ID |
Date |
Author |
Type |
Category |
Subject |
2401
|
Fri Dec 11 17:36:37 2009 |
kiwamu | Update | General | IFO restoring plan |
Alberto, Jenne, Kiwamu
We together will lead the IFO restoring and the following is our plan.
- - - - -|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#.0 | measuring the free swinging spectra (weekend by kiwamu) DONE
#.1 | turn ON the PZTs for steering mirror and so on. (Dec.14 Mon.) DONE
#. 1 | lock around PSL DONE
#.2 | deal with mechanical shutter (Dec.14 Mon.)DONE
#.3 | lock MCs (Dec.14 Mon.)DONE
#.4 | align the IFO (Dec.15 Tue.)DONE
#.5 | lock full IFO (Dec.15 Tue.)DONE
- - - - -|- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Thank you. |
2405
|
Sun Dec 13 17:43:10 2009 |
kiwamu | Update | SUS | free swinging spectra (vacuum) |
The free swinging spectra of ITMs, ETMs, BS, PRM and SRM were measured under the vacuum-condition. The attachment are measured spectra.
It looks there are nothing wrong because no significant difference appear from the past data and the current data (under atmosperic pressure).
So everything is going well. |
Attachment 1: summary_FreeSwinging_vacuum.pdf
|
|
2446
|
Tue Dec 22 15:49:31 2009 |
kiwamu | Update | General | e-log restarted |
I found the e-log has been down around 3:40pm, then I restarted the e-log. Now it's working.
Thanks. |
2450
|
Thu Dec 24 01:25:29 2009 |
kiwamu | Update | Electronics | impedance analyzing |
The validation for high impedance measurement has been well done. 
The impedance measurement is one of the keys for designing the EOM circuit.
So far I was very struggling to measure the high impedance ( above several 1000 Ohm) at RF because the EOM circuit has a high impedance at its resonance.
Finally I realized that the measured impedance was suppressed by a parasitic resistance, which especially reduces the impedance at the resonance.
Also I found that we can extract the TRUE impedance data by subtracting the effect of the parasitic resistance from resultant data.
In order to confirm whether this subtraction works correctly or not, the impedance was directly re-measured with another analyzer for crosscheck.
The followers are details about the re-measurement.
(measurement )
The measurement has been performed with help from Peter and Frank. ( Thank you !)
By using network analyzer AG4395A with the impedance test kit AG43961A (these are at the PSL lab.), the impedance of resonant circuit with EOM was measured.
The picture of setup is attached. This impedance test kit allows to measure typically 0.1 [Ohm]-1M [Ohm] and frequency range of 100kHz-500MHz.
(result)
The resultant plot is attached. In the plot the blue curve represents the impedance measured by usual analyzer at 40m.
Note this curve is already subtracted the effect of the parasitic resistance.
( the parasitic resistance is in parallel to the circuit and it has ~7.8k Ohm, which is measured while the probe of the analyzer stays open. )
The red curve is the re-measured data using the impedance test kit.
The important point is that; these two peak values at the resonance around 40MHz show good agreement in 10%.
The resonant frequencies for two data differs a little bit, which might be the effect of a stray capacitance ( ~several [pF] )
The red curve has a structure around 80MHz, I think this comes from the non-coaxial cables, which connect the circuit and analyzing kit.
You can see these cables colored black and red in the picture.
( conclusion )
Our measurement with the subtraction of the parasitic resistance effect is working reliably ! |
Attachment 1: DSCN0421.JPG
|
|
Attachment 2: EOM.png
|
|
2453
|
Sun Dec 27 20:05:28 2009 |
kiwamu | Update | Computers | can not communicate with front-ends |
In this evening I found that fb40m has been down, then I restarted fm40m successfully.
However there still is a problem, the reflective memory can not communicate with some front-end CPUs ( such as c1iscey, c1susvme, ...etc.)
Right now I don't have any ideas about this, I am leaving them as they are now .... we can deal with them tomorrow.
The followers are what I did.
(1) ssh to fb40m then "pkill tpman"
(2) telnet to fb40m then typed "shutdown". ( These procedure are on the 40m wiki)
(3) make sure fb40m gets recovered while watching the medm screen C0DAQ_DETAIL.adl
(4) run the backup script in fb40m
(5) in order to fix the communication problem, physically turn off c1dcuepics and c0daqctrl
(6) keying some front-end CPUs. ---> still some of front ends indicate RED on the medm screen C0DAQ_DETAIL.adl ( figure attached )
|
Attachment 1: C0DAQ_DETAIL.png
|
|
2470
|
Wed Dec 30 22:17:07 2009 |
kiwamu | Update | General | Camera input and monitor output |
The input channels of the cameras and the output channels for the monitors are summarized on the wiki.
The channel table on the wiki is very helpful when you want to make a change in the video matrix.
thank you. |
2523
|
Mon Jan 18 23:44:19 2010 |
kiwamu | Update | Electronics | triple resonant circuit for EOM |
The first design of the triple resonant EOM circuit has been done.
If only EOM has a loss of 4 Ohm, the gain of the circuit is expected to be 11 at 55MHz 
So far I've worked on investigation of the single resonant circuit and accumulated the knowledge about resonant circuits.
Then I started the next step, designing the triple resonant circuit.
Here I report the first design of the circuit and the expected gain.
( What I did )
At first in order to determine the parameters, such as inductors and capacitors, I have solved some equations with numerical ways (see the past entry).
In the calculation I put 6 boundary conditions as followers;
(first peak=11MHz, second peak=29.5MHz, third peak=55MHz, first valley=22MHz, second valley=33MHz, Cp=18pF)
The valley frequencies of 22MHz and 33MHz are chosen in order to eliminate the higher harmonics of 11MHz, and Cp of 18pF represents the capacitance of the EOM.
Basically the number of parameters to be determined is 6 ( L1, L2, ...,), therefore it is completely solved under 6 boundary conditions. And in this case, only one solution exists.
The point is calculation does not include losses because the loss does not change the resonant frequency.

( results )
As a result I obtained the 6 parameters for each components shown in the table below.
Cp [pF] |
18.1 |
C1 [pF] |
45.5 |
C2 [pF] |
10.0 |
Lp [uH] |
2.33 |
L1 [uH] |
1.15 |
L2 [uH] |
2.33 |
Then I inserted the loss into the EOM to see how the impedance looks like. The loss is 4 Ohm and inserted in series to the EOM. This number is based on the past measurement .
Let us recall that the gain of the impedance-matched circuit with a transformer is proportional to square-root of the peak impedance.
It is represented by G = sqrt(Zres/50) where Zres is the impedance at the resonance.
As you can see in the figure, Zres = 6.4 kOhm at 55MHz, therefore the gain will be G=11 at 55MHz.
Essentially this gain is the same as that of the single resonant circuit that I've been worked with, because its performance was also limited mainly by the EOM loss.
An interesting thing is that all three peaks are exactly on the EOM limited line (black dash line), which is represented by Zres = L/CR = 1/ (2pi f Cp)^2 R. Where R = 4 Ohm.

( next plan )
There are other solutions to create the same peaks and valleys because of the similar solution.
It is easy to understand if you put Cp' = Cp x N, the solutions must be scaled like L1'=L1/N, C1'=C1 x N, ..., Finally such scaling gives the same resonant frequencies.
So the next plan is to study the effect of losses in each components while changing the similar solution.
After the study of the loss I will select an optimum similar solution. |
2525
|
Tue Jan 19 02:39:57 2010 |
kiwamu | Update | Electronics | design complete --- triple resonant circuit for EOM --- |
The design of the triple resonant circuit has been fixed.
I found the optimum configuration, whose gain is still 11 at 55MHz even if there are realistic losses.
As I mentioned in the last entry, there are infinite number of the similar solutions to create the same resonant frequencies.
However owing to the effect of the losses, the resultant gain varies if the similar solution changes
The aim of this study is to select the optimum solution which has a maximum gain ( = the highest impedance at the resonance ).
In order to handle the losses in the calculation, I modeled the loss for both inductors and the capacitors.
Then I put them into the circuit, and calculated the impedance while changing the solutions.
(method)
1). put the scaling parameter as k in order to create the similar solution.
2). scale the all electrical parameters (L1, L2,...) by using k, so that C1'=C1 x k, L1'=L1/k ,...
3). Insert the losses into all the electrical components
4). Draw the impedance curve in frequency domain.
5). See how the height of the impedance at the resonance change
6). Repeat many time this procedure with another k.
7). Find and select the optimum k

There is a trick in the calculation.
I put a capacitor named Cpp in parallel to the EOM in order to scale the capacitance of the EOM (see the schematic).
For example if we choose k=2, this means all the capacitor has to be 2-times larger.
For the EOM, we have to put Cpp with the same capacitance as Cp (EOM). As a result these two capacitors can be dealt together as 2 x Cp.
So that Cpp should be Cpp = (k-1) Cp, and Cpp vanishes when we choose k=1.
The important point is that the scaling parameter k must be greater than unity, that is k > 1.
This restriction directly comes from Cp, the capacitance of the EOM, because we can not go to less than Cp.
If you want to put k < 1, it means you have to reduce the capacitance of the EOM somehow (like cutting the EO crystal ??)
(loss model)
I've modeled the loss for both the inductors and the capacitors in order to calculate the realistic impedance.
The model is based on the past measurements I've performed and the data sheet.
Loss for Capacitor : R(C) = 0.5 (C / 10pF)^{-0.3} Ohm
Loss for Inductor : R(L) = 0.1 ( L / 1uH) Ohm
Of course this seems to be dirty and rough treatment.
But I think it's enough to express the tendency that the loss increase / decrease monotonically as L / C get increased.
These losses are inserted in series to every electrical components.
( Note that: this model depends on both the company and the product model. Here I assume use of Coilcraft inductors and mica capacitors scattered around 40m )
( results )
The optimum configuration is found when k=1, there is no scaling. This is the same configuration listed in last entry
Therefore we don't need to insert the parallel capacitor Cpp in order to achieve the optimum gain.
The figure below shows the some examples of the calculated impedance. You can see the peak height decrease by increasing the scale factor k.

The black dash line represents the EOM-loss limit, which only contains the loss of the EOM.
The impedance at the resonance of 55MHz is 6.2 kOhm, which decreased by 3% from the EOM-loss limit. This corresponds to gain of G = 11.
The other two peaks, 11MHz and 29.5MHz dramatically get decreased from EOM-loss limit.
I guess this is because the structure below 50MHz is mainly composed by L1, L2, C1, C2.
In fact these components have big inductance and small capacitance, so that it makes lossy.
( next step )
The next step is to choose the appropriate transformer and to solder the circuit. |
2529
|
Tue Jan 19 03:27:47 2010 |
kiwamu | Update | Electronics | Re: triple resonant circuit for EOM |
1. You are right, the gain for the single resonant circuit was about 9.3 in my measurement.
But the reason why the triple is better than the single resonant circuit comes from the transformer.
The impedance can be degraded by a loss of the transformer, because it got worse after applying the transformer in the past measurement.
Also I definitely confirmed that the circuit had the impedance of 7.2 kOhm at the resonance of 52.9MHz without the transformer.
So it shall give the gain of 12, but did not after applying the transformer.
2. Yes, I think we need some variable components just in case.
5. For the impedance matching, I will select a transformer so that 55MHz is matched. In contrast I will leave two lower resonances as they are.
This is because 11MHz and 29.5MHz usually tend to have higher impedance than 55MHz. In this case, even if the impedance is mismatched, the gain for these can be kept higher than 11.
I will post the detail for this mismatched case tomorrow.
Quote: |
The design looks very good. I have some questions.
1. As far as I remember, you've got the gain of slightly worse than 10 for a 55MHz single resonant case. Why your expectation of the gain (G=11) for the highest resonance better than this?
Supposing the loss exists only on the EOM, the other part of the LC network for the triple work as an inductor at the resonant frequency. This is just equivalent as the single resonant case. So the expected gain at 55MHz should coincides with what we already have. Probably, the resistance of 4 Ohm that is used here had too rough precision???
2. How can you adjust the resonances precisely?
Do we need any variable components for Cs and Ls, that may have worse quality than the fixed one, generally speaking.
I myself has no experience that I had to tune the commercial EOM because of a drift or whatever. I hope if you can adjust the resonance with a fixed component it should be fine.
3. Changing Cp. What does it mean?
Do you put additional cap for Cp?
4. The resonances for the lower two look very narrow. Is that fine?
This will show up in a better shape if we look at the transfer function for the gain. Is this right?
If we have BW>100kHz, it is sufficient.
5. Impedance matching for the lower two resonances.
Yep. You know this problem already.
|
|
2533
|
Tue Jan 19 23:26:07 2010 |
kiwamu | Update | Electronics | Re:Re: triple resonant circuit for EOM |
Quote: |
5. For the impedance matching, I will select a transformer so that 55MHz is matched. In contrast I will leave two lower resonances as they are.
This is because 11MHz and 29.5MHz usually tend to have higher impedance than 55MHz. In this case, even if the impedance is mismatched, the gain for these can be kept higher than 11.
I will post the detail for this mismatched case tomorrow.
|
Here the technique of the impedance matching for the triple resonant circuit are explained.
In our case, the transformer should be chosen so that the impedance of the resonance at 55MHz is matched.
We are going to use the transformer to step up the voltage applied onto the EOM.
To obtain the maximum step-up-gain, it is better to think about the behavior of the transformer.
When using the transformer there are two different cases practically. And each case requires different optimization technique. This is the key point.
By considering these two cases, we can finally select the most appropriate transformer and obtain the maximum gain.
( how to maximize the gain ?)
Let us consider about the transformer. The gain of the circuit by using the transformer is represented by
(1)
Where ZL is the impedance of the load (i.e. impedance of the circuit without the transformer ) and n is the turn ratio.
It is apparent that G is the function of two parameters, ZL and n. This leads to two different solutions for maximizing the gain practically.

- case.1 : The turn ratio n is fixed.
In this case, the tunable parameter is the impedance ZL. The gain as a function of ZL is shown in the left figure above.
In order to maximize the gain, Z must be as high as possible. The gain G get close to 2n when the impedance ZL goes to infinity.
There also is another important thing; If the impedance ZL is bigger than the matched impedance (i.e. ZL = 50 * n^2 ), the gain can get higher than n.
- case.2 : The impedance ZL is fixed.
In contrast to case1, once the impedance ZL is fixed, the tunable parameter is n. The gain as a function of n is shown in the right figure above.
In this case the impedance matched condition is the best solution, where ZL=50*n^2. ( indicated as red arrow in the figure )
The gain can not go higher than n somehow. This is clearly different from case1.
( Application to the triple resonant circuit )
Here we can define the goal as "all three resonances have gain of more than n, while n is set to be as high as possible"
According to consideration of case1, if each resonance has an impedance of greater than 50*n^2 (matched condition) it looks fine, but not enough in fact.
For example if we choose n=2, it corresponds to the matched impedance of 50*n^2 = 200 Ohm. Typically every three resonance has several kOhm which is clearly bigger than the matched impedance successfully.
However no matter how big impedance we try to make, the gains can not be greater than G=2n=4 for all the three resonance. This is ridiculous.
What we have to do is to choose n so that it matches the impedance of the resonance which has the smallest impedance.
In our case, usually the resonance at 55MHz tends to have the smallest impedance in those three. According to this if we choose n correctly, the other two is mismatched.
However they can still have the gain of more than n, because their impedance is bigger than the matching impedance. This can be easily understand by recalling the case1.
(expected optimum gain of designed circuit)
By using the equation (1), the expected gain of the triple resonant circuit including the losses is calculated. The parameters can be found in last entry.

The turn ratio is set as n=11, which matches the impedance of the resonance at 55MHz. Therefore 55MHz has the gain of 11.
The gain at 11MHz is bigger than n=11, this corresponds to the case1. Thus the impedance at 11MHz can go close to gain of 22, if we can make the impedance much big.
|
2586
|
Wed Feb 10 17:28:02 2010 |
kiwamu | Update | Electronics | triple resonant EOM ---- preliminary result |
I have made a prototype circuit of the triple resonant EOM.
The attached is the measured optical response of the system.
The measured gains at the resonances are 8.6, 0.6 and 7.7 for 11MHz, 29.5MHz and 55MHz respectively.
I successfully got nice peaks at 11MHz and 55MHz. In addition resultant optical response is well matched with the predicted curve from the measured impedance.
However there is a difference from calculated response (see past entry) (i.e. more gains were expected)
Especially for the resonance of 29.5MHz, it was calculated to have gain of 10, however it's now 0.6. Therefore there must a big loss electrically around 29.5MHz.
I am going to re-analyze the impedance and model the performance in order to see what is going on. |
Attachment 1: mod_depth.png
|
|
2590
|
Thu Feb 11 16:52:53 2010 |
kiwamu | Update | Electronics | triple resonant EOM ---- preliminary result |
The commercial resonant EOM of New Focus has the modulation efficiency of 50-150mrad/Vrms. ( This number is only true for those EOM made from KTP such as model4063 and model4463 )
Our triple-resonant EOM (made from KTP as well) has a 90mrad/Vrms and 80mrad/Vrms at the reosonances of 11MHz and 55MHz respectively.
Therefore our EOM is as good as those of company-made so that we can establish a new EOM company 
Quote: |
Hey, this looks nice, but can you provide us the comparison of rad/V with the resonant EOM of New Focus?
Quote: |
I have made a prototype circuit of the triple resonant EOM.
The attached is the measured optical response of the system.
The measured gains at the resonances are 8.6, 0.6 and 7.7 for 11MHz, 29.5MHz and 55MHz respectively.
I successfully got nice peaks at 11MHz and 55MHz. In addition resultant optical response is well matched with the predicted curve from the measured impedance.
However there is a difference from calculated response (see past entry) (i.e. more gains were expected)
Especially for the resonance of 29.5MHz, it was calculated to have gain of 10, however it's now 0.6. Therefore there must a big loss electrically around 29.5MHz.
I am going to re-analyze the impedance and model the performance in order to see what is going on.
|
|
|
2596
|
Fri Feb 12 13:15:41 2010 |
kiwamu | Update | Electronics | triple resonant EOM --- liniaryity test |
I have measured the linearity of our triple resonant EOM (i.e. modulation depth versus applied voltage)
The attached figure is the measured modulation depth as a function of the applied voltage.
The linear behavior is shown below 4Vrms, this is good.
Then it is slowly saturated as the applied voltage goes up above 4Vrms.
However for the resonance of 29.5MHz, it is difficult to measure below 7Vrms because of the small modulation depth.
Our triple resonant EOM looks healthy
- - - - result from fitting - - -
11MHz: 91mrad/Vrms+2.0mrad
29.5MHz: 4.6mrad/Vrms+6.2mrad
55MHz:82mrad/Vrms+1.0mrad |
Attachment 1: linearity_edit.png
|
|
2601
|
Fri Feb 12 18:58:46 2010 |
kiwamu | Update | Green Locking | take some optics away from the ETM end table |
In the last two days Steve and I took some optics away from the both ETM end table.
This is because we need an enough space to set up the green locking stuff into the end table, and also need to know how much space is available.
Optics we took away are : Alberto's RF stuff, fiber stuff and some optics obviously not in used.
The picture taken after the removing is attached. Attachment1:ETMX, Attachment2:ETMY
And the pictures taken before the removing are on the wiki, so you can check how they are changed.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables |
Attachment 1: DSC_1164.JPG
|
|
Attachment 2: DSC_1172.JPG
|
|
2606
|
Tue Feb 16 11:12:51 2010 |
kiwamu | Update | Green Locking | Re:take some optics away from the ETM end table |
Quote: |
Quote: |
In the last two days Steve and I took some optics away from the both ETM end table.
This is because we need an enough space to set up the green locking stuff into the end table, and also need to know how much space is available.
Optics we took away are : Alberto's RF stuff, fiber stuff and some optics obviously not in used.
The picture taken after the removing is attached. Attachment1:ETMX, Attachment2:ETMY
And the pictures taken before the removing are on the wiki, so you can check how they are changed.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables
|
The PD Kiwamu removed from the Y table was TRY, which we still need.
My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.
I'm going to ask Kiwamu if he can kindly put it back.
|
I am going to put the PD back to the Y end table in this afternoon. |
2609
|
Tue Feb 16 16:24:30 2010 |
kiwamu | Update | Green Locking | Re:Re:take some optics away from the ETM end table |
I put the TRY_PD back to the end table and aligned it. Now it seems to be working well.
Quote: |
The PD Kiwamu removed from the Y table was TRY, which we still need.
My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.
I'm going to ask Kiwamu if he can kindly put it back.
|
I am going to put the PD back to the Y end table in this afternoon.
|
|
2618
|
Fri Feb 19 15:29:14 2010 |
kiwamu | Update | COC | Gluing dumbbells and magnets |
Jenne and kiwamu
We have glued the dumbbells to the magnets that will be used for the ITMs
We made two sets of glued pair of the dumbbell and the magnet ( one set means 6 pairs of the dumbbell and the magnet. Therefore in total we got 12 pairs. )
You can see the detailed procedure we did on the LIGO document E990196.
Actually we performed one different thing from the documented procedure;
we made scratch lines on the surface of the both dumbbells and magnets by a razor blade.
According to Steve and Bod, these scratch make the strength of the glues stronger.
Now the dumbbell-magnet pairs are on the flow bench in the clean room, and supported by a fixture Betsy sent us.
- - notes
On the bench the left set is composed by magnets of 244 +/- 3 Gauss and the right set is 255 +/- 3 Gauss.
|
2619
|
Fri Feb 19 16:40:43 2010 |
kiwamu | Update | Green Locking | rearrange the optics on the end table |
Koji and kiwamu
The existing optics on the ETMX/ETMY end table were rearranged in this morning.
The main things we have done are -
1. relocation of the optical levers for ETMs ( as mentioned in koji's entry )
This relocation can make a space so that we can setup the green locking stuffs.
The optical path of the green locking is planed to start from the right top corner on the table, therefore we had to relocate the oplevs toward the center of the table.
2. relocation of the lens just before the tube
Because we are going to shoot the green beam into the arm cavity, we don't want to have any undesired lenses before the cavity.
For this reason we changed the position of the lens, it was standing just in front of the tube, now it's standing on the left side of the big mirror standing center top.
Since we did not find a significant change in its the spot size of the transmitted light, we did not change the position of all the TRANS_MON_PDs and its mirrors. And they are now well aligned.
Attachment1: ETMX end table
Attachment2: ETMY end table |
Attachment 1: DSC_1202.JPG
|
|
Attachment 2: DSC_1207.JPG
|
|
2635
|
Tue Feb 23 19:00:45 2010 |
kiwamu | Configuration | VAC | vent finished |
The vent has been finished.
Now the pressure inside the chamber is 760 torr, and it's getting equilibrium with the atmospheric pressure.
Therefore we are ready and can open the door of the chamber tomorrow. |
2650
|
Tue Mar 2 12:20:54 2010 |
kiwamu | Update | PSL | stray beam |
In order to block stray beams, I have put some beam dumps and razor blades on the PSL table.
There were three undesired spots in total. I found two spots on the south side door of the PSL room, close to Mach-Zehnder.
Another spots was on the middle of the north door. Now they all are blocked successfully. |
2682
|
Thu Mar 18 15:33:17 2010 |
kiwamu | Summary | Electronics | advantege of our triple resonant EOM |
In this LVC meeting I discussed about triple resonant EOMs with Volker who was a main person of development of triple resonant EOMs at University of Florida.
Actually his EOM had been already installed at the sites. But the technique to make a triple resonance is different from ours.
They applied three electrodes onto a crystal instead of one as our EOM, and put three different frequencies on each electrode.
For our EOM, we put three frequencies on one electrode. You can see the difference in the attached figure. The left figure represents our EOM and the right is Volker's.
Then the question is; which can achieve better modulation efficiency ?
Volker and I talked about it and maybe found an answer,
We believe our EOM can be potentially better because we use full length of the EO crystal.
This is based on the fact that the modulation depth is proportional to the length where a voltage is applied onto.
The people in University of Florida just used one of three separated parts of the crystal for each frequency. |
Attachment 1: electrode.png
|
|
2688
|
Sat Mar 20 18:34:19 2010 |
kiwamu | Summary | Electronics | RE:advantege of our triple resonant EOM |
Yes, I found it.
Their advantage is that their circuit is isolated at DC because of the input capacitor.
And it is interesting that the performance of the circuit in terms of gain is supposed to be roughly the same as our transformer configuration. |
2735
|
Tue Mar 30 21:11:42 2010 |
kiwamu | Summary | Green Locking | conversion efficiency of PPKTP |
With a 30mm PPKTP crystal the conversion efficiency from 1064nm to 532nm is expected to 3.7 %/W.
Therefore we will have a green beam of more than 20mW by putting 700mW NPRO.
Last a couple of weeks I performed a numerical simulation for calculating the conversion efficiency of PPKTP crystal which we will have.
Here I try to mention about just the result. The detail will be followed later as another entry.
The attached figure is a result of the calculation.
The horizontal axis is the waist of an input Gaussian beam, and the vertical axis is the conversion efficiency.
You can see three curves in the figure, this is because I want to double check my calculation by comparing analytical solutions.
The curve named (A) is one of the simplest solution, which assumes that the incident beam is a cylindrical plane wave.
The other curve (B) is also analytic solution, but it assumes different condition; the power profile of incident beam is a Gaussian beam but propagates as a plane wave.
The last curve (C) is the result of my numerical simulation. In this calculation a focused Gaussian beam is injected into the crystal.
The numerical result seems to be reasonable because the shape and the number doesn't much differ from those analytical solutions. |
Attachment 1: efficiency_waist_edit.png
|
|
2737
|
Wed Mar 31 02:57:48 2010 |
kiwamu | Update | Green Locking | frequency counter for green PLL |
Rana found that we had a frequency counter SR620 which might be helpful for lock acquisition of the green phase lock.
It has a response of 100MHz/V up to 350MHz which is wide range and good for our purpose. And it has a noise level of 200Hz/rtHz @ 10Hz which is 1000 times worse than that Matt made (see the entry).
The attached figure is the noise curve measured while I injected a signal of several 100kHz. In fact I made sure that the noise level doesn't depends on the frequency of an input signal.
The black curve represents the noise of the circuit Matt has made, the red curve represents that of SR620. |
Attachment 1: FCnoise.png
|
|
2740
|
Wed Mar 31 11:52:32 2010 |
kiwamu | Summary | Green Locking | Re:conversion efficiency of PPKTP |
Good point. There is a trick to avoid a divergence.
Actually the radius of the cylindrical wave is set to the spot size at the surface of the crystal instead of an actual beam waist. This is the idea Dmass told me before.
So that the radius is expressed by w=w0(1+(L/2ZR)2)1/2, where w0 is beam waist, L is the length of the crystal and ZR is the rayleigh range.
In this case the radius can't go smaller than w0/2 and the solution can not diverge to infinity.
Quote: |
Question:
Why does the small spot size for the case (A) have small efficiency as the others? I thought the efficiency goes diverged to infinity as the radius of the cylinder gets smaller.
|
|
2788
|
Mon Apr 12 14:20:10 2010 |
kiwamu | Update | Green Locking | PZT response for the innolight |
I measured a jitter modulation caused by injection of a signal into laser PZTs.
The measurement has been done by putting a razor blade in the middle way of the beam path to cut the half of the beam spot, so that a change of intensity at a photodetector represents the spatial jitter of the beam.
However the transfer function looked almost the same as that of amplitude modulation which had been taken by Mott (see the entry).
This means the data is dominated by the amplitude modulation instead of the jitter. So I gave up evaluating the data of the jitter measurement. |
2823
|
Wed Apr 21 10:09:23 2010 |
kiwamu | Update | Green Locking | waist positon of Gaussian beam in PPKTP crystals |
Theoretically the waist position of a Gaussian beam (1064) in our PPKTP crystal differs by ~6.7 mm from that of the incident Gaussian beam.
So far I have neglected such position change of the beam waist in optical layouts because it is tiny compared with the entire optical path.
But from the point of view of practical experiments, it is better to think about it.
In fact the result suggests the rough positioning of our PPKTP crystals;
we should put our PPKTP crystal so that the center of the crystal is 6.7 mm far from the waist of a Gaussian beam in free space.
(How to)
The calculation is very very simple.
The waist position of a Gaussian beam propagating in a dielectric material should change by a factor of n, where n is the refractive index of the material.
In our case, PPKTP has n=1.8, so that the waist position from the surface of the crystal becomes longer by n.
Now remember the fact that the maximum conversion efficiency can be achieved if the waist locates at exact center of a crystal.
Therefore the waist position in the crystal should be satisfied this relation; z*n=15 mm, where z is the waist position of the incident beam from the surface and 15 mm is half length of our crystal.
Then we can find z must be ~8.3 mm, which is 6.7 mm shorter than the position in crystal.
The attached figure shows the relation clearly. Note that the waist radius doesn't change. |
Attachment 1: focal_positin_edit.png
|
|
2850
|
Tue Apr 27 14:18:53 2010 |
kiwamu | Update | Green Locking | waist positon of Gaussian beam in PPKTP crystals |
The mode profile of Gaussian beams in our PPKTP crystals was calculated.
I confirmed that the Rayleigh range of the incoming beam (1064 nm) and that of the outgoing beam (532 nm) is the same.
And it turned out that the waist postion for the incoming beam and the outgoing beam should be different by 13.4 mm toward the direction of propagation.
These facts will help us making optical layouts precisely for our green locking.
(detail)
The result is shown in the attached figure, which is essentially the same as the previous one (see the entry).
The horizontal axis is the length of the propagation direction, the vertical axis is the waist size of Gaussian beams.
Here I put x=0 as the entering surface of the crystal, and x=30 mm as the other surface.
The red and green solid curve represent the incoming beam and the outgoing beam respectively. They are supposed to propagate in free space.
And the dashed curve represents the beams inside the crystal.
A trick in this calculation is that: we can assume that the waist size of 532 nm is equal to that of 1064 nm divided by sqrt(2) .
If you want to know about this treatment in detail, you can find some descriptions in this paper;
"Third-harmonic generation by use of focused Gaussian beams in an optical super lattice" J.Opt.Soc.Am.B 20,360 (2003)" |
Attachment 1: mode_in_PPKTP.png
|
|
2898
|
Fri May 7 21:55:59 2010 |
kiwamu | Update | PSL | remove Mach-Zehnder |
[Koji, Kiwamu]
The Mach-Zehnder on the PSL table was removed.
A path for 166 MHz modulation in the Mach-Zehnder (MZ) was completely removed, the setup for another path remains the same as before.
Also the photo detector and the CCD for the PMC transmittion were moved to behind the PZT mirror of PMC.
Before removing them, we put an aperture in front of the PD for MC REFL so that we can recover the alignment toward MC by using the aperture.
After the removal we tried to re-align the EOM which imposes the sideband of 29MHz for MC.
We eventually got good alignment of 97% transmissivity at the EOM ( the power of the incident beam is 1.193W and trans was 1.160W )
And then we aligned the beam going to MC by guiding the reflected beam to the aperture we put. This was done by using the steering mirrors on the periscope on the corner of the PSL table.
Now MC got locked and is successfully resonating with TEM00.
|
Attachment 1: NO_MachZehnder_s.jpg
|
|
2920
|
Wed May 12 10:33:32 2010 |
kiwamu | Update | Green Locking | Re: Reflection from ETM and ITM ! |
The procedure you wrote down as a standard is right. I explain reasons why we didn't do such way.
For our situation, we can rotate the polarization angle of the incident beam by using a HWP in front of the Faraday.
This means we don't have to pay attention about the PBS_in because the rotation of either PBS_in or the HWP causes the same effect (i.e. variable transmission ). This is why we didn't carefully check the PBS_in, but did carefully with the HWP.
Normally we should take a maximum transmission according to a instruction paper from OFR, but we figured out it was difficult to find a maximum point. In fact looking at the change of the power with such big incident (~1W) was too hard to track, it only can change 4th significant digit ( corresponds to 1mW accuracy for high power incident ) in the monitor of the Ophir power meter. So we decided to go to a minimum point instead a maximum point, and around a minmum point we could resolve the power with accuracy of less than 1mW.
After obtaining the minimum by rotating the HWP, we adjusted the angle of PBS_out to have a minimum transmission.
And then we was going to flip the Faraday 180 deg for fine tuning, but we didn't. We found that once we remove the Faraday from the mount, the role angle of the Faraday is going to be screwed up because the mount can not control the role angle of the Faraday. This is why we didn't flip it.
Quote: |
I could not understand this operation. Can you explain this a bit more?
It sounds different from the standard procedure to adjust the Faraday:
1) Get Max transmittion by rotating PBS_in and PBS_out.
2) Flip the Faraday 180 deg i.e. put the beam from the output port.
3) Rotate PBS_in to have the best isolation.
|
|
2936
|
Sun May 16 12:51:08 2010 |
kiwamu | Update | Green Locking | reflected beam at PD |
Mode matching to the cavity has been done.
Now the reflection from the cavity is successfully going into the PD.
However I could not see any obvious error signal.
I should compute and re-check the expected signal level.
(mode matching of the crystal)
On the last Wednesday, Kevin and I measured the mode profile before the PPKTP crystal, and we found the Gaussian beam at the crystal is focused too tightly (w = 38 um).
In order to achieve the best conversion efficiency the waist size should be 50.0 um. So we moved a lens, which was located before the crystal, to 7 cm more away from the crystal. Eventually we obtained a better focus (w = 50.1 um).
Thanks, Kevin. You did a good job.
(mode matching of the cavity)
I put a lens with f=-50 mm after the crystal to diverge the green beam more quickly. Then the beam is going through the Faraday of 532 nm, two final modematching lenses and ETMY at last.
By shifting the positions of these lenses, I obtained the reflection from ITMY with almost the same spot size as that of the incident. This means modemathing is good enough.
I put two more steering mirrors before its injection to the ETM, this allows us to align the beam axis against the cavity.
I aligned the axis by using the steering mirrors and now the green beam are successfully hitting the center of both the ETM and the ITM.
Then the alignment of the ETM and the ITM was adjusted from medm, so that both reflection goes in the same path as that of the incident.
And then I put a PD (Thorlabs PDA36A) to see the reflection rejected by the Faraday.
Connecting a mixer and a local oscillator (Stanford func. generator) with f=200kHz, but I couldn't see any obvious PDH signal....
Since the PD is DC coupled, the signal is almost dominated by DC voltage. Even if I inserted a high pass filter to cut off the DC, the AC signal looks very tiny.. |
2956
|
Thu May 20 12:10:44 2010 |
kiwamu | Update | Photos | ETMY end table |
I updated the photo of ETMY end table on the wiki.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables |
Attachment 1: ETMY_s.png
|
|
2957
|
Thu May 20 12:34:46 2010 |
kiwamu | Configuration | 40m Upgrading | optical breadboards with legs |
Yesterday Steve and I revived two legs to mount some optical breadboards outside of the end table.
These legs had been used as oplev's mounts many years ago, but now they are served for 40m upgrading. These are really nice.
By putting them on the side of the end table, a mirror mounted on the top of the leg can reflect the beam outside of the end table.
Once we pick off the green beam from the end table to its outside, the green beam can propagate through the 40m walkway along the Y-arm.
So that we can measure the beam profile as it propagates.
These legs are also going to be used during mode matching of the vacuum optics. |
Attachment 1: leg1_small.png
|
|
Attachment 2: leg2_small.png
|
|
2959
|
Thu May 20 13:29:40 2010 |
kiwamu | Update | Green Locking | mode profile at PPKTP crystal |
I measured again the mode profile of the beam going through the PPKTP crystal by using the beam scan.
The aimed beam waist is 50 um (as described in entry 2735),
and the measured profile had pretty good waist of wx=51.36 +/- 0.0999 um and wy=49.5 +/- 0.146 um 
The next things I have to do are - (1). re-optimization of the temperature of the crystal (2). measurement of the conversion efficiency
The attached figure is the result of the measurement. |
Attachment 1: PPKTPmode.png
|
|
2960
|
Thu May 20 14:18:59 2010 |
kiwamu | Update | Green Locking | mode profile of 40m cavity |
The mode profile of the green beam going through 40m cavity was measured.
According to the fitting the coupling efficiency to the cavity is 98.46% , but still the beam looks loosely focused .
This measurement has been done by using the oplev legs (entry #2957) to allow the beam to go through the 40m walkway.
With a beam scan set on a movable cabinet, I measured it along the 40m chamber.
Since the plot looks not so nice, I am going to work on this measurement a little bit more after I improve the mode matching.
Here is the parameters from the fitting
target waist [mm] |
2.662 |
measured waist x [mm] |
2.839 |
measured waist x [mm]
|
3.111 |
|
|
target waist position [m] |
43.498 |
measured waist position x [m] |
42.579 |
measured waist position y [m] |
38.351 |
I believe the error for the travel length was within 0.5 meter. The length was always measured by a tape measure.
A thing I found was that: spatial jittering of the beam gets bigger as the beam goes further. This is the main source of the error bar for the spot size.
|
Attachment 1: MMT40mcavity.png
|
|
2975
|
Mon May 24 14:28:35 2010 |
kiwamu | Update | Electronics | bad power supply of a vme rack |
In this morning I found daqawg didn't work.
After looking for the cause, I found one of the vme racks mounted on 1Y6 doesn't work correctly.
It looks like the vme rack mounting c0daqawg could not supply any power to the frontends.
Now Steve and I are trying to look for a spare for it. |
2978
|
Tue May 25 07:22:59 2010 |
kiwamu | Update | Electronics | bad power supply of a vme rack |
Notes on May 25th
Don't do the following things !! This causes bad cross-talking of CPUs mounted on the crate.
I moved c0daqawg and c1pem1 from 1Y6 vme crate to 1Y7 crate due to the bad power supply.
Another problem: c0dcu1 doesn't come back to the network.
After moving them, I tried to get back them into the RFM network. However c0dcu1 never came back, it still indicates red in C0DAQ_DETAIL.adl screen.
Alberto and I did even "nuclear option" (as instructed), but no luck. |
2979
|
Tue May 25 07:58:23 2010 |
kiwamu | Update | elog | elog down |
I found the elog got down around 7:30 am in this morning.
So I restarted it by running the script: "start-elog-nodus" as instructed on the wiki.
http://lhocds.ligo-wa.caltech.edu:8000/40m/How_To/Restart_the_elog |
2980
|
Tue May 25 09:12:46 2010 |
kiwamu | Configuration | Green Locking | effect from air conditioner |
We should completely turn off the air conditioner when working on green locking.
Even if green beams propagates inside of chambers, the air conditioner does affect the spatial jitter of the beam.
The attached picture was taken when Steve and I were seeing how the green beam jittered.
At that time the beam was injected from the end table and going through inside of the ETM, the ITM and the BS camber.
Eventually it came out from the camber and hit the wall outside of the chamber. It was obvious, we could see the jittering when the air cond. was ON. |
Attachment 1: green_spot.png
|
|
2981
|
Tue May 25 10:06:09 2010 |
kiwamu | Update | Electronics | bad power supply of a vme rack |
I got a VME crate from Peter's lab. It is already installed in 1Y6 instead of the old broken one.
I checked its power supply, and it looked fine. It successfully supplies +5, +12 and -12 V. And then I put c0daqawg and c1pem1 back from 1Y7.
Now I am trying to reboot all the front end computers with Peter's VME crate. A picture of the VME crate will be updated later. |
2982
|
Tue May 25 16:32:26 2010 |
kiwamu | HowTo | Electronics | front ends are back |
[Alex, Joe, Kiwamu]
Eventually all the front end computers came back !! 
There were two problems.
(1): C0DCU1 didn't want to come back to the network. After we did several things it turned the ADC board for C0DCU1 didn't work correctly.
(2): C1PEM1 and C0DAQAWG were cross-talking via the back panel of the crate.
(what we did)
* installed a VME crate with single back panel to 1Y6 and mounted C1PEM1 and C0DAQAWG on it. However it turned out this configuration was bad because the two CPUs could cross-talk via the back panel.
* removed the VME crate and then installed another VME crate which has two back panels so that we can electrically separate C1PEM1 and C0DAQAWG. After this work, C0DAQAWG started working successfully.
* rebooted all the front ends, fb40m and c1dcuepics.
* reset the RFM bypath. But these things didn't bring C0DCU1 back.
* telnet to C0DCU1 and ran "./startup.cmd" manually. In fact "./startup.cmd" should automatically be called when it boots.
* saw the error messages from "./startup.cmd" and found it failed when initialization of the ADC board. It saids "Init Failure !! could not find ICS"
* went to 1Y7 rack and checked the ADC. We found C0DCU1 had two ADC boards, one of two was not in used.
* disconnected all two ADCs and put back one which had not been in used. At the same time we changed the switching address of this ADC to have the same address as the other ADC.
* powered off/on 1Y7 rack. Finally C0DCU1 got back.
* burtrestored the epics to the last Friday, May 21st 6:07am |
2988
|
Wed May 26 04:14:21 2010 |
kiwamu | Update | Green Locking | locked |
I guess I succeeded in locking of the cavity with the green beam 
Strictly speaking, the laser frequency of the end NPRO is locked to the 40 meter arm cavity.
Pictures, some more quantitative numbers and some plots are going to be posted later.
After the alignment of the cavity I could see DC fringes in its reflection. Also I could see the cavity flashing on the monitor of ETMY_CCD.
I drove the pzt of the NPRO with f=200kHz, and then the spectrum analyzer showed 200kHz beat note in the reflection signal. This means it's ready to PDH technique.
And then I made a servo loop with two SR560s, one for a filter and the other for a sum amp.
After playing with the value of the gain and the sign of the feedback signal, the laser successfully got lock.
To make sure it is really locked, I measured the open loop transfer function of the PDH servo while it stayed locked. The result is shown in the attached figure.
The measured data almost agrees with the expected curve below 1kHz, so I conclude it is really locked.
However the plot looks very noisy because I could not inject a big excitation signal into the loop. If I put a big excitation, the servo was unlocked.
The current servo is obviously too naive and it only has f-1 shape, so the filter should be replaced by a dedicated PDH box as we planed. |
Attachment 1: OLTF_endPDH.png
|
|
2997
|
Thu May 27 02:22:24 2010 |
kiwamu | Update | Green Locking | more details |
Here are some more plots and pictures about the end PDH locking with the green beam.
-- DC reflection
I expected that the fluctuation of the DC reflection had 1% from the resonant state to the anti-resonant state due to its very low finesse.
This values are calculated from the reflectivity of ETM measured by Mott before (see the wiki).
In my measurement I obtained DC reflection of V_max=1.42 , V_min=1.30 at just after the PD.
These numbers correspond to 7.1% fluctuation. It's bigger than the expectation.
I am not sure about the reason, but it might happen by the angular motion of test masses (?)
--- time series
Here is a time series plot. It starts from openloop state (i.e. feedback disconnected).
At t=0 sec I connected a cable which goes to the laser pzt, so now the loop is closed.
You can see the DC reflection slightly decreased and stayed lower after the connection.
The bottom plot represents the feedback signal measured before a sum amp. which directly drives the pzt.

-- length fluctuation
One of the important quantities in the green locking scheme is the length fluctuation of the cavity.
It gives us how much the frequency of the green beam can be stabilized by the cavity. And finally it will determine the difficulty of PLL with the PSL.
I measured a spectrum of the pzt driving voltage [V/Hz1/2] and then converted it to a frequency spectrum [Hz/Hz1/2].
I used the actuation efficiency of 1MHz/V for the calibration, this number is based on the past measurement.

RMS which is integrated down to 1Hz is 1.6MHz.
This number is almost what I expected assuming the cavity swings with displacement of x ~< 1um.
-- flashing
A picture below is a ETMx CCD monitor.
One of the spot red circled in the picture blinks when it's unlocked. And once we get the lock the spot stays bright.

|
3000
|
Thu May 27 10:30:32 2010 |
kiwamu | HowTo | Green Locking | PSL setup for green locking |
I leave notes about a plan for the green locking especially on the PSL table.
(1) open the door of the MC13 tank to make the PSL beam go into the MC. Lock it and then optimize the alignment of the MC mirror so that we can later align the incident beam from the PSL by using the MC as a reference.
(2) Remove a steering mirror located just after the PMC on the PSL table. Don't take its mount, just take only the optic in order not to change the alignment .
(3) Put an 80% partial reflector on that mount to pick off ~200mW for the doubling . One can find the reflector on my desk.
(4) Put some steering mirrors to guide the transmitted beam through the reflector to the doubling crystal. Any beam path is fine if it does not disturb any other setups. The position of the oven+crystal should not be changed so much, I mean the current position looks good.
(5) Match the mode to the crystal by putting some lenses. The optimum conversion efficiency can be achieved with beam waist of w0~50um (as explained on #2735).
(6) Align the oven by using the kinematic mount. It takes a while. The position of the waist should be 6.7 mm away from the center of the crystal (as explained on #2850). The temperature controller for the oven can be found in one of the plastic box for the green stuff. After the alignment, a green beam will show up.
(8) Find the optimum temperature which gives the best conversion efficiency and measure the efficiency.
(7) Align the axis of the PSL beam to the MC by steering the two mirrors attached on the periscope. |
3017
|
Sun May 30 17:51:04 2010 |
kiwamu | HowTo | PEM | Allegra dataviewer |
I found the dataviewer didn't work only on Allegra. This thing sometimes happened as described in the past entry.
I rebooted Allegra, then the problem was fixed.
|
3019
|
Mon May 31 00:10:18 2010 |
kiwamu | Update | IOO | MC alignment |
[Alberto, Kiwamu]
The MC alignment is getting better by steering the axis of the incident beam into the MC.
We found the beam spot on MC1 and MC3 were quite off-centered in the beginning of today's work. It had the coil gain ratio of 0.6:1.4 after running the A2L script.
In order to let the beam hit the center of the MC1 and MC3, we steered the bottom mirror attached on the periscope on the PSL table to the yaw direction.
And then we got better numbers for the coil gain ratio (see the numbers listed at the bottom).
For the pitch direction, there still are some rooms to improve because we didn't do anything with the pitch. It is going to be improved tomorrow or later.
Here are the amounts of off-centering on MC1 and MC3 after steering the axis.
C1:SUS- MC1_ULPIT_GAIN = 0.900445
C1:SUS-MC1_ULYAW_GAIN = 0.981212
C1:SUS-MC3_ULPIT_GAIN = 0.86398
C1:SUS-MC3_ULYAW_GAIN = 1.03221 |
3021
|
Mon May 31 17:47:34 2010 |
kiwamu | Update | IOO | today's plan : MC alignment |
[Alberto, Kiwamu]
0. have a coffee and then dress up the clean coat.
1. level the MC table
2. lock and align MC
3. run A2L script to see how much off-centering of the spots
4. steer the periscope mirror <--- We are here
5. move the pick off mirror which is used for monitoring of MCT CCD
6. check the leveling and move some weights if it's necessary
7. shut down |
3043
|
Thu Jun 3 13:14:27 2010 |
kiwamu | Update | IOO | mode measurement of new input optics |
I corrected the sketch of the new IOO.
The sketch in the last entry was also replaced by the new one.
http://nodus.ligo.caltech.edu:8080/40m/3029
Quote: |
Just note that MMT1 has RoC of -5m (negative!). This means that it is a lens with f=-2.5 m,
|
|
Attachment 1: inside_vac_2.png
|
|
3044
|
Thu Jun 3 14:01:51 2010 |
kiwamu | Update | IOO | mode measurement of new input optics |
I checked the measured data of the mode profile which was taken on the last Tuesday.
For the vertical profile,
the plot shows a good agreement between the expected radius which is computed from the past measurement, and that measured on the last Tuesday.
However for the horizontal profile,
it looks like being overestimated. This disagreement may come from the interference imposed on the Gaussian spot as we've been worried.
So I guess we should solve this issue before restarting this mode matching work.
- The next step we should do are;
checking the effect of MMT1 on the shape of the beam spot by using a spare of MMT1
NOTE:
The expected curve in the attached figure were computed by using the fitted parameter listed on the entry 2984 .
In the calculation the MMT1 is placed at 1911mm away from MC3 as we measured.
And the focal length of MMT1 is set to be f=-2500mm. |
Attachment 1: check_measurement_edit.png
|
|
3059
|
Wed Jun 9 11:13:11 2010 |
kiwamu | Update | Green Locking | lock with PDH box |
A progress on the end PDH locking :
by using a modified PDH box the green laser on the X-end station is locked to the arm cavity.
So far the end PDH locking had been achieved by using SR560s, but it was not sophisticated filter.
To have a sophisticated filter and make the control loop more stable, the PDH box labeled "#G1" was installed instead of the SR560s.
After the installation the loop looks more stable than the before.
Some details about the modification of the PDH box will be posted later.
Although, sometimes the loop was unlocked because the sum-amp (still SR560) which mixes the modulation and the feedback signal going to the NPRO PZT was saturated sometimes.
Thus as we expected a temperature control for the laser crystal is definitely needed in order to reduce such big low frequency drive signal to the PZT. |