40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 184 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectdown
  99   Wed Nov 14 07:48:38 2007 nornaOmnistructureOMCOMC Cable dressing
[Snipped from an email]

1) Last Friday Pinkesh and I set the OMC up with only the top three OSEMs and took a vertical transfer function. We had removed the other OSEMs due to difficulty of aligning all OSEMs with the weight of the bench etc bringing the top mass lower than the tablecloth can accommodate. See attached TF.Clearly there are extra peaks (we only expect two with a zero in between) and my belief is that at least some of them are coupling of other degrees of freedom caused by the electrical wiring. Pinkesh and I also noticed the difficulty of maintaining alignment if cables got touched and moved around. So.....

2) Yesterday Dennis and I took a look at how much moving a cable bundle around (with the peak shielding) changed the DC alignment. In a not too precise experiment ( using HeNe laser reflecting off the bench onto a surface ~ 1 metre away) we saw that we could reposition the beam one or two mm in yaw and pitch. This corresponds to ~ one or two mrad which is ~ the range of the OSEM DC alignment. We discussed possibility of removing the cabling from the middle mass, removing the peak and taking it from the bench directly to the structure above. I asked Chub if he could make an equivalent bundle of wires as those from the two preamps to see what happens if we repeat the "moving bundle" experiment. So...

3) Today Chub removed the cabling going to the preamps and we replaced it with a mock up of wire bundle going directly from the preamps to the structure above. See attached picture. The wires are only attached to the preamp boxes weighted down with masses but the bundle is clamped at the top. We repeated the "wiggle the bundle" test and couldnt see any apparent movement ( so maybe it is at most sub-mm). The cable bundle feels softer.

The next thing Chub did was to remove the second bundle ( from photodiodes, heater, pzt) from its attachment to the middle mass and strip off the peek. It is now also going to the top of the structure directly. The whole suspension now appears freer. We discussed with Dennis the "dressing " of the wires. There are some minor difficulties about how to take wires from the bright side to the dark side, but in general it looks like that the wires forming the second "bundle" could be brought to the "terminal block" mounted on the dark side and from there looped up to the top of the structure. We would have to try all this of course to see the wiring doesnt get in the way of other things (e.g. the L and R OSEMs). However this might be the way forward. So...

4) Tomorrow Pinkesh and I will check the alignment and then repeat the vertical transfer function measurement with the two bundles as they are going from bench to top of structure. We might even do a horizontal one if the middle mass is now within range of the tablecloth.
We can then remove preamp cables completely and lay the second bundle of cables on the optical bench and repeat the TFs.

The next thing will be to weigh the bench plus cables. This will allow us to
a) work out what counterbalance weights are needed - and then get them manufactured
b) firm up on how to handle the extra mass in terms of getting the masses at the correct height.

And in parallel Chub will work on the revised layout of cabling.

Looking a little further ahead we can also get some stiffness measurements made on the revised bundle design ( using Bob's method which Alejandro also used) and fold into Dennis's model to get some sanity check the isolation.

I think that's it for now. Comments etc are of course welcome.

Attachment 1: OMC-11-13-07_011.jpg
Attachment 2: VerticalTrans.pdf
VerticalTrans.pdf VerticalTrans.pdf VerticalTrans.pdf VerticalTrans.pdf
  19   Fri Oct 26 17:34:43 2007 waldmanOtherOMCOMC + earthquake stops

[Chub, chris, Pinkesh, Sam]

Last night we hugn the OMC for the first time and came up with a bunch of pictures and some problems. Today we address some of the problems and, of course, make new problems. We replaced the flat slotted disks with the fitted slotted disks that are made to fit into the counterbore of the breadboard. This changed the balance slightly and required a more symmetric distribution of mass. It probably did not change the total mass very much. We did find that the amount of cable hanging down strongly affected the breadboard balance and may also have contributed to the changing balance.

We also attached earthquake stops and ran into a few problems:

  • The bottom plate of the EQ stops is too thick so that it bumps into the tombstones
  • The vertical member on the "waist" EQ stops is too close to the breadboard, possibly interfering with the REFL beam
  • The "waist" EQ stops are made from a thin plate that doesn't have enough thickness to mount helicoils in
  • Helicoil weren't loaded in the correct bottom EQ stops
  • The DCPD cable loops over the end EQ stop looking nasty but not actually making contact

However, with a little bit of jimmying, the EQ stops are arrayed at all points within a few mm of the breadboard. Meanwhile, Chub has cabled up all the satellite modules and DCPD modules and Pinkesh is working on getting data into the digital system so we can start playing games. Tonight, I intend to mount a laser in Rana's lab and fiber couple a beam into the 056 room so we can start testing the suspended OMC.
  12568   Tue Oct 18 18:56:57 2016 gautamUpdateGeneralOM5 rotated to bypass OMC, green scatter is from window to PSL table

[ericq, lydia, gautam]

  • We started today by checking leveling of ITMY table, all was okay on that front after the adjustment done yesterday. Before closing up, we will have detailed pictures of the current in vacuum layout
  • We then checked centering on OMs 1 and 2 (after having dither aligned the arms), nothing had drifted significantly from yesterday and we are still well centered on both these OMs
  • We then moved to the BS/PRM chamber and checked the leveling, even though nothing was touched on this table. Like in the OMC chamber, it is difficult to check the leveling here because of layout constraints, but I verified that the table was pretty close to being level using the small (clean) spirit level in two perpendicular directions
  • Beam centering was checked on OMs 3 and 4 and verified to be okay. Clearance of beam from OM4 towards the OMC chamber was checked at two potential clipping points - near the green steering mirror and near tip-tilt 2. Clearance at both locations was deemed satisfactory so we moved onto the OMC chamber
  • We decided to go ahead and rotate OM5 to send the beam directly to OM6 and bypass the partially transmissive mirror meant to send part of the AS beam to the OMC
  • In order to accommodate the new path, I had to remove a razor beam dump on the OMC setup, and translate OM5 back a little (see Attachment #1), but we have tried to maintain ~45 degree AOI on both OMs 5 and 6
  • Beam was centered on OM6 by adjusting the position of OM5. We initially fiddled around with the pitch and yaw knobs of OM4 to try and center the beam on OM5, but it was decided that it was better just to move OM5 rather than mess around on the BS/PRM chamber and introduce potential additional scatter/clipping
  • OMC table leveling was checked and verified to not have been significantly affected by todays work
  • It was necessary to loosen the fork and rotate OM6 to extract the AS beam from the vacuum chambers onto the AP table
  • AS beam is now on the camera, and looks nice and round, no evidence of any clipping. Some centering on in air lenses and mirrors on the AP table remains to be done. We are now pretty well centered on all 6 OMs and should have more power at the AS port given that we are now getting light previously routed to the OMC out as well. A quantitative measure of how much more light we have now will have to be done after pumping down and turning the PSL power back up
  • I didn't see any evidence of back-scattered light from the window even though there were hints of this previously (sadly the same can't be said about the green). I will check once again tomorrow, but this doesn't look like a major problem at the moment

Lydia and I investigated the extra green beam situation. Here are our findings.

  1. There appears to be 3 ghost beams in addition to the main beam. These ghosts appeared when we locked the X green and Y green individually, which lead us to conclude that whatever is causing this behaviour is located downstream of the periscope on the BS/PRM chamber
    Link to greenGhosts.JPG
  2. I then went into the BS/PRM chamber and investigated the spot on the lower periscope mirror. It isn't perfectly centered, but it isn't close to clipping on any edge, and the beam leaving the upper mirror on the periscope looks clean as well (only the X-arm green was used for this, and subsequent checks). The periscope mirror looks a bit dusty and scatters rather a lot which isn't ideal...
    Link to IMG_3322.JPG
  3. There are two steering mirrors on the IMC table which we do not have access to this vent. But I looked at the beam coming into the OMC chamber and it looks fine, no ghosts are visible when letting the main beam pass through a hole in one of our large clean IR viewing cards - and the angular separation of these ghosts seen on the PSL table suggests that we would see these ghosts if they exist prior to the OMC chamber on the card...
  4. The beam hits the final steering mirror which sends it out onto the PSL table on the OMC chamber cleanly - the spot leaving the mirror looks clean. However, there are two reflections from the two surfaces of the window that come back into the OMC chamber. Space constraints did not permit me to check what surfaces these scatter off and make it back out to the PSL table as ghosts, but this can be checked again tomorrow.
    Link to IMG_3326.JPG

I can't think of an easy fix for this - the layout on the OMC chamber is pretty crowded, and potential places to install a beam dump are close to the AS and IMC REFL beam paths (see Attachment #1). Perhaps Steve can suggest the best, least invasive way to do this. I will also try and nail down more accurately the origin of these spots tomorrow.

Light doors are back on for the night. I re-ran the dithers, and centered the oplevs for all the test-masses + BS. I am leaving the PSL shutter closed for the night


Attachment 1: OMCchamber.pdf
Attachment 2: greenGhosts.JPG
Attachment 3: IMG_3322.JPG
Attachment 4: IMG_3326.JPG
  10708   Thu Nov 13 01:03:28 2014 rana, jenneUpdateSUSOL updates on ITMs and ETMs

 We copied the new SRM filters over onto the OL banks for the ITMs and ETMs. We then adjusted the gain to be 3x lower than the gain at which it has a high frequency oscillation. This is the same recipe used for the SRM OL tuning.

Before this tune up, we also set the damping gains of the 4 arm cavity mirrors to give step response Q's of ~5 for all DOF and ~7-10 for SIDE.

  1985   Fri Sep 11 17:11:15 2009 SanjitUpdateASSOAF: progress made

[Jenne & Sanjit]

Good news: We could successfully send filtered output to MC1 @ SUS.

We used 7 channels (different combinations of 3 seismometer and six accelerometer)

We tried some values of \mu (0.001-0.005) & gain on SUS_MC1_POSITION:MCL and C1ASS_TOP_SUS_MC1 (0.1-1).

C1:ASS-TOP_SUS_MC1_INMON is huge (soon goes up to few times 10000), so ~0.1 gains at two places bring it down to a reasonable value.

Bad news: no difference between reference and filtered IOO-MC_L power spectra so far.

Plan of action: figure out the right values of the parameters (\mu, \tau, different gains, and may be some delays), to make some improvement to the spectra.

 ** Rana: there's no reason to adjust any of the MCL gains. We are not supposed to be a part of the adaptive algorithm.

  2012   Mon Sep 28 11:52:23 2009 JenneUpdateTreasureOAF screen added to the screenshots webpage

I used Kakeru's instructions in elog 1221 to add the C1OAF screen (still called C1ASS_TOP) to the medm screenshots webpage.  The tricky part of this is figuring out that the file that needs editing is in fact in /cvs/cds/projects/statScreen, not /cvs/cds/caltech/statScreen, as claimed in the entry. 

  6626   Tue May 8 17:48:50 2012 JenneUpdateCDSOAF model not seeing MCL correctly

Den noticed this, and will write more later, I just wanted to sum up what Alex said / did while he was here a few minutes ago....


Errors are probably really happening.... c1oaf computer status 4-bit thing:  GRGG.  The Red bit is indicating receiving errors.  Probably the oaf model is doing a sample-and-hold thing, sampling every time (~1 or 2 times per sec) it gets a successful receive, and then holding that value until it gets another successful receive. 

Den is adding EPICS channels to record the ERR out of the PCIE dolphin memory CDS_PART, so that we can see what the error is, not just that one happened.

Alex restarted oaf model:  sudo rmmod c1oaf.ko, sudo insmod c1oaf.ko .  Clicked "diag reset" on oaf cds screen several times, nothing changed.  Restarted c1oaf again, same rmmod, insmod commands.

Den, Alex and I went into the IFO room, and looked at the LSC computer, SUS computer, SUS I/O chassis, LSC I/O chassis and the dolphin switch that is on the back of the rack, behind the SUS IO chassis.  All were blinking happily, none showed symptoms of errors.

Alex restarted the IOP process:  sudo rmmod c1x04, sudo insmod c1x04.  Chans on dataviewer still bad, so this didn't help, i.e. it wasn't just a synchronization problem.  oaf status: RRGG. lsc status: RGGG. ass status: RGGG.

sudo insmod c1lsc.ko, sudo insmod c1ass.ko, sudo insmod c1oaf.ko .  oaf status: GRGG. lsc status: GGGG. ass status: GGGG.  This means probably lsc needs to send something to oaf, so that works now that lsc is restarted, although oaf still not receiving happily.

Alex left to go talk to Rolf again, because he's still confused.

Comment, while writing elog later:  c1rfm status is RRRG, c1sus status is RRGG, c1oaf status is GRGG, both c1scy and c1scx are RGRG.  All others are GGGG.

  6632   Wed May 9 10:46:54 2012 DenUpdateCDSOAF model not seeing MCL correctly


Den noticed this, and will write more later, I just wanted to sum up what Alex said / did while he was here a few minutes ago....

 From my point of view during rfm -> oaf transmission through Dolphin we loose a significant part of the signal. To check that I've created MEDM screen to monitor the transmission errors in the OAF model. It shows how many errors occurs per second. For MCL channel this number turned out to be 2046 +/- 1. This makes sense to me as the sampling rate is 2048 Hz => then we actually receive only 1-3 data points per second. We can see this in the dataviewer.

C1:OAF-MCL_IN follows C1:IOO-MC_F in the sense that the scale of 2 signals are the same in 2 states: MC locked and unlocked. It seems that we loose 2046 out of 2048 points per second.


  5886   Mon Nov 14 12:16:41 2011 JenneUpdateComputersOAF model died for unknown reason

I am meditating on the OAF, and had it running and calculating things.  I had the outputs disabled so I could take reference traces in DTT, but the Adapt block was calculating for MCL.  At some point, all the numbers froze, and the CPU meter had gone up to ~256ms.  Usually it's around ~70 or so for the configuration I had (2 witness sensors and one degree of freedom enabled....no c-code calculations on any other signals).  The "alive" heartbeat was also frozen.

I ssh'ed into c1lsc, ran ./startc1oaf in the scripts directory, and it came back just fine.

Anyhow, I don't know why it got funny, but I wanted to record the event for posterity.  I'm back to OAFing now.

  6641   Fri May 11 17:21:56 2012 JenneUpdateIOOOAF left enabled - MC unlocked for more than an hour

No leaving the OAF running until you're sure (sure-sure, not kind of sure, not pretty sure, but I've enabled guardians to make sure nothing bad can happen, and I've been sitting here watching it for 24+ hours and it is fine) that it works okay.

OAF (both adaptive and static paths) were left enabled, which was kicking MC2 a lot.  Not quite enough that the watchdog tripped, but close.  The LSCPOS output for MC2 was in the 10's or 100's of thousands of counts.  Not okay.

This brings up the point though, which I hadn't actively thought through before, that we need an OAF watchdog.  An OAF ogre?  But a benevolent ogre.  If the OAF gets out of control, it's output should be shut off.  Eventually we can make it more sophisticated, so that it resets the adaptive filter, and lets things start over, or something. 

But until we have a reliable OAF ogre, no leaving the adaptive path enabled if you're not sitting in the control room.  The static path should be fine, since it can't get out of control on it's own.

Especially no leaving things like this enabled without a "I'm leaving this enabled, I'll be back in a few hours to check on it" elog! 

  5572   Wed Sep 28 22:30:01 2011 JenneUpdateAdaptive FilteringOAF is disabled

I am leaving the OAF disabled, so there should be nothing that goes to the suspensions from the OAF. 

Disabled for the OAF means all the outputs are multiplied by 0 just before the signals are sent back over to the LSC system to be summed in and sent to the suspensions.  So 0 times anything should mean that the OAF isn't injecting signals.

In other news, while Mirko was trying to figure out the c-code, I began making a new OAF screen.  It is still in progress, but it's in c1oaf/master/C1OAF_OVERVIEW.adl  If you open it up, you can see for yourself that the OAF is disabled.  (Eventually I'll put an enable/disable button on the LSC screen also, but that hasn't happened yet.)

  2548   Tue Jan 26 19:51:44 2010 Sanjit, ranaUpdateAdaptive FilteringOAF details

We turned on the OAF again to make sure it works. We got it to work well with the Ranger as well as the Guralp channels. The previous problem with the ACC is that Sanjit and Matt were using the "X" channels which are aligned the "Y" arm. Another casualty of our ridiculous and nonsensical coordinate system. Long live the Right Hand Rule!!

The changes that were made are:

  • use of RANGER channel (with ACC_MC1_X and/or ACC_MC2_X)
  • mu = 0.01, tau = 1.0e-6, ntaps = 2000, nDown = 16
  • nDelay = 5 and nDelay = 7 both work (may not be so sensitive on delay at low frequencies)
  • Main changes: filter bank on the PEM channels - ASS_TOP_PEM_## filters: 0.1:0, 1:, Notch24, AA32, gain 1
  • Added the AI800 filter for upsampling in MC1 (should not matter)

Other parameters which were kept at usual setting:

  • CORR: AI32, gain = 1
  • EMPH: 0.001:0, AA32, gain = 1
  • ERR_MCL: no filters, gain = 1
  • SUS_MC1: no filter, gain = 1
  • PEM Matrix: All zero except: (24,1), (15,2), (18,3)
  • ADAPT path filter: union of CORR and EMPH filters, gain 1
  • XYCOM switches # 16-19 (last four on the right) OFF 

Screenshots are attached.

Burt snapshot is kept as: /cvs/cds/caltech/scripts/OAF/snaps/ass_burt_100126_211330.snap

taken using the script: /cvs/cds/caltech/scripts/OAF/saveOAF

we should put this in ASS screen.

ERROR Detected in filter ASS_TOP_PEM_24 (RANGER): 1: was actually typed as a 1Hz high pass filter!

(Correcting this one seems to spoil the adaptation)

Possibly this makes sense, we may not want to block witness signals in the 0.1-20 Hz range.

  11:40 PM: Leaving the lab with the OAF running on 5 PEM channels (Ranger + Guralp 1&2  Y & Z). There's a terminal open on op440m which will disable the OAF in ~2.8 hours. Feel free to disable sooner if you need the MC/IFO.

Attachment 1: C1ASS_TOP.png
Attachment 2: C1SUS_SRM_XYCOM1.png
Attachment 3: Untitled.png
  2555   Mon Feb 1 18:31:00 2010 SanjitUpdateAdaptive FilteringOAF details

  I tried downsampling value 32 (instead of 16), to see if it has any effect on OAF. Last week I encountered some stability issue - adaptation started to work, but the mode cleaner was suddenly unlocked, it could be due to some other effect too.

One point to note is that different downsampling did not have any effect on the CPU meter (I tried clicking the "RESET" button few times, but no change).

  2557   Mon Feb 1 21:51:12 2010 SanjitUpdateAdaptive FilteringOAF details

 I tried some combination of PEM channels and filters to improve OAF performance at other frequencies, where we do not have any improvement so far. There is progress, but still no success.

Here are the main things I tried:

For the ACC channels replaced the 0.1 Hz high pass filters by 3Hz high pass and turned off the 1: filter.

Then I tried to incorporate the Z ACC/GUR channels, with some reasonable combination of the others.

The Z axis Guralp and Accelerometers were making OAF unstable, so I put a 0.1 gain in all four of those.

Following the PEM  noise curves Rana has put up, we should probably use

  • two ACC_Y channels (3:0, Notch24, AA32)
  • two GUR_Z channels (filters: 0.1:0, 1:, AA32, gain 0,1)
  • one RANGER_Y, just because it works (0.1:0, 1:, Notch24, AA32)

In the end I tried this combination, it was stable after I reduced the GUR_Z gain, but looked very similar to what we got before, no improvement at 5Hz or 0.5Hz. But there was a stable hint of better performance at > 40Hz.

Possibly we need to increase the GUR_Z gain (but not 1) and try to use ACC_Z channels also. Since we can not handle many channels, possibly using one GUR_Z and one ACC_Z would be worth checking.

  6075   Tue Dec 6 00:58:34 2011 DenUpdateWienerFilteringOAF current goal

After reducing the digital noise I did offline Wiener filtering to see how good should be online filter. I looked at the MC_F and GUR1_X and GUR1_Y signals. Here are the results of the filtering. The coherence is plotted for MC_F and GUR1_X signals.

oaf_goal_psd.png     oaf_goal_coh.png

We can see the psd reduction of the MC_F below 1 Hz and at resonances. Below 0.3 Hz some other noises are present in the MC_F. Probably tilt becomes important here.

OAF is ready to be tested. I added AA and AI filters and also a highpass filter at 0.1 Hz. OAF workes, MC stays at lock. I looked at the psd of MC_F and filter output. They are comparable, filter output adapts for MC_F in ~10 minutes but MC_F does not go down too much. Determing the right gain I unlocked the MC, while Kiwamu was measuring something. Sorry about that. I'll continue tomorrow during the daytime.

  2572   Fri Feb 5 01:04:58 2010 SanjitUpdateAdaptive FilteringOAF at > 5Hz


There is lot of coherence between the error signal and PEM channels at 5-100Hz. We had been applying a 1Hz low pass filter to all the GUR and RANGER channels for stability. I turned those off and OAF still works with mu=0.0025, this will give us some more freedom. Kind of annoying for testing though, it takes about 45min to adapt!

In any case, there is no significant improvement at high frequencies as compared to our usual OAF performance. Also, the low frequency improvement (see previous e-log) is lost in this set up. I think, we have to adjust the number of taps and channels to do better at high frequencies. Also, delay can be important at these frequencies, needs some testing.


Attachment 1: OAF_04FEB2010_highFreq.png
  2575   Sat Feb 6 00:10:08 2010 SanjitUpdateAdaptive FilteringOAF at > 5Hz


Did some more test to get better performance at higher frequencies.

Increased # taps to 4000 and reduced downsampling to 4, without changing the AA32 filters, from CORR, EMPH and the matching ADPT channels. But for testing I turned off AA32 from the input PEM channels. So that high frequency still gets blocked at CORR, but the adaptive filters have access to higher frequencies. Once we fix some reasonable downsampling, we should create corresponding AA filters.

I used only two channels, RANGER/GUR2_Y and GUR1_Z, and basically they had only one filter 0.1:0

This set up gave little better performance (more reduction at more frequencies), at some point even the 16HZ peak was reduced by a factor of 3. The 24Hz peak was a bit unstable, but became stable after I removed the Notch24 filters from PEM channels, to ensure that OAF is aware of those lines. There was some improvement also at the 24Hz peak.


  2571   Fri Feb 5 00:52:55 2010 SanjitUpdateAdaptive FilteringOAF at 0.1-1.0 Hz


At 0.1-1.0Hz, there is some coherence between MC_L and RANGER_Y & GUR_Y, see the first figure. Also GUR_Z has low noise there. So I used all five of them, increased the gains of GUR_Z from 0.1 to 0.5. Some improvement near 0.5Hz. We possibly can not do any better with these PEM measurement, as the coherence of the adapted error signal and the PEM channels is almost zero, see the second figure. May be we need to think about placing the seismometers at different places/orientations.

However, there is lot more scope at higher frequencies, lot of coherence at 5-100Hz.


Attachment 1: OAF_04FEB2010_noOAF.png
Attachment 2: OAF_04FEB2010.png
  2434   Sun Dec 20 21:39:40 2009 rana, jenne, kiwamuUpdateASSOAF Model update and build instructions

After a lot of headache, I got the OAF working again - read on for details.....................

Sometime last week, Jenne, Kiwamu, and I tried to update the OAF model to include the IIR "feed-around" path.

This path is in parallel to the existing FIR-based adaptive FXLMS stuff that Matt put in earlier. The reason for the

new path is that we want to try emulating the same FF technology which has been successful lately at LLO.


However, we were unable to make the ASS work after this work. Mostly, the build stuff worked fine, but we couldn't get DTT

to make a transfer function. The excitation channels could be selected and the excitation would actually start and get all the

way into MC1, but DTT would just hang on the first swep-sine measurement with no time-out error. Clearly our ASS building

documentation is no good. We tried using the instructions that Koji gave us for AAA, but that didn't completely work.


In particular, the 'make-uninstall-daq-ass' command gave this command:

[controls@c1ass advLigo]$ make uninstall-daq-ass
grep: target/assepics/assepics*.cmd: No such file or directory
Please make ass first
make: *** [uninstall-daq-ass] Error 1

re-arranging the order to do 'make-ass' first fixes this issue and so I have fixed this in the OAF Wiki.


The there's the whole issue with the tpchn_C3.par file. This contains all the test point definitions for the ASS/OAF machine. The main

IFO numbers are all in tpchn_C1.par and the OMC is all in tpchn_C2.par. When we do the usual build, in the 'make install-daq-ass' part:

[controls@c1ass advLigo]$ make install-daq-ass
Installing GDS node 3 configuration file
Updating DAQ configuration file

we get this .par file installed in the target area. The ACTUAL param file seems to actually be in /cvs/cds/caltech/gds/param  !!


Of course, it still doesn't work. That's because the standard build likes to point to /cvs/cds/caltech/gds/bin/awgtpman and the one that runs on

linux is actually /opt/gds/awgtpman. So I've now made a file called startup_ass.cmd.good which runs the correct one. However, the default build

will try to start the wrong one and we have to fix the 'startass' script to point to the correct one on each build. Running the correct awgtpman

allows us to get the TP data using tools like tdsdata, so far no luck with DTT.\


UPDATE (23:33): It turns out that it was my old nemesis, NTPD. c1ass had a /etc/ntp.conf file that was pointing at an ntp server called rana113. I

am not an NTP server; I don't even know what time it is. I have fixed the ntp.conf file by making it the same ass c1omc (it now points to nodus). After

this I set the date and time manually (sudo date -s "20 DEC 2009 23:27:45") and then restarted NTPD. It should now be fine even when

we reboot c1ass.


After all of this nonsense, I am able to get TP data from c1ass and take transfer functions between it and the rest of the world !

  2437   Mon Dec 21 02:22:31 2009 rana, jenne, kiwamuUpdateASSOAF Model update and build instructions

This allowed measuring the MC1 -> MCL TF finally. Its mostly flat. Data saved as Templates/OAF/OAF-MCLTF.xml

Attachment 1: Untitled.png
  2438   Mon Dec 21 07:30:58 2009 ???UpdateASSOAF Model update and build instructions

 What does OAF stand for? The entry doesn't say that. Also the acronym is not in the abbreviation page of the wiki.

Can anyone please explain that?

  2440   Mon Dec 21 10:09:06 2009 jenneUpdateASSOAF Model update and build instructions
OAF stands for Online Adaptive Filtering. We use the same computer which was once the ASS. One of these days, we'd like to completely be rid of all things which refer to ASS, and make even the computer's name OAF.
  2441   Mon Dec 21 19:24:29 2009 ranaUpdateASSOAF Model update and build instructions

I fit the MC1 -> MCL TF using vectfit4.m (from mDV). The wrapper file is mDV/extra/C1/ fitMC12MCL.m.

Plotted here are the data (RED), the fit (BLUE), and the residual x10 (GREEN).

For the magnitude plot, residual is defined as ------   res = 1 - fit / data

For the phase plot the residual is defined as -------    res =  phase(data)-phase(fit)

You can see that the agreement is very good. The phase match is better than 5 deg everywhere below 10 Hz.

This TF is so smooth that we could have probably done without using this, but its good to excercise the method anyway.

Attachment 1: mc12mcl.png
  5848   Wed Nov 9 14:23:35 2011 JenneUpdateAdaptive FilteringOAF MC Delay Measurement

As described in elog 2063 and the mevans document, we need to measure the TF of the OAF's plant, to find the delay.

At DC, the phase is 2.5deg, and at 32Hz, the delay is -4.6Hz (extrapolated from the points at ~30deg and ~38deg).  The DTT file is in /users/Templates/OAF/OAF-MCL-Delay-9Nov2011.xml . 

This gives a phase lag of 7.1deg at the Nyquist freq.

7.1 / 180 * 32 = 1.26, so ~1 cycle delay.  Not so much.  The new ADCs are waaaay faster than the old 110Bs.  Yay!

Attachment 1: OAF-MCL-Delay-9Nov2011.pdf
  2442   Tue Dec 22 02:50:09 2009 rana, kiwamu, jenneUpdateASSOAF Feedaround ON and doing something good

Kiwamu made the OAF screen functional today - screenshot attached.

After this, I used the measured TF of the MC1 to MCL to filter the signals from the Wilcoxon accelerometers and feed them into the MC.

The noise at 3 Hz went down by a factor of ~3. There's a little excess created at 100 Hz. Its good to see that our intuition about feed-forward is OK.

I did all of the filter calculations by adapting the scripts that Haixing, Valera, and I got going at LLO. They're all in the mDV/extra/C1 SVN.


The Wiener code predicts much better performance from using more than just 2 horizontal accelerometers, but I was too lazy to do more channels today.

I also added the Rai box to the Ranger readout today - the noise at 0.1 Hz went down by a factor of 10 and the noise at 1 Hz is close to 10^-11 m/rHz.

Attachment 1: oaf.png
Attachment 2: oaf.png
  2449   Wed Dec 23 17:33:14 2009 ranaUpdateASSOAF Feedaround ON and doing something good

The Rai box ran out of batteries a couple of days ago and so the data is no good. I've put the Ranger back on the SR560 for now (but with the damping resistor removed, so the gain is 2x more than before).

  874   Mon Aug 25 10:07:35 2008 JenneUpdatePSLNumbers for the PMC servo board (Re: entry # 873)
Jenne, Rana

These are the numbers that go along with Rana's entry #873:

The existing notch in the PMC servo is at 31.41kHz.

The power spectrum of the PMC has a peak at 14.683kHz when it is just sitting on the PSL table (no extra mass). When we put a pile of steel and aluminum (~20lbs) on top of the PMC, the body resonance moves to 14.622kHz, but is decreased by about 40 dB!

Rana has ordered a lead brick + foil that should arrive sometime this week. To complete the mechanical part of this installation, we need to extend the earthquake mounts around the PMC so that the lead brick can't fall off of the PMC onto the rest of the table.
  3515   Thu Sep 2 16:45:48 2010 josephbUpdateCDSNumbering scheme of the PCI bus

Rolf has recently written a document describing how one should fill out an IO chassis and how the numbering works out.  This can be found in the DCC at Rolf's PCIe numbering guide (T1000523).

Basically it works out that slot 1 corresponds to PCIe number 1, but slot 2 corresponds to PCIe number 6.  And so forth.  The following table gives a quick summary.

Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
PCIe Number 1 6 5 4 9 8 7 3 2 14 13 12 17 16 15 11 10


  15517   Wed Aug 12 18:08:54 2020 gautamUpdateElectronicsNumber of the beast

The "source" output of the SR785 has a DC offset of -6.66 V. I couldn't make this up.

Upshot is, this SR785 is basically not usable for TF measurements. I was using the unit to characterize the newly stuffed ISC whitening board. The initial set of measurements were sensible, and at some point, I started getting garbage data. Unclear what the cause of this is. AFAIK, we don't have any knob to tune the offset - adjusting the "offset" in the source menu, I can change the level of the offset, but only by ~1 V even if I apply an offset of 10 V. I also tried connecting the ground connection on the rear of the SR785 to the bench power supply ground, no change.

Do we have to send this in for repair?

Attachment 1: IMG_8710.JPG
  15519   Wed Aug 12 20:15:42 2020 KojiUpdateElectronicsNumber of the beast

Grrr. Let's repair the unit. Let's get a help from Chub & Jordan.

Do you have a second unit in the lab to survive for a while?

  14288   Sat Nov 10 17:32:33 2018 gautamUpdateLSCNulling MICH->PRCL and MICH->SRCL

With the DRMI locked, I drove a line in MICH using the sensing matrix infrastructure. Then I looked at the error points of MICH, PRCL and SRCL. Initially, the sensing line oscillator output matrix for MICH was set to drive only the BS. Subsequently, I changed the --> PRM and --> SRM matrix elements until the line height in the PRCL and SRCL error signals was minimized (i.e. the change to PRCL and SRCL due to the BS moving, which is a geometric effect, is cancelled by applying the opposite actuation to the PRM/SRM respectively. Then I transferred these to the LSC output matrix (old numbers in brackets).

MICH--> PRM = -0.335 (-0.2655)

MICH--> SRM = -0.35 (+0.25)

I then measured the loop TFs - all 3 loops had UGFs around 100 Hz, coinciding with the peaks of the phase bubbles. I also ran some sensing lines and did a sensing matrix measurement, Attachment #1 - looks similar to what I have obtained in the past, although the relative angles between the DoFs makes no sense to me. I guess the AS55 demod phase can be tuned up a bit.

The demodulation was done offline - I mixed the time series of the actuator and sensor signals with a "local oscillator" cosine wave - but instead of using the entire 5 minute time series and low-passing the mixer output, I divvied up the data into 5 second chunks, windowed with a Tukey window, and have plotted the mean value of the resulting mixer output.

Unrelated to this work: I re-aligned the PMC on the PSL table, mostly in Pitch.

Attachment 1: sensMat_2018-11-10.pdf
  5032   Mon Jul 25 17:16:02 2011 JamieUpdateSUSNow acquiring SUSXXX_IN1_DQ channels

> And.....we have also lost the DAQ channels that used to be associated with the _IN1 of the SUSPOS/PIT/YAW filter modules. Please put them back; our templates don't work without them.

I have (re?)added the SUS{POS,PIT,YAW,SIDE}_IN1_DQ channels.  I did this by modifying the activateDQ.py script to always turn them on [0].  They should now always be activated after the activateDQ script is run.

[0] This script now lives in the cds_user_apps repo at cds/c1/scripts/activateDQ.py


  11308   Tue May 19 11:24:44 2015 ericqUpdateComputer Scripts / ProgramsNotification Scheme

Given some of the things we've facing lately, it occurs to me that we could be better served by having some sort of unified human-alerting scheme in place, for things like:

  • Local/offsite backup failures
  • Vaccumm system problems
  • HDD status for things like /frames/ and /cvs/cds/, whether the disks are full, or their SMART status indicates imminent mechanical failure

Currently, many of these things are just checked sporadically when it occurs to someone to do so, or when debugging random issues. Smoother IFO operation and peace of mind could be gained if we're confident that the relevant people are notified in a timely manner. 

Thoughts? Suggestions on other things to monitor, like maybe frontend/model crashes?

  17084   Wed Aug 17 01:18:54 2022 KojiUpdateGeneralNotice: SURF SUS test setup blocking the lab way

Juan and I built an analog setup to measure some transfer functions of the MOS suspension. The setup is blocking the lab way around the PD test bench.
Excuse us for the inconvenience. It will be removed/cleared by the end of the week.

Attachment 1: PXL_20220817_060428109.jpg
  17093   Fri Aug 19 15:20:14 2022 KojiUpdateGeneralNotice: SURF SUS test setup blocking the lab way

The setup was (at least partially) cleared.

Attachment 1: PXL_20220819_201318044.jpg
  14410   Sun Jan 20 23:41:00 2019 JonOmnistructureVACNotes on vac serial comm, adapter wiring

I've attached my handwritten notes covering all the serial communications in the vac system, and the relevant wiring for all the adapters, etc. I'll work with Chub to produce a final documentation, but in the meantime this may be a useful reference.

Attachment 1: Jon_wiring_notes.tar.gz
  15958   Wed Mar 24 15:24:13 2021 gautamUpdateLSCNotes on tests

For my note-taking:

  1. Lock PRMI with ITMs as the MICH actuator. Confirm that the MICH-->PRCL contribution cannot be nulled. ✅  [15960]
  2. Lock PRMI on REFL165 I/Q. Check if transition can be made smoothly to (and from?) REFL55 I/Q.
  3. Lock PRMI. Turn sensing lines on. Change alignment of PRM / BS and see if we can change the orthogonality of the sensing.
  4. Lock PRMI. Put a razor blade in front of an out-of-loop photodiode, e.g. REFL11 or REFL33. Try a few different masks (vertical half / horizontal half and L/R permutations) and see if the orthogonality (or lack thereof) is mask-dependent.
  5. Double check the resistance/inductance of the PRM OSEMs by measuring at 1X4 instead of flange. ✅  [15966]
  6. Check MC spot centering.

If I missed any of the tests we discussed, please add them here.

  7237   Mon Aug 20 23:31:49 2012 JenneUpdateCDSNote to self - fast PSL chans

Rana points out that we haven't had fast channels for PMC (trans, refl, pzt), input laser things, more FSS things since the upgrade.  Bad.

  10027   Wed Jun 11 15:57:18 2014 JenneUpdateCDSNote on cables for talking to slow computers

We have (now) in the lab 2 cables that are RJ45-DB9.  The gray one is LIGO-made, while the blue one is store-bought.  

The gray LIGO-made one works, but the blue store-bought one does not.  I checked their pinouts, and they are completely different.  On the sketch below, the pictures of the connectors is me looking at them face-on, with the cables going out the back of the page.  The DB9 is female. 


  10033   Thu Jun 12 15:31:47 2014 JamieUpdateCDSNote on cables for talking to slow computers


We have (now) in the lab 2 cables that are RJ45-DB9.  The gray one is LIGO-made, while the blue one is store-bought.  

The gray LIGO-made one works, but the blue store-bought one does not.  I checked their pinouts, and they are completely different.  On the sketch below, the pictures of the connectors is me looking at them face-on, with the cables going out the back of the page.  The DB9 is female. 

 There are RJ45-DB9 adapters in the big spinny rack next to the linux1 rack that are for this exact purpose.  Just use a stanard ethernet cable with them.

  713   Tue Jul 22 11:55:22 2008 ranaUpdatePSLNote from R. Abbott re: the PMC
an email from Rich:
Your PZT is broken.

  714   Tue Jul 22 13:15:14 2008 robUpdatePSLNote from R. Abbott re: the PMC

an email from Rich:
Your PZT is broken.


Quelle surprise

  14510   Wed Apr 3 09:04:01 2019 gautamUpdateALSNote about new fiber couplers

The new fiber beam splitters we are ordering, PFC-64-2-50-L-P-7-2-FB-0.3W, have the slow axis working and fast axis blocked. The way the light is coupled into the fibers right now is done to maximize the amount of light into the fast axis. So we will have to do a 90deg rotation if we use that part. Probably the easiest thing to do is to put a HWP immediately before the free-space-to-fiber collimator.

Update 6pm: They have an "SB" version of the part with the slow axis blocked and fast axis enabled, same price, so I'll ask Chub to get it.

  14513   Wed Apr 3 12:32:33 2019 KojiUpdateALSNote about new fiber couplers

Andrew seems to have an integrated solution of PBS+HWP in a singe mount. Or, I wonder if we should use HWP/QWP before the coupler. I am interested in a general solution for this problem in my OMC setup too.

  10695   Tue Nov 11 01:38:23 2014 KojiUpdateLSCNotch at 110MHz

To further reduce the RF power at 110MHz in the REFL165 chain, I made a twin-t notch in a pomona box.

It is tuned at 110.66MHz.

The inductor is Coil Craft 5mm tunable (164-09A06SL 100-134nH).
Without the 10Ohm resister (like a usual notch), the dip was ~20dB. With this configuration, the notch of -42dB was realized.

Q >> Please measure the RF spectrum again with the notch.


Attachment 1: twin_t_notch.pdf
Attachment 2: notch_tf.pdf
  10699   Wed Nov 12 00:55:56 2014 ericqUpdateLSCNotch at 110MHz


Q >> Please measure the RF spectrum again with the notch. 

The notch filter has been installed directly attached to the output of the SHP-150 at the PD output. Structurally, there is a right angle SMA elbow between the two filters; I set up a post holder under the notch pomona box to prevent torque on the PD. Via directional coupler and AG4395, we measured the output of the REFL165 RF amplifier with the PRMI locked on REFL33. 

Note, the plot below is not referred to the amplifier output, as in my previous plots; it is directly representative of the amplifier output spectrum. 


There are no RF signals being output above -28dBm, thus I am confident that we are not subject to compression distortion. 

Given the last measurements we made (ELOG 10692), I estimate that the notch has reduced the power at 110MHz by ~33dB, which is 9dB higher than the notch performance Koji measured when he made it. Maybe this could be due to the non-50Ohm impedance of the HPF distorting the tuning, or I physically detuned it when mounting it on the PD. Still, 33dB is pretty good, and may even give us room to amplify further. (ZRL-700+ instead of the ZFL-1000LN+?)


  11194   Thu Apr 2 04:11:20 2015 ericqUpdateLSCNot much locking, Xover measurement

A paltry two locks tonight, but not entirely useless. I had some issues keeping the PRMI locked, which some additional boosts helped with. But, my feeling was that our crossover process is not tuned well. 

At full lock, both sub-loops have high gain around the crossover region, so the usual DTT loop transfer function measurement produces a meausrement of Gdigital/G_aopath (or minus that. I.e. I'm not currently 100% which is the bad phase in this plot, though it intuitive looks like 0 ). Thus, we can directly look at the crossover frequency and the effect of the different filters there. (I've also been working on an up-to-date CARM loop model today, so this will help inform that). 

Below, the black traces are the crossover at the end of the script when using the 120:500 "helper," and purple is without it. As we turn up the AO path gain, the trace "falls" from above, which explains why we can see instabilities around the violin filter. 

Having the helper on definitely made the probability of surviving the first overall CARM gain ramp higher, but it's not currently intuitively clear to me why that is the case. Afterwards, we can turn the helper off, to keep the shallower crossover shape. This is what I've put in to the up script for now. I also added a few seconds delay for when the script wants to switch DARM to RF only; I found it was maybe speeding too fast through this point.

DTT xml attached

Attachment 1: CARMxOver_Apr3.png
Attachment 2: Apr2_Xover.xml.zip
  11195   Thu Apr 2 15:34:34 2015 ericqUpdateLSCNot much locking, Xover measurement

Here's the comparison of last night's crossover measurement to my loop model. Not stellar, but not totally off base. All of the digital filters are read directly from the foton filter file, and translated from their SOS coefficients, so they should be accurate. I may have tallied together the wrong arrangement of FMs, though. I will recheck. 

Although I don't have a measurement to compare it with yet (as I don't know where the crossover was, the filter statesolder, etc. for the older loop measurements), here's what my current CARM loop model looks like, just for kicks. Here, only the first CM board boost is on. If we turn on some super boosting, we can probably ease up on some of the digital boosts, lower the crossover frequency, and put some lowpass that suppress the violin filters' effect on the crossover and reduces digital sensing noise injection. 

Lastly, I'll just note that my current MIST model predicts that the CARM cavity pole should be at ~170Hz, and a peak arm transmission of 180 times single arm power. I saw powers of ~120 last night. 

Attachment 1: xOverModel.png
Attachment 2: loopModel.png
  11196   Thu Apr 2 17:11:28 2015 ericqUpdateLSCNot much locking, Xover measurement

Whoops, I implemented the IOP downsampling filters wrong. Once I did that, it looked like just delay mismatch, so I added two more computation cycles for a total of four 16k cycles, which is maybe not so justified... Nevertheless, model and measurement now agree much better. Here are the corrected plots. 


Attachment 1: xOverModel.png
Attachment 2: loopModel.png
  1369   Sat Mar 7 16:50:25 2009 YoichiUpdateComputersNot even data retrieval working
Now our digital system is really in trouble.
We can't even get data from tp channels.

I did another round of computer reboots, this time including the RFM bypass switch, c0daqctrl, c0dcu1 and fb40m itself.
But the problem still persists.

I guess there is nothing I can do until Alex comes in.
ELOG V3.1.3-