40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 118 of 344  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  17135   Thu Sep 8 11:54:37 2022 JCConfigurationLab OrganizationLab Organization

The arms in the 40m laboratory have now been sectioned off. Each arm has been divided up into 15 sections. Along the Y arm, the section are labelled "Section Y1 - Section Y15". For the X arm, they are labelled "Section X1- Section X15". Anything changed or moved will now be updated into the elog with their appropriate section.

 

Below is an example of Section X6.

Attachment 1: 1A7026BC-82A9-49E9-BA22-1A700DFEC5D2.jpeg
1A7026BC-82A9-49E9-BA22-1A700DFEC5D2.jpeg
Attachment 2: 2A904809-82F0-40C0-B907-B48C3A0E789E.jpeg
2A904809-82F0-40C0-B907-B48C3A0E789E.jpeg
Attachment 3: CB4B8591-B769-454D-9A16-EE9176004099.jpeg
CB4B8591-B769-454D-9A16-EE9176004099.jpeg
  17136   Thu Sep 8 12:01:02 2022 JCConfigurationLab OrganizationLab Organization

The floor cable cover has been changed out for a new one. This is in Section X11.

Attachment 1: F41AD1DA-29E9-4449-99CB-5F43AE527CA6_1_105_c.jpeg
F41AD1DA-29E9-4449-99CB-5F43AE527CA6_1_105_c.jpeg
Attachment 2: FF5F2CE8-85E8-4B6F-8F8A-9045D978F670.jpeg
FF5F2CE8-85E8-4B6F-8F8A-9045D978F670.jpeg
  3318   Thu Jul 29 12:31:09 2010 KojiSummaryGeneralLab Schedule

July
29 Thu BS chamber work: Move cable towers / green steering mirrors / (2 TTs with TT charactrization) / Put the heavy door by 5PM.
30 Fri Pumping down
31 Sat WFS work by Nancy

Aug
1 Sun - 5 Thu WFS work by Nancy
5 Thu PSL Table prep
6 Fri PSL Table prep / Likely to shut down the PSL

9 Mon PSL Table prep / shutting down of the PSL (optional)
10 Tue PSL box Frame lifting
12 Thu PSL table tapping

16 Mon - 17 Tue concrete pouring preparation
19 Thu - 23 Fri Tripod placement
24 Tue - 26 Thu concrete pouring

Attachment 1: PSL_work_schedule.pdf
PSL_work_schedule.pdf
  2496   Sun Jan 10 16:05:51 2010 AlbertoOmnistructureEnvironmentLab Thermostats Temperature Lowered by 1 deg F

Rana noticed that recently the temperature inside the lab has been a little bit too high. That might be causing some 'unease' to the computers with the result of making them crash more often.

Today I lowered the temperature of the three thermostats that we have inside the lab by one degree:
Y arm thermostat: from 71 to 70 F
X arm thermostat: from 70 to 69 F
Aisle thermostat: from 72 to 71 F.

For the next hours I'll be paying attention to the temperature inside the lab to make sure that it doesn't go out of control and that the environment gets too cold.

  2501   Mon Jan 11 10:01:06 2010 AlbertoOmnistructureEnvironmentLab Thermostats Temperature Lowered by 1 deg F

Quote:

Rana noticed that recently the temperature inside the lab has been a little bit too high. That might be causing some 'unease' to the computers with the result of making them crash more often.

Today I lowered the temperature of the three thermostats that we have inside the lab by one degree:
Y arm thermostat: from 71 to 70 F
X arm thermostat: from 70 to 69 F
Aisle thermostat: from 72 to 71 F.

For the next hours I'll be paying attention to the temperature inside the lab to make sure that it doesn't go out of control and that the environment gets too cold.

 Today the lab is perceptibly cooler.

The temperature around the corner is 73 F.

  15657   Tue Nov 3 09:06:50 2020 gautamUpdateGeneralLab alarm tripped

I got a call from Calum ~830am today saying some facilities people entered the lab, opened the south entrance door, and tripped the alarm in the process. I came to the lab shortly after and was able to reset the alarm by flipping the switch on the alarm box at the south end entrance to "Alarm OFF". Then, I double checked that the door is closed, and re-enabled the alarm. The particle count at the SP table is not unusually high and the lasers (Oplev HeNe and AUX X) were still on, so doesn't look like any lasting damage was done. The facilities people were apparently wearing laser safety goggles.

  16240   Tue Jul 6 17:40:32 2021 KojiSummaryGeneralLab cleaning

We held the lab cleaning for the first time since the campus reopening (Attachment 1).
Now we can use some of the desks for the people to live! Thanks for the cooperation.

We relocated a lot of items into the lab.

  • The entrance area was cleaned up. We believe that there is no 40m lab stuff left.
    • BHD BS optics was moved to the south optics cabinet. (Attachment 2)
    • DSUB feedthrough flanges were moved to the vacuum area (Attachment 3)
  • Some instruments were moved into the lab.
    • The Zurich instrument box
    • KEPCO HV supplies
    • Matsusada HV supplies
  • We moved the large pile of SUPERMICROs in the lab. They are around MC2 while the PPE boxes there were moved behind the tube around MC2 area. (Attachment 4)
  • We have moved PPE boxes behind the beam tube on XARM behind the SUPERMICRO computer boxes. (Attachment 7)
  • ISC/WFS left over components were moved to the pile of the BHD electronics.
    • Front panels (Attachment 5)
    • Components in the boxes (Attachment 6)

We still want to make some more cleaning:

- Electronics workbenches
- Stray setup (cart/wagon in the lab)
- Some leftover on the desks
- Instruments scattered all over the lab
- Ewaste removal

Attachment 1: P_20210706_163456.jpg
P_20210706_163456.jpg
Attachment 2: P_20210706_161725.jpg
P_20210706_161725.jpg
Attachment 3: P_20210706_145210.jpg
P_20210706_145210.jpg
Attachment 4: P_20210706_161255.jpg
P_20210706_161255.jpg
Attachment 5: P_20210706_145815.jpg
P_20210706_145815.jpg
Attachment 6: P_20210706_145805.jpg
P_20210706_145805.jpg
Attachment 7: PXL_20210707_005717772.jpg
PXL_20210707_005717772.jpg
  17132   Tue Sep 6 09:57:26 2022 JCSummaryGeneralLab cleaning

DB9 Cables have been assorted and placed behind the Y-Arm. Long BNC Cables and Ethernet Cables have been stored under the Y-Arm. 

Quote:

We held the lab cleaning for the first time since the campus reopening (Attachment 1).
Now we can use some of the desks for the people to live! Thanks for the cooperation.

We relocated a lot of items into the lab.

  • The entrance area was cleaned up. We believe that there is no 40m lab stuff left.
    • BHD BS optics was moved to the south optics cabinet. (Attachment 2)
    • DSUB feedthrough flanges were moved to the vacuum area (Attachment 3)
  • Some instruments were moved into the lab.
    • The Zurich instrument box
    • KEPCO HV supplies
    • Matsusada HV supplies
  • We moved the large pile of SUPERMICROs in the lab. They are around MC2 while the PPE boxes there were moved behind the tube around MC2 area. (Attachment 4)
  • We have moved PPE boxes behind the beam tube on XARM behind the SUPERMICRO computer boxes. (Attachment 7)
  • ISC/WFS left over components were moved to the pile of the BHD electronics.
    • Front panels (Attachment 5)
    • Components in the boxes (Attachment 6)

We still want to make some more cleaning:

- Electronics workbenches
- Stray setup (cart/wagon in the lab)
- Some leftover on the desks
- Instruments scattered all over the lab
- Ewaste removal

 

Attachment 1: 982146B2-02E5-4C19-B137-E7CC598C262F.jpeg
982146B2-02E5-4C19-B137-E7CC598C262F.jpeg
Attachment 2: 0FBB61AC-E882-458D-A891-7B11F35588FF.jpeg
0FBB61AC-E882-458D-A891-7B11F35588FF.jpeg
  17072   Wed Aug 10 19:36:45 2022 KojiBureaucracyGeneralLab cleaning and discovery

During the cleaning today, we found many legacy lab items. Here are some policies what should be kept / what should be disposed

Dispose

  • VME crates and VME electronics as long as they are not in use
  • Eurocard SUS modules that are not in use.
  • Eurocard crates (until we remove the last Eurocard module from the lab)
  • Giant steel plate/palette (like a fork lift palette) along the Y arm. (Attachment 1)
  • An overhead projector unit.

Keep

  • Spare Eurocard crates / ISC/PZT Eurocard modules
  • Boxes of old 40m logbooks behind the Y arm (see Attachment 2/3).
  • Ink-plotter time-series data (paper rolls) of 1996 IFO locking (Attachment 4). Now stored in a logbook box.
  • A/V type remnants: Video tapes / video cameras / casette tapes as long as they hold some information in it. i.e. Blank tapes/blank paper rolls can be disposed.
Attachment 1: steel_plate.jpg
steel_plate.jpg
Attachment 2: logbook1.jpg
logbook1.jpg
Attachment 3: logbook2.jpg
logbook2.jpg
Attachment 4: paper_plots.jpg
paper_plots.jpg
  997   Fri Sep 26 14:10:21 2008 YoichiConfigurationComputersLab laptops maintenance
The linux laptops were unable to write to the NFS mounted directories.
That was because the UID of the controls account on those compters was different from linux1 and other control room computers.
I changed the UID of the controls account on the laptops. Of course it required not only editing /etc/password but also dealing with
numerous errors caused by the sudden change of the UID. I had to chown all the files/directories in the /home/controls.
I also had to remove /tmp/gconf-controls because it was assigned the old UID.

Whenever we add a new machine, we have to make sure the controls account has the same UID/GID as other machines, that is 1001/1001.


I did some cleanups of the laptop environment.
I made dataviewer work on the laptops *locally*. We no longer have to ssh -X to other computers to run dataviewer.
The trick was to install grace using Fedora package by
sudo yum install grace
Then i modified /usr/local/stow_pkgs/dataviewer/dataviewer to change the option to dc3 from "-s fb" to "-s fb40m".
  16025   Wed Apr 14 12:27:10 2021 gautamUpdateGeneralLab left open again

Once again, I found the door to the outside in the control room open when I came in ~1215pm. I closed it.

  14027   Wed Jun 27 21:18:00 2018 gautamUpdateCDSLab maintenance scripts from NODUS---->MEGATRON

I moved the N2 check script and the disk usage checking script from the (sudo) crontab of nodus no to the controls user crontab on megatron yes.

  3348   Mon Aug 2 17:12:28 2010 KojiUpdateGeneralLab schedule for the week of Aug. 2

Aug

2 Mon - 5 Thu WFS work (Nancy)

2 Mon - 4 Wed

Jenne: Seismometer fix / Seismic measurements on the PSL table
TT characterization (with Koji)
Preparations ETM suspensions (optional: may be in later weeks)

Kiwamu: CDS test for SUS (may be involving Koji)

Alberto: RF system prep.

All: For 5th and 6th: PSL cabling works Koji

5 Thu PSL Table prep
6 Fri PSL Table prep / Likely to shut down the PSL

9 Mon PSL Table prep / shutting down of the PSL (optional)
10 Tue PSL box Frame lifting
12 Thu PSL table tapping

16 Mon - 17 Tue concrete pouring preparation
19 Thu - 23 Fri Tripod placement
24 Tue - 26 Thu concrete pouring

Attachment 1: PSL_work_schedule.pdf
PSL_work_schedule.pdf
  14545   Mon Apr 15 22:55:34 2019 gautamFrogsThermal CompensationLab thermostat adjusted

It is feeling cold in the office area. According to the digital wall clock near the coffee machine, it is 19C. Rana bumped the thermostat setpoint up by 2F (from 75F to 77F). We need to setup long-term monitoring.

  15603   Tue Sep 29 17:07:25 2020 gautamUpdateGeneralLab visit for inventory location

I was in the lab from 1630-1830. I have located and visually inspected all the parts required for the magnet regluing / optic cleaning parts of the planned vent, except the fresh batches of scpectroscopic grade solvents. I was in the cleanroom part of the clean and bake lab from 1630-1700.

  1231   Fri Jan 16 11:28:54 2009 YoichiUpdateComputersLab. laptop needs wireless lan driver update
One of the lab. laptops (belladonna) cannot connect to the network now.
I guess this was caused by someone clicked the update icon and unknowingly updated the kernel, which resulted in the wireless lan driver malfunctioning.
It was using a Windows driver through ndiswrapper.
Someone has to fix it.
  14533   Thu Apr 11 01:10:05 2019 gautamUpdateALSLarge 2kHz peak (and harmonics) in ALS X

These weren't present last week. The peaks are present in the EX PDH error monitor signal, and so are presumably connected with the green locking system. My goal tonight was to see if the arm length control could be done using the ALS error signal as opposed to POX, but I was not successful.

Attachment 1: EX_PDH_2kNoise.pdf
EX_PDH_2kNoise.pdf
  14548   Wed Apr 17 00:50:17 2019 gautamUpdateALSLarge 2kHz peak (and harmonics) in ALS X no more

I looked into this issue today. Initially, my thinking was that I'd somehow caused clipping in the beampath somewhere which was causing this 2kHz excitation. However, on looking at the spectrum of the in-loop error signal today (Attachment #1), I found no evidence of the peak anymore!

Since the vacuum system is in a non-nominal state, and also because my IR ALS beat setup has been hijacked for the MZ interferometer, I don't have an ALS spectrum, but the next step is to try single arm locking using the ALS error signal. To investigate whether the 2kHz peak is a time-dependent feature, I left the EX green locked to the arm (with the SLOW temperature offloading servo ON), hopefully it stays locked overnight...

Quote:

These weren't present last week. The peaks are present in the EX PDH error monitor signal, and so are presumably connected with the green locking system. My goal tonight was to see if the arm length control could be done using the ALS error signal as opposed to POX, but I was not successful.

Attachment 1: EX_PDHnoise.pdf
EX_PDHnoise.pdf
  14549   Wed Apr 17 11:01:49 2019 gautamUpdateALSLarge 2kHz peak (and harmonics) in ALS X no more

EX green stayed locked to XARM length overnight without a problem. The spectrogram doesn't show any alarming time varying features around 2 kHz (or at any other frequency).

Attachment 1: EX_PDH_specGram.pdf
EX_PDH_specGram.pdf
  4338   Tue Feb 22 14:37:24 2011 steveUpdateSAFETYLarisa received 40m safety training

Larisa Thorne received 40m lab specific, basic safety training. She will attend P. King's Basic Laser Safety Training Session tomorrow.

 

  3588   Mon Sep 20 10:33:21 2010 josephbBureaucracyComputersLarry stopped by - GC machine had conflicting IP

Larry stopped by today and had to disconnect the m25 machine (this is the 1st GC machine on the left as you walk into the control room) because its IP was conflicting with a machine over in Downs.  Do not use 131.215.115.125 as the IP on this machine as this is already assigned to someone else.  They couldn't figure out the root password to change it which is why it is not currently plugged into the network, and is not to be until an appropriate IP is assigned.

They've asked that whoever set the machine up to please contact them (extension 2974).

  6500   Fri Apr 6 19:40:57 2012 Mike J.SummaryGeneralLaser Emergency Shutoff

I accidently shut off the laser at 19:34 with the emergency shutoff button while trying to tap into a video line for the Sensoray device.

  6501   Fri Apr 6 20:05:12 2012 JamieSummaryGeneralLaser Emergency Shutoff

We reset the interlock and restarted the PSL.  The end AUX lasers seem to have come back online fine.  PMC and mode cleaner locked back up quickly.

  1465   Thu Apr 9 23:11:27 2009 robSummaryLockingLaser PM to PO-DC transfer functions at multiple CARM offsets

I've plotted some transfer functions showing the response at POB DC to laser frequency (phase) noise.  There are transfer functions for multiple CARM offsets.  Basically, the transfer function looks like the DARM transfer function when the CARM is at zero offset, and is super-wonky elsewhere.  POB-DC is not a good CARM signal for intermediate stages of lock acquisition in a dual-recycled interferometer.  We should look into switching back to REFL-DC.

 

Attachment 1: CARMoffs1.png
CARMoffs1.png
Attachment 2: CARMoffs2.png
CARMoffs2.png
Attachment 3: CARMcarpet.png
CARMcarpet.png
  1466   Thu Apr 9 23:20:35 2009 robSummaryLockingLaser PM to REFL-DC transfer functions at multiple CARM offsets

Quote:

I've plotted some transfer functions showing the response at POB DC to laser frequency (phase) noise.  There are transfer functions for multiple CARM offsets.  Basically, the transfer function looks like the DARM transfer function when the CARM is at zero offset, and is super-wonky elsewhere.  POB-DC is not a good CARM signal for intermediate stages of lock acquisition in a dual-recycled interferometer.  We should look into switching back to REFL-DC.

 

 Here are the corresponding transfer functions for REFL-DC.

Attachment 1: CARMoffs1_r.png
CARMoffs1_r.png
Attachment 2: CARMoffs2_r.png
CARMoffs2_r.png
Attachment 3: CARMcarpet_r.png
CARMcarpet_r.png
  1468   Fri Apr 10 03:10:08 2009 ranaSummaryLockingLaser PM to REFL-DC transfer functions at multiple CARM offsets

I hereby award the previous rainbow transfer functions the plot innovation of the month award for its use of optical frequency to denote CARM offset.

The attached movie here shows the sensing matrix (minus MICH) as a function of CARM offset. There are 3 CARM signals plotted:

GREEN - tonights starting CARM signal - REFL_DC

RED - my favorite CARM signal - REFL 166 I

CYAN - runner up CARM signal - POX 33 I

  1636   Mon Jun 1 13:56:52 2009 AlbertoUpdatePSLLaser Power after fixing the laser chiller

The laser power seems to have become more stable after fixing the laser chiller. The power is lower than it used to be (MOPA amplitude 2.5 versus 2.7) but, as shown in the attchement, it became more steady.

Attachment 1: MOPAtrend.jpg
MOPAtrend.jpg
  1639   Mon Jun 1 15:01:31 2009 ranaUpdatePSLLaser Power after fixing the laser chiller: more traces
If you look at the correlation between RMTEMP and HTEMP, you see what we knew: namely that there
was a 1:1 correlation before. After the chiller fix, I can see no correlation between the room and
amplifier temperature at the resolution of 10:1. So the chiller loop has a gain > 10 at 24 hour time
scales.

I don't understand why the PMC looks more stable.
Attachment 1: Picture_7.png
Picture_7.png
  552   Mon Jun 23 15:22:04 2008 ranaBureaucracySAFETYLaser Safety Walkthrough today
Attachment 1: Walkthrough08.jpg
Walkthrough08.jpg
  16024   Tue Apr 13 20:45:16 2021 YehonathanUpdatePSLLaser amplifier

{Yehonathan, Rana}

We unpacked the content of the amplifier crate in front of the water fountain (see attachments). Inside we found:

1. Amplifier head. (attachment 1)
2. Amplifier electronics and pump diodes (attachment 2).
3. Optical fiber (attachment 3).
4. 2 Long water hoses (~2m) and 2 short ones.
5. Network cable.
6. A wooden plate.
7. Cable sleeve (attachment 2)?
8. Some manuals will be uploaded to the wiki soon.

Please don't move/touch any of that stuff

Things that we need to consider/obtain:
1. A suitable power cable (attachment 4) with suitable power ratings (800W according to the amplifier specs). The connector head is C19 I believe.
2. A chiller. Rana says Aidan knows where to find one. Should we chill the amplifier head as well?
3. A mounting plate for the amplifier head with good thermal conductivity.
4. The pump wavelength is 808nm, we need to get suitable safety goggles.
5. Where to put the big electronics box. Preferably on 1X1 or 1X2.
6. How do we arrange the different components on the table? We also need to mode match the beam into the amplifier.

 

Attachment 1: 20210413_204721.jpg
20210413_204721.jpg
Attachment 2: 20210413_203300.jpg
20210413_203300.jpg
Attachment 3: 20210413_204940.jpg
20210413_204940.jpg
Attachment 4: 20210413_205549.jpg
20210413_205549.jpg
  16032   Wed Apr 14 19:48:18 2021 gautamUpdatePSLLaser amplifier

A couple of years ago, I got some info about the amplifier setup at the sites from Terra - sharing here in case there is some useful info in there (our setup will be rather different, but it looked to me like our Amp is a 2017 vintage and it may be that the performance is not the same as reported in the 2019 paper).

collection of docs (table layout in 'Proposed....setup') : https://dcc.ligo.org/LIGO-T1700046

LVC 70W presentation: https://dcc.ligo.org/LIGO-G1800538 

I guess we should double check that the beam size everywhere (in vacuum and on the PSL table) is such that we don't exceed any damage thresholds for the mirrors used. 

  16034   Thu Apr 15 09:46:24 2021 YehonathanUpdatePSLLaser amplifier

Some more relevant documents provided by Matt:

Phase III:70W amplifier integration at LIGO

70W amplifier External Shutter

aLIGO PSL high power attenuator

 

  16044   Fri Apr 16 18:21:36 2021 YehonathanUpdatePSLLaser amplifier

I surveyed a bit the 1X1/2 area to plan for the installation of the laser amplifier.

There is a vacancy at the bottom of 1X2 (attachment 1). I measured the dimensions of the diode box (DB) and it should fit. The optical fiber bundle is 75m long and should reach the amplifier head on the table easily.

According to the specs, the maximum power consumption of the DB is 800W (typically 600W), it should probably have its own circuit breaker. It can easily draw more than a few amps. The rack power strips are connected to this 4 socket box (attachment 2), is this just another power strip? It is connected to a circuit breaker with a 30A rating. How do we proceed from here?

In any case, we will need at least 2 meters of power cable.

I also tried to find a suitable place for a water chiller. A few suggestions are in the attachments. Basically either between the electronics shelves and the small rack next to 1X2 or next to the small rack close to the optical table. Maybe put it where the ladder sits and find another place for the ladder. Other options?

We would also need a windows machine running the Beckhoff software. The idea is that all the different laser components (DB, chillers, interlocks, switches) are connected to the EtherCat (over the ethernet infrastructure) so that the Beckhoff code can recognize a failure and switch off everything.

The things that are monitored:

1. Is the NPRO on?

2. Is the flow rate from the chillers enough?

3. Is the temperature of the diodes in the normal range?

4. Is one of the interlocks open?

5. Was one of the emergency buttons pushed?

6. Was the key switch on the DB turned to OFF?

The DB is EtherCat ready but the rest of the signals need to be interfaced somehow. Do we have to buy these EtherCAT terminals?

 

 

Attachment 1: 20210416_143642.jpg
20210416_143642.jpg
Attachment 2: 20210416_145408.jpg
20210416_145408.jpg
Attachment 3: 20210416_145448.jpg
20210416_145448.jpg
Attachment 4: 20210416_181324.jpg
20210416_181324.jpg
  16046   Sun Apr 18 21:29:55 2021 ranaUpdatePSLLaser amplifier
  • Ideally, we put the chiller outside of the interferometer area. The PSL chiller used to be in the control room near the door by IMC REFL. We could also put it in the drill press room.
  • Once we figure out a couple of places where the Diode Box can go, we can ask facilities to make the appropriate power connections. They will have to eval the situation to figure out if the main power to the lab needs to be shut down.
  • Can we put the laser diode box in the drill press room too? Then the hoses can be short. Perhaps less EMI getting into our sensitive places.
  16062   Wed Apr 21 11:09:57 2021 yehonathanUpdatePSLLaser amplifier

I went to the TCS lab to take a look at the chillers lying around. I spotted two chillers:

1. Thermoflex1400 (attachment 1,2). Spec sheet.

2. Polyscience Recirculator 6000 series (attachment 3,4). Manual.

The Thermoflex has various communication ports. The Recirculator doesn't have any communication ports, but it is connected to a flow meter with what seems to be an electronic readout (attachment 5). Manual.

Both chillers have similar capacity ~ 4 gallons/minute. Thermoflex has 2 times more reservoir capacity than the Recirculator.

None of them seem to be Bechkoff-ready.

I guess we can have interlock code handling mixed signals Beckhoff+Non beckhoffs?

Attachment 1: 20210420_171606.jpg
20210420_171606.jpg
Attachment 2: 20210420_171621.jpg
20210420_171621.jpg
Attachment 3: 20210420_171611.jpg
20210420_171611.jpg
Attachment 4: 20210420_171629.jpg
20210420_171629.jpg
Attachment 5: 20210420_171702.jpg
20210420_171702.jpg
  16080   Thu Apr 22 17:28:34 2021 YehonathanUpdatePSLLaser amplifier

According to the aLIGO 70W amplifier interlock concept the flow rate of the chiller should be between 5 and 40 l/min. The chillers I found in the TCS lab both have around 15 l/min flow rate so we should be fine in that regard.

Assuming that the power consumption of the diode box is ~800W and that the optical output power of the diode is ~ 300W of optical power, the chillers need to be able to remove the remaining power. At room temperature, they both have enough cooling capacity according to their specs.

As for the idea to put the chiller and diode box in the drill room: There are not a lot of options here. The only viable place is the SW corner (attachment 1). I was told this place is used sometimes for liquid nitrogen dewar. Alternatively, if possible, we can move the fire extinguishers to the SW corner and use the NW corner. In that way, we don't have to clear all the junk from the SW corner, as long as the extinguishers are still accessible.

I made a sketch (attachment 2) showing a possible setup for a diode box + chiller rack. The fiber and network cable can go through the hole in the wall that already exists for the N2. It will have to get bigger though (attachment 3). The rack would also need to host some Acromag unit to convert the communication channel of the chiller/flow meter to Ethernet. The Acromag on 1X7 has no spare channels.

The only power socket in the room, to which the drill is connected, is circuit #36 which is connected to panel L in the lab. The breaker's ampacity seems to be 20A if I'm reading the number on the breaker correctly.

 

Attachment 1: 20210422_124940.jpg
20210422_124940.jpg
Attachment 2: DrillRoomSchematics.pdf
DrillRoomSchematics.pdf
Attachment 3: 20210422_125240_1.png
20210422_125240_1.png
  1003   Mon Sep 29 01:19:40 2008 ranaSummaryPSLLaser chiller running a little hot
I looked at it some last night and my suspicion was the ISS. Whenever the ISS switch came on the FAST got a kick.

We should try to disable the MC locking and ISS and see if the FSS/PMC/MZ are stable this way. If so this may be
a problem with the ISS / Current Shunt.
  1005   Mon Sep 29 13:23:40 2008 robSummaryPSLLaser chiller running a little hot

Quote:
I looked at it some last night and my suspicion was the ISS. Whenever the ISS switch came on the FAST got a kick.

We should try to disable the MC locking and ISS and see if the FSS/PMC/MZ are stable this way. If so this may be
a problem with the ISS / Current Shunt.


My entry about the laser chiller got deleted. The PSL appears to be running with the ISS gain at -5dB, so that's good, but the
chiller is still showing 21+ degrees. It should be at twenty, so there's something causing it to run out of
headroom. We'll know more once Yoichi has inspected the ISS.

In the deleted entry I noted that the VCO (AOM driver), which is quite warm, has been moved much closer to the MOPA.
This may be putting some additional load on the chiller (doubtful given the amount of airflow with the HEPAs on,
but it's something to consider).
  3417   Thu Aug 12 23:49:04 2010 nancyUpdateEnvironmentLaser chiller temp raised

Since the laser is off, Jenne and I rasied the chiller-chiller (small AC in the Control Room) set point temperature to 73 degree F (from 68F) to save people from shivering.

  1568   Sat May 9 00:15:21 2009 YoichiUpdatePSLLaser head temperature oscillation
After the laser cooling pipe was unclogged, the laser head temperature has been oscillating in 24h period.
The laser power shows the same oscillation.
Moreover, there is a trend that the temperature is slowly creeping up.
We have to do something to stop this.
Or Rob has to finish his measurements before the laser dies.
Attachment 1: laser.png
laser.png
  1569   Sat May 9 02:20:11 2009 JenneUpdatePSLLaser head temperature oscillation

Quote:
After the laser cooling pipe was unclogged, the laser head temperature has been oscillating in 24h period.
The laser power shows the same oscillation.
Moreover, there is a trend that the temperature is slowly creeping up.
We have to do something to stop this.
Or Rob has to finish his measurements before the laser dies.


How's DTEC doing? I thought DTEC was kind of in charge of dealing with these kinds of things, but after our laser-cooling-"fixing", DTEC has been railed at 0, aka no range.

After glancing at DTEC with Dataviewer along with HTEMP and AMPMON (my internet is too slow to want to post the pic while ssh-ed into nodus), it looks like DTEC is oscillating along with HTEMP in terms of frequency, but perhaps DTEC is running out of range because it is so close to zero? Maybe?
  1570   Sat May 9 15:19:10 2009 ranaUpdatePSLLaser head temperature oscillation
This is 8 days of 10-minute trend.

DTEC is just the feedback control signal required to keep the NPRO's pump diode at a constant temperature.
Its not the amplifier or the actual NPRO crystal's temperature readout.

There is no TEC for the amplifier. It looks like to me that by opening up the flow to the NPRO some more
we have reduced the flow to the amplifier (which is the one that needs it) and created these temperature
fluctuations.

What we need to do is choke down the needle valve and ream out the NPRO block.
Attachment 1: Picture_2.png
Picture_2.png
  13414   Wed Nov 8 00:28:16 2017 gautamUpdateLSCLaser intensity coupling measurement attempt

I tried measuring the coupling of PSL intensity noise by driving some broadband noise bandpassed between 80-300Hz using the spare DAC channel at 1Y3 that I had set up for this purpose a couple of weeks ago (via a battery powered SR560 buffer set to low-noise operation mode because I'm not sure if the DAC output can drive a ~20m long cable). I was monitoring the MC2 TRANS QPD Sum channel spectrum while driving this broadband noise - the "nominal" spectrum isn't very clean, there are a bunch of notches from a 60Hz comb and a forest of peaks over a broad hump from 300Hz-1kHz (see Attachment #1).

I was able to increase the drive to the AOM till the RIN in the band being driven increased by ~10x, and saw no change in the MICH error signal spectrum [see Attachment #1] - during this measurement, the RFPD whitening was turned on for REFL11, REFL55 and AS55, and the ITM coil drivers were de-whitened, so as to get a MICH spectrum that is about as "low-noise" as I've gotten it so far.

I tried increasing the drive further, but at this point, started seeing frequent MC locklosses - I'm not convinced this is entirely correlated to my AOM activities, so I will try some more, but at the very least, this places an upper bound on the coupling from intensity noise to MICH.

Attachment 1: PSL_RIN.pdf
PSL_RIN.pdf
  13353   Tue Oct 3 01:32:39 2017 gautamUpdateLSCLaser intensity noise coupling to MICH (simulated)

GV Oct 6: This coupling is probably not correct - Finesse outputs TF magnitude in units of W/W, and not W/RIN

Since I was foiled (by lack of DAC) in my attempt to measure the coupling of laser intensity noise to MICH in the DRMI (no arms) configuration, I decided to try understanding the effect with a simulation.

For this purpose, I used my DRMI Finesse model - this had mirror positions tuned for locking and photodiode demod phases tuned to give a sensing matrix model that wasn't too far from an actual measurement (within factor of a few). So the model seems okay for a first pass at estimating this coupling.

Measuring transfer functions in Finesse is straightforward - use the fsig command to modulate some quantity (in this case the input beam intensity), and use the pd2 detector to demodulate the effect of this modulation at the port of interest (in this case AS55_Q).

**Note that to apply a modulation to an input beam (i.e. Laser) in Finesse, the keyword for the "type" argument given to fsig is "amp" and not "amplitude" as the manual would had me believe. In fact, there seem to be quite a few such caveats. The best way to figure this out is to go to the pykat installation directory, find the file components.py, and look for the fsig_name for the component of interest. It is also indicated in the same file, via the canFsig argument, if that property of the component can be modulated for transfer function measurements.  

Attachment #1 shows the result of such a sweep.

To estimate what the actual contribution to the displacement noise is, I used the DQ-ed MC transmission (recorded at 1024Hz) from the DRMI lock, computed the ASD using scipy.signal.welch, divided by the nominal MC transmission of ~15,000 counts to convert to RIN/rtHz. The RIN was then multiplied by the above calculated coupling function, and divided by the sensing matrix element for AS55_Q (in units of W/m) to give the curve shown in Attachment #2. If we believe the simulation, then Laser Intensity Noise shouldn't be the limiting noise between 10Hz-1kHz. 

I will of course measure the actual coupling and see how it lines up with Attachment #1 - would be a nice additional validation of the Finesse model. I will also try using the Finesse model to estimate some other coupling transfer functions (e.g. Laser Frequency Noise, Oscillator Noise).

Quote:

The absence of evidence is not evidence of absence.

 

Attachment 1: MICH_intensityNoiseCoupling.pdf
MICH_intensityNoiseCoupling.pdf
Attachment 2: MICH_intensityNoiseASD.pdf
MICH_intensityNoiseASD.pdf
  14978   Fri Oct 18 18:13:55 2019 KojiUpdatesafetyLaser interlock looks OK

I've checked the state of the laser interlock switch and everything looked normal.

  1256   Wed Jan 28 19:08:50 2009 YoichiUpdatePSLLaser is back (sort of)
Yoichi, Peter, Jenne

Summary:
We found that the chiller water is not going to the NPRO base. It was hot whereas it was cold when I touched it a few months ago.
I twisted the needle valve on the water line to the NPRO base. Then we heard gargling noise in the pipe and the water started to flow.
The laser power is now climbing up slowly. The noisiness of the MOPA output is reduced.

I will post more detailed entry explaining my theory of what actually happened later.
Attachment 1: Improving.png
Improving.png
  1257   Thu Jan 29 13:52:34 2009 YoichiUpdatePSLLaser is back (sort of)
Here is what I think has happened to the laser.

After the chiller line to the NPRO base clogged, the FSS slow slider went down to keep the laser frequency constant.
It is evident in the attachment 1 that the behavior of the slow slider and the DTEC (diode temp. stabilization feedback signal) are almost the same except for the direction. This means the slow servo was fighting against the increased heat caused by the lack of the cooling from the bottom.
DTEC was doing the same thing to keep the diode temperature constant.

Even though the slow actuator (a Peltier on the crystal) worked hard to keep the laser frequency constant, one can imagine that there was a large temperature gradient in the crystal and the mode shape may have changed.

Probably this made the coupling of the NPRO beam to the PA worse. It may also have put the NPRO in a mode hopping region, which could be the cause of the noisiness.

Right now, the MOPA power is 2.7W.
The FSS, PMC, MZ are locked. At first, the PMC locked on a sideband. I had to twiddle the phase flip button of the PMC servo to lock the PMC. Probably this is another sticky channel, which needs to be tweaked after a reboot of c1psl. I added a code to do this in /cvs/cds/caltech/scripts/Admin/slider_twiddle.

Currently the ISS is unstable. Kakeru and I are now taking OPLTF of the servo.
Looks like the phase margin at the lower UGF is too small.
Attachment 1: SlowDC.pdf
SlowDC.pdf
  12035   Tue Mar 15 10:31:58 2016 SteveUpdateIOOLaser is turned back on

It's may be the janitor's doing.

I noticed that the HEPA filers were off. They are turned on at 20%
 

Attachment 1: 2WlaserOff-On.png
2WlaserOff-On.png
  12041   Tue Mar 22 14:12:18 2016 SteveUpdateIOOLaser is turned back on

The 2W Innolight was turned on.

 

Attachment 1: off-onAgain.png
off-onAgain.png
  9255   Mon Oct 21 09:46:12 2013 SteveUpdatePSLLaser just turned on

I have just turned on the PSL Innolight laser. The laser shut down  with unknown reason a day ago.

Attachment 1: laserTurnedON.png
laserTurnedON.png
ELOG V3.1.3-