralInitial Crane Inspection reveals flaws: wiring and oil

The guy from KroneCrane (sp?) came today and started the crane inspection on the X End Crane. There were issues with our crane so he's going to resume on Monday. We turned off the MOPA fur the duration of the inspection.

  1. None of our cranes have oil in the gearbox and it seems that they never did since they have never been maintained. Sloppy installation job. The crane oiling guy is going to come in on Monday.
  2. They tried to test the X-End crane with 2500 lbs. (its a 1 ton crane). This tripped the thermal overload on the crane as intended with this test. Unfortunately, the thermal overload switch disabled the 'goes down' circuit instead of the 'goes up' circuit as it should. We double checked the wiring diagram to confirm our hypothesis. Seems the X-End crane was wired up incorrectly in the first place 16 years ago. We'll have to get this fixed.

The plan is that they will bring enough weight to test it at slightly over the rating (1 Ton + 10 %) and we'll retry the certification after the oiling on Monday.

ELOG V3.1.3-