40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 152 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  17106   Thu Aug 25 16:39:31 2022 CiciUpdateGeneralI have learned the absolute basics of github

I have now added code/data to my github repository. (it's the little victories)

  17107   Fri Aug 26 12:46:07 2022 CiciUpdateGeneralProgress on fitting PZT resonances

Here is an update of how fitting the resonances is going - I've been modifying parameters by hand and seeing the effect on the fit. Still a work in progress. Magnitude is fitting pretty well, phase is very confusing. Attempted vectfit again but I can't constrain the number of poles and zeros with the code I have and I still get a nonsensical output with 20 poles and 20 zeros. Here is a plot with my fit so far, and a zip file with my moku data of the resonances and the code I'm using to plot.

Attachment 1: PZT_fit.zip
Attachment 2: AUX_PZT_Actuator_narrow_fit_1.pdf
AUX_PZT_Actuator_narrow_fit_1.pdf
  17110   Mon Aug 29 13:33:09 2022 JCUpdateGeneralLab Cleanup

The machine shop looked a mess this morning, so I cleaned it up. All power tools are now placed in the drawers in the machine shop. Let me know if there are any questions of where anything here is placed. 

Attachment 1: EDE63209-D556-41F1-9BF2-89CD78E3D7B7.jpeg
EDE63209-D556-41F1-9BF2-89CD78E3D7B7.jpeg
  17112   Mon Aug 29 18:25:12 2022 CiciUpdateGeneralTaking finer measurements of the actuator transfer function

Took finer measurements of the x-arm aux laser actuator tranfer function (10 kHz - 1 MHz, 1024 pts/decade) using the Moku.

--------------------------------------

I took finer measurements using the moku by splitting the measurement into 4 sections (10 - 32 (~10^4.5) kHz, 32 - 100 kHz, 100 - 320 kHz, 320 - 1000 kHz) and then grouping them together. I took 25 measurements of each ( + a bonus in case my counting was off), plotted them in the attached notebook, and calculated/plotted the standard deviation of the magnitude (normalized for DC offset). Could not upload to the ELOG as .pdf, but the pdf's are in the .zip file.

--------------------------------------

Next steps are to do the same stdev calculation for phase, which shouldn't take long, and to use the vectfit of this better data to create a PZT inversion filter.

Attachment 1: PZT_TF_fine.png
PZT_TF_fine.png
Attachment 2: PZT_TF_fine_mag_stdev.png
PZT_TF_fine_mag_stdev.png
Attachment 3: ATF_fine.zip
  17114   Wed Aug 31 00:32:00 2022 KojiUpdateGeneralSOS and other stuff in the clean room

Salvage these (and any other things). Wrap and double-pack nicely. Put the labels. Store them and record the location. Tell JC the location.

Attachment 1: PXL_20220831_015137480.jpg
PXL_20220831_015137480.jpg
Attachment 2: PXL_20220831_015203941.jpg
PXL_20220831_015203941.jpg
Attachment 3: PXL_20220831_015230288.jpg
PXL_20220831_015230288.jpg
Attachment 4: PXL_20220831_015249451.jpg
PXL_20220831_015249451.jpg
Attachment 5: PXL_20220831_015424383.jpg
PXL_20220831_015424383.jpg
Attachment 6: PXL_20220831_015433113.jpg
PXL_20220831_015433113.jpg
  17115   Wed Aug 31 00:46:56 2022 KojiUpdateGeneralVertex Lab area to be cleaned

As marked up in the photos.

 

Attachment 5: The electronics units removed. Cleaning half way down. (KA)

Attachment 6: Moved most of the units to 1X3B rack ELOG 17125 (KA)

Attachment 1: PXL_20220831_015758208.jpg
PXL_20220831_015758208.jpg
Attachment 2: PXL_20220831_015805113.jpg
PXL_20220831_015805113.jpg
Attachment 3: PXL_20220831_015816628.jpg
PXL_20220831_015816628.jpg
Attachment 4: PXL_20220831_015826533.jpg
PXL_20220831_015826533.jpg
Attachment 5: PXL_20220831_015844401.jpg
PXL_20220831_015844401.jpg
Attachment 6: PXL_20220831_015854055.jpg
PXL_20220831_015854055.jpg
Attachment 7: PXL_20220831_015903704.jpg
PXL_20220831_015903704.jpg
Attachment 8: PXL_20220831_015919376.jpg
PXL_20220831_015919376.jpg
Attachment 9: PXL_20220831_021708873.jpg
PXL_20220831_021708873.jpg
  17116   Wed Aug 31 01:22:01 2022 KojiUpdateGeneralAlong the X arm part 1

 

Attachment 5: RF delay line was accommodated in 1X3B. (KA)

Attachment 1: PXL_20220831_015945610.jpg
PXL_20220831_015945610.jpg
Attachment 2: PXL_20220831_020024783.jpg
PXL_20220831_020024783.jpg
Attachment 3: PXL_20220831_020039366.jpg
PXL_20220831_020039366.jpg
Attachment 4: PXL_20220831_020058066.jpg
PXL_20220831_020058066.jpg
Attachment 5: PXL_20220831_020108313.jpg
PXL_20220831_020108313.jpg
Attachment 6: PXL_20220831_020131546.jpg
PXL_20220831_020131546.jpg
Attachment 7: PXL_20220831_020145029.jpg
PXL_20220831_020145029.jpg
Attachment 8: PXL_20220831_020203254.jpg
PXL_20220831_020203254.jpg
Attachment 9: PXL_20220831_020217229.jpg
PXL_20220831_020217229.jpg
  17117   Wed Aug 31 01:24:48 2022 KojiUpdateGeneralAlong the X arm part 2

 

 

Attachment 1: PXL_20220831_020307235.jpg
PXL_20220831_020307235.jpg
Attachment 2: PXL_20220831_020333966.jpg
PXL_20220831_020333966.jpg
Attachment 3: PXL_20220831_020349163.jpg
PXL_20220831_020349163.jpg
Attachment 4: PXL_20220831_020355496.jpg
PXL_20220831_020355496.jpg
Attachment 5: PXL_20220831_020402798.jpg
PXL_20220831_020402798.jpg
Attachment 6: PXL_20220831_020411566.jpg
PXL_20220831_020411566.jpg
Attachment 7: PXL_20220831_020419923.jpg
PXL_20220831_020419923.jpg
Attachment 8: PXL_20220831_020439160.jpg
PXL_20220831_020439160.jpg
Attachment 9: PXL_20220831_020447841.jpg
PXL_20220831_020447841.jpg
  17118   Wed Aug 31 01:25:37 2022 KojiUpdateGeneralAlong the X arm part 3

 

 

Attachment 1: PXL_20220831_020455209.jpg
PXL_20220831_020455209.jpg
Attachment 2: PXL_20220831_020534639.jpg
PXL_20220831_020534639.jpg
Attachment 3: PXL_20220831_020556512.jpg
PXL_20220831_020556512.jpg
Attachment 4: PXL_20220831_020606964.jpg
PXL_20220831_020606964.jpg
Attachment 5: PXL_20220831_020615854.jpg
PXL_20220831_020615854.jpg
Attachment 6: PXL_20220831_020623018.jpg
PXL_20220831_020623018.jpg
Attachment 7: PXL_20220831_020640973.jpg
PXL_20220831_020640973.jpg
Attachment 8: PXL_20220831_020654579.jpg
PXL_20220831_020654579.jpg
Attachment 9: PXL_20220831_020712893.jpg
PXL_20220831_020712893.jpg
  17119   Wed Aug 31 01:30:53 2022 KojiUpdateGeneralAlong the X arm part 4

Behind the X arm tube

Attachment 1: PXL_20220831_020757504.jpg
PXL_20220831_020757504.jpg
Attachment 2: PXL_20220831_020825338.jpg
PXL_20220831_020825338.jpg
Attachment 3: PXL_20220831_020856676.jpg
PXL_20220831_020856676.jpg
Attachment 4: PXL_20220831_020934968.jpg
PXL_20220831_020934968.jpg
Attachment 5: PXL_20220831_021030215.jpg
PXL_20220831_021030215.jpg
  17120   Wed Aug 31 01:53:39 2022 KojiUpdateGeneralAlong the Y arm part 1

 

 

Attachment 1: PXL_20220831_021118213.jpg
PXL_20220831_021118213.jpg
Attachment 2: PXL_20220831_021133038.jpg
PXL_20220831_021133038.jpg
Attachment 3: PXL_20220831_021228013.jpg
PXL_20220831_021228013.jpg
Attachment 4: PXL_20220831_021242520.jpg
PXL_20220831_021242520.jpg
Attachment 5: PXL_20220831_021258739.jpg
PXL_20220831_021258739.jpg
Attachment 6: PXL_20220831_021334823.jpg
PXL_20220831_021334823.jpg
Attachment 7: PXL_20220831_021351076.jpg
PXL_20220831_021351076.jpg
Attachment 8: PXL_20220831_021406223.jpg
PXL_20220831_021406223.jpg
Attachment 9: PXL_20220831_021426110.jpg
PXL_20220831_021426110.jpg
  17121   Wed Aug 31 01:54:45 2022 KojiUpdateGeneralAlong the Y arm part 2
Attachment 1: PXL_20220831_021459596.jpg
PXL_20220831_021459596.jpg
Attachment 2: PXL_20220831_021522069.jpg
PXL_20220831_021522069.jpg
Attachment 3: PXL_20220831_021536313.jpg
PXL_20220831_021536313.jpg
Attachment 4: PXL_20220831_021544477.jpg
PXL_20220831_021544477.jpg
Attachment 5: PXL_20220831_021553458.jpg
PXL_20220831_021553458.jpg
Attachment 6: PXL_20220831_021610724.jpg
PXL_20220831_021610724.jpg
Attachment 7: PXL_20220831_021618209.jpg
PXL_20220831_021618209.jpg
Attachment 8: PXL_20220831_021648175.jpg
PXL_20220831_021648175.jpg
  17125   Wed Aug 31 16:11:37 2022 KojiUpdateGeneralVertex Lab area to be cleaned

The analog electronics units piled up along the wall was moved into 1X3B rack which was basically empty. (Attachments 1/2/4)

We had a couple of unused Sun Machines. I salvaged VMIC cards (RFM and Fast fiber networking? for DAQ???) and gave them to Tega.
Attachment 3 shows the eWastes collected this afternoon.

Attachment 1: PXL_20220831_224457839.jpg
PXL_20220831_224457839.jpg
Attachment 2: PXL_20220831_224816960.jpg
PXL_20220831_224816960.jpg
Attachment 3: PXL_20220831_225408183.jpg
PXL_20220831_225408183.jpg
Attachment 4: PXL_20220901_021729652.jpg
PXL_20220901_021729652.jpg
  17128   Fri Sep 2 15:26:42 2022 YehonathanUpdateGeneralSOS and other stuff in the clean room

{Paco, Yehonathan}

BHD Optics box was put into the x-arm last clean cabinet. (attachment 5)

OSEMs were double bagged in a labeled box on the x-arm wire racks. (attachment 1)

SOS Parts (wire clamps, winches, suspension blocks, etc.) were put in a box on the x-arm wire rack. (attachment 3)

2"->3" optic adapter parts were put in a box and stored on the xarm wire rack. (attachment 3)

Magnet gluing parts box was labeled and stored on the xarm rack. (attachment 2)

TT SUS with the optics were stored on the flow bench at the x end. Note: one of the TT SUS was found unsuspended. (attachment 4)

InVac parts were double bagged and stored in a labeled box on the x arm wire rack. (attachment 2)

Attachment 1: osem_sus.jpeg
osem_sus.jpeg
Attachment 2: magnet_gluing.jpeg
magnet_gluing.jpeg
Attachment 3: 2-3inch_adapter_parts.jpeg
2-3inch_adapter_parts.jpeg
Attachment 4: TTs.jpeg
TTs.jpeg
Attachment 5: BHD_optics.jpeg
BHD_optics.jpeg
  17129   Fri Sep 2 15:30:10 2022 AnchalUpdateGeneralAlong the X arm part 1

[Anchal, Radhika]

Attachment 2: The custom cables which were part of the intermediate setup between old electronics architecture and new electronics architecture were found.
These include:

  • 2 DB37 cables with custom wiring at their connectors to connect between vacuum flange and new Sat amp box, marked J4-J5 and J6-J7.
  • 2 DB15 to dual head DB9 (like a Hydra) cables used to interface between old coil drivers and new sat amp box.

A copy of these cables are in use for MC1 right now. These are spare cables. We put them in a cardboard box and marked the box appropriately.
The box is under the vacuum tube along Yarm near the center.

 

  17130   Fri Sep 2 15:35:19 2022 AnchalUpdateGeneralAlong the Y arm part 2

[Anchal, Radhika]

The cables in USPS open box were important cables that are part of the new electronics architecture. These are 3 ft D2100103 DB15F to DB9M Reducer Cable that go between coil driver output (DB15M on back) to satellite amplifier coil driver in (DB9F on the front). These have been placed in a separate plastic box, labeled, and kept with the rest of the D-sub cable plastic boxes that are part of the upgrade wiring behind the tube on YARM across 1Y2. I believe JC would eventually store these dsub cable boxes together somewhere later.

  17132   Tue Sep 6 09:57:26 2022 JCSummaryGeneralLab cleaning

DB9 Cables have been assorted and placed behind the Y-Arm. Long BNC Cables and Ethernet Cables have been stored under the Y-Arm. 

Quote:

We held the lab cleaning for the first time since the campus reopening (Attachment 1).
Now we can use some of the desks for the people to live! Thanks for the cooperation.

We relocated a lot of items into the lab.

  • The entrance area was cleaned up. We believe that there is no 40m lab stuff left.
    • BHD BS optics was moved to the south optics cabinet. (Attachment 2)
    • DSUB feedthrough flanges were moved to the vacuum area (Attachment 3)
  • Some instruments were moved into the lab.
    • The Zurich instrument box
    • KEPCO HV supplies
    • Matsusada HV supplies
  • We moved the large pile of SUPERMICROs in the lab. They are around MC2 while the PPE boxes there were moved behind the tube around MC2 area. (Attachment 4)
  • We have moved PPE boxes behind the beam tube on XARM behind the SUPERMICRO computer boxes. (Attachment 7)
  • ISC/WFS left over components were moved to the pile of the BHD electronics.
    • Front panels (Attachment 5)
    • Components in the boxes (Attachment 6)

We still want to make some more cleaning:

- Electronics workbenches
- Stray setup (cart/wagon in the lab)
- Some leftover on the desks
- Instruments scattered all over the lab
- Ewaste removal

 

Attachment 1: 982146B2-02E5-4C19-B137-E7CC598C262F.jpeg
982146B2-02E5-4C19-B137-E7CC598C262F.jpeg
Attachment 2: 0FBB61AC-E882-458D-A891-7B11F35588FF.jpeg
0FBB61AC-E882-458D-A891-7B11F35588FF.jpeg
  17143   Mon Sep 19 17:02:57 2022 PacoSummaryGeneralPower Outage 220916 -- restored all

Restore lab

[Paco, Tega, JC, Yehonathan]

We followed the instructions here. There were no major issues, apart from the fb1 ntp server sync taking long time after rebooting once.


ETMY damping

[Yehonathan, Paco]

We noticed that ETMY had to much RMS motion when the OpLevs were off. We played with it a bit and noticed two things: Cheby4 filter was on for SUS_POS and the limiter on ULCOIL was on at 0 limit. We turned both off.

We did some damping test and observed that the PIT and YAW motion were overdamped. We tune the gain of the filters in the following way:

SUSSIDE_GAIN 1250->50

SUSPOS_GAIN 200->150

SUSYAW_GAIN 60->30

These action seem to make things better.

  17145   Tue Sep 20 07:03:04 2022 PacoSummaryGeneralPower Outage 220916 -- restored all

[JC, Tega, Paco ]

I would like to mention that during the Vacuum startup, after the AUX pump was turned on, Tega and I were walking away while the pressure decreases. While we were, valves opened on their own. Nobody was near the VAC Desktop during this. I asked Koji if this may be an automatic startup, but he said the valves shouldn't open unless they are explicitely told to do so. Has anyone encountered this before?

Quote:

Restore lab

[Paco, Tega, JC, Yehonathan]

We followed the instructions here. There were no major issues, apart from the fb1 ntp server sync taking long time after rebooting once.


ETMY damping

[Yehonathan, Paco]

We noticed that ETMY had to much RMS motion when the OpLevs were off. We played with it a bit and noticed two things: Cheby4 filter was on for SUS_POS and the limiter on ULCOIL was on at 0 limit. We turned both off.

We did some damping test and observed that the PIT and YAW motion were overdamped. We tune the gain of the filters in the following way:

SUSSIDE_GAIN 1250->50

SUSPOS_GAIN 200->150

SUSYAW_GAIN 60->30

These action seem to make things better.

 

  17162   Wed Sep 28 19:15:56 2022 KojiUpdateGeneralTesting 950nm laser found in trash pile

I don't know what was wrong with the past setup but the 950nm laser (QPHOTONICS QFLD-950-3S) just worked fine up to ~300MHz with basically the same setup.

A 20dB coupler picks up a small amount of the driving signal from the source signal of the network analyzer. This was fed to CHR. The fiber-coupled NewFocus PD RF output was connected to CHA.
The calibration of the response was done with the thru response (connect the source signal to the CHA via all the long cables).

Attachment 1 shows the response CHA/CHR. The output is somewhat flat up to 20MHz and goes down towards 100MHz, but still active up to 500MHz as long as the normalization with the New Focus PD works.
The structure around 200MHz~300MHz changes with how the wires of the clips are arranged. I have twisted and coiled them as shown and the notch disappeared. For the permanent setup we should keep the lines as short as possible and take care of the stray capacitance and the inductance.

Attachment 2 shows the setup at the network analyzer side. Nothing special.

Attachment 3 shows the setup at the laser side. The DB9 connector on the Jenne's laser has the negative output of the LD driver connected to the coax core and the positive output connected to the shield of the coax. Therefore the coax core (red clip) has to be connected to Pin 9 and the coax shield (black clip) to PIn 5.

Attachment 1: PXL_20220929_013850989.MP.jpg
PXL_20220929_013850989.MP.jpg
Attachment 2: PXL_20220929_013859439.jpg
PXL_20220929_013859439.jpg
Attachment 3: PXL_20220929_013911125.jpg
PXL_20220929_013911125.jpg
  17224   Thu Nov 3 16:00:58 2022 alexSummaryGeneralSensoray updates

I am currently working on getting the driver reinstalled on Donatella for the sensoray. An issue keeps arising that will not allow me to run "make" successfully in the unzipped driver folder. Will continue to remedy this.

This is why there is no light showing up on the device while plugged in. The computer does see the device, but does not show its model due to the inability for it to communicate without the driver.

 

-Alex

  17233   Mon Nov 7 12:37:26 2022 KojiUpdateGeneralBorrowed the fiber tester for the OMC lab

I am borrowing the fiber illuminator / fiber tester / VisiFault for the OMC lab. It has been stored in the top drawer at the center work bench.

==> Returned

Attachment 1: PXL_20221107_202016688.MP.jpg
PXL_20221107_202016688.MP.jpg
  17239   Mon Nov 7 21:57:42 2022 alexUpdateGeneralSensoray

I have made little progress in getting the sensoray driver installed on Donatella. I have confirmed that it is indeed the reason why none of the hardware is working. I am now working through changes on a virtual machine that is running Scientific Linux to find something that may work. If no progress is made soon, I will ensure that software for a replacement video encoder is able to be installed before requesting we order one.

  17247   Tue Nov 8 21:39:12 2022 alexSummaryGeneralSensoray & SDI Video Encoder selection

I have been looking at various replacements for the sensoray, and have found that the majority of new usb video encoders don't have drivers anymore and now just work through being embedded with video-capturing software. This means that the hardware must be used with a compatible video player such as VLC or OBS. VLC can natively be run with terminal commands, and because OBS is open source, there are packages that can be downloaded to use terminal commands to control the software as well. I am not sure to what extent the usb video encoder can then be controlled with these commands, but this seems to be the easiest method so far. I will finish picking which new unit we should purchase tomorrow, and order it through JC. 

  17258   Fri Nov 11 19:11:50 2022 JCUpdateGeneralWFS Whitening and Demod Boards

WFS Whitening and Demod boards were scavenged. ' iLIGO WFS cards are in big plastic boxes placed on the north wall around Section Y5 or Y6 (not under the arm). The WFS head PCBs, empty WFS housing, WFS components, I/Q demod components are at SectionY10 under the arm tube. ' - Koji . I have taken pictures of the boards and will upload them to the DCC once I find a way to add a Serial Number . (I will upload this to the eLog as a HowTo) The next step is to search for at least 2 extender boards to troubleshoot these board and find if there are any issues. We may have replace some components and retune the boards. Attachment #1 is an example of the WFS Whitening Filter and Attachment #2 is and example of the the WFS Demod Board.

If you use the Camera DO NOT remove the strap. I have also purchased lens caps for the camera, so after usage PUT THE LENS CAP BACK ON. 

Attachment 1: IMG_6419.JPG
IMG_6419.JPG
Attachment 2: IMG_6424.JPG
IMG_6424.JPG
  17267   Tue Nov 15 16:34:55 2022 alexUpdateGeneralDebian with Sensoray

I have confirmed the ability to install the sensoray drivers on Debian 11 in a virtual machine environment. I will do testing with the sensoray device on this tomorrow and if all works, begin working on code for capturing images. I will then test this out on Donatella once Tega finishes installing Debian across all computers in the coming week or so. 

Attachment 1: sensoray_debian_VM_1.png
sensoray_debian_VM_1.png
  17276   Thu Nov 17 09:06:35 2022 JCSummaryGeneralLight Replace

Electrical Shop came in today to replace the lightbulbs around 40m. I supervised the entire visit, inside and outside the lab area. I was sure to use the ladders which were already inside the lab area. Although, while I was crawling under the MC beam tube, I came up too quickly and bumped it. This may have caused MC to become misaligned. Anyways, Yehonathan and I are realigning now.

 

  17292   Mon Nov 21 14:55:58 2022 JCConfigurationGeneralLED Instead of Incandescent Lights

Electrical came by today to see the lights. The issue may be the switches, but they will come by tomorrow to solve the issue. A couple light bulbs were noticed to be out, but they no longer have incandescent lights. . . only LED. I figured this would be preffered because of the reduction on noise. I would prefer to go ahead and ask to change all the incandescent bulbs to LED bulbs. Are there any objections to this?

  17323   Wed Nov 30 10:48:10 2022 JCConfigurationGeneralLED Instead of Incandescent Lights

All incondescent lightsbulbs have been switched over to LED.

Quote:

Electrical came by today to see the lights. The issue may be the switches, but they will come by tomorrow to solve the issue. A couple light bulbs were noticed to be out, but they no longer have incandescent lights. . . only LED. I figured this would be preffered because of the reduction on noise. I would prefer to go ahead and ask to change all the incandescent bulbs to LED bulbs. Are there any objections to this?

 

  17326   Wed Nov 30 18:27:07 2022 PacoUpdateGeneralMaking the Jenne laser great again

[Paco]

I picked up the 950 nm laser that Koji tested before and restored the Jenne laser (may long it live).


I changed a couple of things; first I took out the old laser from the hose and noted the new laser has a shorter fiber patch cable, so I replaced the hose with a flexible fiber jacket I found around the X arm storage. I also added a 14 pin DIP socket so the laser is now always showing its part no. and is easy to install/uninstall. Last but not least I replaced the black insulating material right at the output of the laser package because it was decaying badly and spread a bunch of dusty residue all over the place. I used some foam instead.  See various attachments for visual support.

I was careful, testing the connections with a cheap LED to validate the setup before I connected the laser-- this made everything smooth and I finished the work by verifying the laser is outputting light at the other end of the fiber 1x2 coupler. The PD testing with Jenne's resucitated laser should proceed normally now.

RXA: Huzzah!!

Attachment 1: PXL_20221201_004623398.jpg
PXL_20221201_004623398.jpg
Attachment 2: PXL_20221201_015752792.jpg
PXL_20221201_015752792.jpg
  2601   Fri Feb 12 18:58:46 2010 kiwamuUpdateGreen Lockingtake some optics away from the ETM end table

In the last two days Steve and I took some optics away from the both ETM end table.

This is because we need an enough space to set up the green locking stuff into the end table, and also need to know how much space is available.

Optics we took away are : Alberto's RF stuff, fiber stuff and some optics obviously not in used.

The picture taken after the removing is attached. Attachment1:ETMX, Attachment2:ETMY

And the pictures taken before the removing are on the wiki, so you can check how they are changed.

http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables

Attachment 1: DSC_1164.JPG
DSC_1164.JPG
Attachment 2: DSC_1172.JPG
DSC_1172.JPG
  2604   Tue Feb 16 09:51:22 2010 AlbertoUpdateGreen Lockingtake some optics away from the ETM end table

Quote:

In the last two days Steve and I took some optics away from the both ETM end table.

This is because we need an enough space to set up the green locking stuff into the end table, and also need to know how much space is available.

Optics we took away are : Alberto's RF stuff, fiber stuff and some optics obviously not in used.

The picture taken after the removing is attached. Attachment1:ETMX, Attachment2:ETMY

And the pictures taken before the removing are on the wiki, so you can check how they are changed.

http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables

The PD Kiwamu removed from the Y table was TRY, which we still need.

My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.

I'm going to ask Kiwamu if he can kindly put it back.

  2606   Tue Feb 16 11:12:51 2010 kiwamuUpdateGreen LockingRe:take some optics away from the ETM end table

Quote:

Quote:

In the last two days Steve and I took some optics away from the both ETM end table.

This is because we need an enough space to set up the green locking stuff into the end table, and also need to know how much space is available.

Optics we took away are : Alberto's RF stuff, fiber stuff and some optics obviously not in used.

The picture taken after the removing is attached. Attachment1:ETMX, Attachment2:ETMY

And the pictures taken before the removing are on the wiki, so you can check how they are changed.

http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables

The PD Kiwamu removed from the Y table was TRY, which we still need.

My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.

I'm going to ask Kiwamu if he can kindly put it back.

 I am going to put the PD back to the Y end table in this afternoon.

  2609   Tue Feb 16 16:24:30 2010 kiwamuUpdateGreen LockingRe:Re:take some optics away from the ETM end table

I put the TRY_PD back to the end table and aligned it. Now it seems to be working well.

Quote:

The PD Kiwamu removed from the Y table was TRY, which we still need.

My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.

I'm going to ask Kiwamu if he can kindly put it back.

 I am going to put the PD back to the Y end table in this afternoon.

 

  2619   Fri Feb 19 16:40:43 2010 kiwamuUpdateGreen Lockingrearrange the optics on the end table

Koji and kiwamu

The existing optics on the ETMX/ETMY end table were rearranged in this morning.

 


The main things we have done are -

1. relocation of the optical levers for ETMs ( as mentioned in koji's entry )

This relocation can make a space so that we can setup the green locking stuffs.

The optical path of the green locking is planed to start from the right top corner on the table, therefore we had to relocate the oplevs toward the center of the table.

2. relocation of the lens just before the tube

Because we are going to shoot the green beam into the arm cavity, we don't want to have any undesired lenses before the cavity.

For this reason we changed the position of the lens, it was standing just in front of the tube, now it's standing on the left side of the big mirror standing center top.

Since we did not find a significant change in its the spot size of the transmitted light, we did not change the position of all the TRANS_MON_PDs and its mirrors. And they are now well aligned.

Attachment1: ETMX end table

Attachment2: ETMY end table

Attachment 1: DSC_1202.JPG
DSC_1202.JPG
Attachment 2: DSC_1207.JPG
DSC_1207.JPG
  2706   Wed Mar 24 03:58:18 2010 kiwamu, matt, kojiUpdateGreen Lockingleave PLL locked

We are leaving the PLL as it is locked in order to see the long term stability. And we will check the results in early morning of tomorrow.

DO NOT disturb our PLL !!

  


(what we did)

After Mott left, Matt and I started to put feedback signals to the temperature control of NPRO.

During doing some trials Matt found that NPRO temperature control input has an input resistance of 10kOhm.

Then we put a flat filter ( just a voltage divider made by a resistor of ~300kOhm and the input impedance ) with a gain of 0.03 for the temperature control to inject a relatively small signal, and we could get the lock with the pzt feedback and it.

In addition, to obtain more stable lock we then also tried to put an integration filter which can have more gain below 0.5Hz.

After some iterations we finally made a right filter which is shown in the attached picture and succeeded in obtaining stable lock.

 

 

 

Attachment 1: DSC_1402.JPG
DSC_1402.JPG
  2707   Wed Mar 24 04:22:51 2010 kiwamu, mattUpdateGreen Lockingtwo NPRO PLL

Now some pedestals, mirrors and lenses are left on the PSL table, since we are on the middle way to construct a PLL setup which employs two NPROs instead of use of PSL laser.

So Please Don't steal any of them.

  2708   Wed Mar 24 12:38:17 2010 HartmutConfigurationGreen LockingBroadband PD for green PLL

Modified one of the PD assemblies carrying a large SI-Diode (~10mm diameter).

Removed elements used for resonant operation and changed PD readout to transimpedance

configuration. The opamp is a CLC409 with 240 Ohm feedback (i.e. transimpedance) resistor.

To prevent noise peaking at very high frequencies and get some decoupling of the PD,

I added a small series resistor in line with the PD and the inverting opamp input.

It was chosen as 13 Ohm, and still allows for operation up to ~100MHz.

Perhaps it could be smaller, but much more bandwith seems not possible with this opamp anyway.

Changes are marked in the schematic, and I list affected components here.

(Numbers refer to version 'PD327.SCH' from 30-April-1997):

-removed L4

-connected L3 (now open pad) via 100 Ohm to RF opamp output. This restores the DC sognal output.

-removed c17

-connected pin 3 of opamp via 25 Ohm to GND

-connected kathode of PD via 13 Ohm to pin 2 of opamp

-removed L6, C26, L5, C18, and C27

-shorted C27 pad to get signal to the RF output

 

Measured the optical TF with the test laser setup.

(Note that this is at 1064nm, although the PD is meant to work with green light at 532nm!)

Essentially it looks usable out to 100MHz, where the gain dropped only by about

6dB compared to 10MHz.

Beyond 100MHz the TF falls pretty steeply then, probably dominated by the opamp.

 

The maximal bias used is -150V.

If the bias is 'reduced' from -150V to -50V, the response goes down by 4dB at 10MHz and

by 9dB at 100MHz.

 The average output was 30mV at the RF output, corresponding to 60mV at the opamp output (50Ohm divider chain).

With 240 Ohm transimpedance this yields 250µA photo-current used for these transfer functions.

SiAmpl.png

 

SiPhase.png

 

 

  2710   Wed Mar 24 14:52:02 2010 AlbertoUpdateGreen Lockingtwo NPRO PLL

Quote:

Now some pedestals, mirrors and lenses are left on the PSL table, since we are on the middle way to construct a PLL setup which employs two NPROs instead of use of PSL laser.

So Please Don't steal any of them.

 Can I please get the network analyzer back?

  2712   Wed Mar 24 15:59:59 2010 kiwamu, mattUpdateGreen Lockingleave PLL locked

Matt checked it in this morning and he found it's been locked during the night.

 

 

  2714   Thu Mar 25 17:29:48 2010 kiwamu, mottUpdateGreen LockingPLL two NPROs

In this afternoon, Mott and I tried to find a beat note between two NPROs which are going to be set onto each end table for green locking.

At first time we could not find any beats. However Koji found that the current of innolight NPRO was set to half of the nominal.

Then we increased the current to the nominal of 2A, finally we succeeded in finding a beat note.

Now we are trying to lock the PLL.

P.S. we also succeeded in acquiring the lock

 

nominal setup
  innolight  lightwave
T [deg] 39.75 37.27
current [A] 2 2
laser power [mW] 950 700


  2718   Sun Mar 28 17:28:26 2010 matt, kiwamuUpdateGreen Lockingfrequency discriminator for green PLL

Last Friday, Matt made a frequency discriminator circuit on a bread board in order to test the idea and study the noise level. I think it will work for phase lock acquisition of Green locking.

As a result a response of 100kHz/V and a noise level of 2uV/rtHz @ 10Hz are yielded. This corresponds to 0.2Hz/rtHz @ 10Hz.

The motivation of using frequency discriminators is that  it makes a frequency range wider and easier for lock acquisition of PLLs in green locking experiment.

For the other possibility to help phase lock acquisition, Rana suggested to use a commercial discriminator from Miteq.


(principle idea)

The diagram below shows a schematic of the circuit which Matt has built.

FD.png

Basically an input signal is split into two signals right after the input, then one signal goes through directly to a NAND comparator.

On the other hand another split signal goes through a delay line which composed by some RC filters, then arrive at the NAND comparator with a certain amount of delay.

After going through the NAND comparator, the signal looks like a periodic pulses (see below).

If we put a signal of higher frequency we get more number of pulses after passing through the NAND.

pulses.png

Finally the pulse-signal will be integrated at the low pass filter and converted to a DC signal.

Thus the amplitude of DC signal depends on the number of the pulses per unit time, so that the output DC signal is proportional to the frequency of an input signal.

 

 

(result)

By putting a TTL high-low signal, an output of the circuit shows 100kHz/V linear response.

It means we can get DC voltage of 1 V if a signal of 100kHz is injected into the input.

And the noise measurement has been done while injecting a input signal. The noise level of 0.2Hz/rtHz @ 10 Hz was yielded.

Therefore we can lock the green PLL by using an ordinary VCO loop after we roughly guide a beat note by using this kind of discriminator.

 FDnoise.png

Attachment 1: DSC_1407.JPG
DSC_1407.JPG
Attachment 2: FD.png
FD.png
Attachment 3: FDnoise.png
FDnoise.png
  2728   Mon Mar 29 15:19:33 2010 mevansUpdateGreen Lockingfrequency discriminator for green PLL

Thanks for the great entry!

In order to make this work for higher frequencies, I would add Hartmut's suggestion of a frequency dividing input stage.  If we divide the input down by 100, the overall range will be about 200MHz, and the noise will be about 20Hz/rtHz.  That might be good enough... but we can hope that the commercial device is lower noise!

Quote:

Last Friday, Matt made a frequency discriminator circuit on a bread board in order to test the idea and study the noise level. I think it will work for phase lock acquisition of Green locking.

As a result a response of 100kHz/V and a noise level of 2uV/rtHz @ 10Hz are yielded. This corresponds to 0.2Hz/rtHz @ 10Hz.

The motivation of using frequency discriminators is that  it makes a frequency range wider and easier for lock acquisition of PLLs in green locking experiment.

FD.png

  2735   Tue Mar 30 21:11:42 2010 kiwamuSummaryGreen Lockingconversion efficiency of PPKTP

With a 30mm PPKTP crystal the conversion efficiency from 1064nm to 532nm is expected to 3.7 %/W.

Therefore we will have a green beam of more than 20mW by putting 700mW NPRO.

Last a couple of weeks I performed a numerical simulation for calculating the conversion efficiency of PPKTP crystal which we will have.

Here I try to mention about just the result. The detail will be followed later as another entry.


The attached figure is a result of the calculation.

The horizontal axis is the waist of an input Gaussian beam, and the vertical axis is the conversion efficiency.

You can see three curves in the figure, this is because I want to double check my calculation by comparing  analytical solutions.

The curve named (A) is one of the simplest solution, which assumes that the incident beam is a cylindrical plane wave.

The other curve (B) is also analytic solution, but it assumes different condition; the power profile of incident beam is a Gaussian beam but propagates as a plane wave.

The last curve (C) is the result of my numerical simulation. In this calculation a focused Gaussian beam is injected into the crystal.

The numerical result seems to be reasonable because the shape and the number doesn't much differ from those analytical solutions.

Attachment 1: efficiency_waist_edit.png
efficiency_waist_edit.png
  2736   Tue Mar 30 22:13:49 2010 KojiSummaryGreen Lockingconversion efficiency of PPKTP

Question:

Why does the small spot size for the case (A) have small efficiency as the others? I thought the efficiency goes diverged to infinity as the radius of the cylinder gets smaller.

Quote:

With a 30mm PPKTP crystal the conversion efficiency from 1064nm to 532nm is expected to 3.7 %/W.

Therefore we will have a green beam of more than 2mW by putting 700mW NPRO.

Last a couple of weeks I performed a numerical simulation for calculating the conversion efficiency of PPKTP crystal which we will have.

Here I try to mention about just the result. The detail will be followed later as another entry.


The attached figure is a result of the calculation.

The horizontal axis is the waist of an input Gaussian beam, and the vertical axis is the conversion efficiency.

You can see three curves in the figure, this is because I want to double check my calculation by comparing  analytical solutions.

The curve named (A) is one of the simplest solution, which assumes that the incident beam is a cylindrical plane wave.

The other curve (B) is also analytic solution, but it assumes different condition; the power profile of incident beam is a Gaussian beam but propagates as a plane wave.

The last curve (C) is the result of my numerical simulation. In this calculation a focused Gaussian beam is injected into the crystal.

The numerical result seems to be reasonable because the shape and the number doesn't much differ from those analytical solutions.

 

  2737   Wed Mar 31 02:57:48 2010 kiwamuUpdateGreen Lockingfrequency counter for green PLL

Rana found that we had a frequency counter SR620 which might be helpful for lock acquisition of the green phase lock.

It has a response of 100MHz/V up to 350MHz which is wide range and good for our purpose. And it has a noise level of 200Hz/rtHz @ 10Hz which is 1000 times worse than that Matt made (see the entry).

The attached figure is the noise curve measured while I injected a signal of several 100kHz. In fact I made sure that the noise level doesn't depends on the frequency of an input signal.

The black curve represents the noise of the circuit Matt has made, the red curve represents that of SR620.

Attachment 1: FCnoise.png
FCnoise.png
  2740   Wed Mar 31 11:52:32 2010 kiwamuSummaryGreen LockingRe:conversion efficiency of PPKTP

Good point. There is a trick  to avoid a divergence.

Actually the radius of the cylindrical wave is set to the spot size at the surface of the crystal instead of an actual beam waist. This is the idea Dmass told me before.

So that the radius is expressed by w=w0(1+(L/2ZR)2)1/2, where w0 is beam waist, L is the length of the crystal and ZR is the rayleigh range.

In this case the radius can't go smaller than w0/2 and the solution can not diverge to infinity.

Quote:

Question:

Why does the small spot size for the case (A) have small efficiency as the others? I thought the efficiency goes diverged to infinity as the radius of the cylinder gets smaller.

 

 

 

  2741   Wed Mar 31 12:30:31 2010 ranaUpdateGreen Lockingfrequency counter for green PLL

Its a good measurement - you should adjust the input range of the 620 using the front panel 'scale' buttons to see how the noise compares to Matt's circuit when the range is reduced to 1 MHz. In any case, we would use it in the 350 MHz range mode. What about the noise of the frequency discriminator from MITEQ?

  2751   Thu Apr 1 15:21:12 2010 ranaUpdateGreen Lockingfrequency counter for green PLL

 

  2752   Thu Apr 1 16:34:29 2010 HartmutUpdateGreen LockingSilicon PDs

just a few infos on Silicon PDs I looked up.

If you want to go beyond the 100MHz achievable with the device I worked on,

the one thing to improve is the opamp, where Steve is trying to find OPA657.

This is a FET with 1.6GHz BWP, minimum stable gain of 7, and 4.8nV/rt(Hz) noise.

Should be ok with 750-1000 Ohm transimpedance.

The other thing you might want to change is the PD

(although it might be the 1cm PD with high bias is as fast as smaller ones with lower bias).

There are two types of other Si diodes at the 40m right now (~3mm):

-Rana and I found a Centronic OSD 15-5T in the old equipment

-Frank gave me a Hamamatsu S1223-01 on a Thorlabs pre-amp device (could be taken out).

 

The Centronic OSD 15-5T has up to 80pF with 12 V bias according to the datasheet.

The Hamamatsu S1223-01 is stated with 20pF only, but stated to have a max. frequency resp. of 20MHz ('-3db point').

I dont know what this means, as the corner freq. of 10pF into 50Ohm is still 160MHz.

In any case there are faster 3mm types to start with, as for example Hamamatsu S3399 (~ 90$),

which is stated to have the corner at 100MHz with 50 Ohm load.

For this type the stated capacity (20pF) looks consistent with ~100MHz corner into 50 Ohm.

So probably you can get higher BW with this one using much smaller load, as in transimpedance stage.

 

 

ELOG V3.1.3-