40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 311 of 327  Not logged in ELOG logo
ID Dateup Author Type Category Subject
  15629   Thu Oct 15 13:48:58 2020 anchalSummaryGeneralLab Entry Notification

I entered 40m today at around 1:20 pm and left by 1:45 pm. I entered 104 through the machine shop entry. I did the following:

  • I took photos and videos of the PSL table with lights on.
  • I uncovered the AP table, took photos and video, and covered it back.
  • I went to the X End table and took a video without opening the enclosure.
  • Apart from flipping light switches, nothing else should have changed.
  15630   Thu Oct 15 20:00:23 2020 KojiSummaryGeneralHEPA AC cord replacement

The AC cord from the PSL HEPA variac to the junction box was replaced.
Now the HEPA is running at 70%


Showed up at the 40m at 7pm

Preparation

  • Closed the PSL shutter.
  • Closed the innolight shutter
  • Turned off the HEPA mains switch
  • Checked the HEPA fan rating: 115V 4.5A.
  • Brought the thickest power cord from the wall stock: the rating is 125V 15A. This should sufficiently hold two HEPAs.

Cable Replacing

  • Rechecked the wire connection. The new cord has green/black/white wires. And the colors agree with the color of the wires in the junction box.
  • Removed the existing cord.
  • Attached the new cord.
  • Checked the variac AC plug. The terminals in the plug look normal and the AC plug looked sufficiently rigid.
  • Checked the connection again. = OK

Testing

  • Turned on the HEPA mains switch
  • VairAC turned to 70%
  • Checked the air flow - The HEPA fans are sucking the air = OK

Closing the work

  • Closed the junction box.
  • Cleaned up the roof
  • Opend the innolight shutter
  • Opened the PSL shutter
  • Locked the PMC
  • Locked the IMC  - found the transmission was ~80% of the pre-work due to misalignment of the PMC
  • Aligned the PMC - this recovered the IMC REFL of ~5.2 when the IMC was unlocked

Leaving the 40m at 9:30pm

Memo: 40m wiring/Mask/Camera/Red Pitaya/Particle Counter

Attachment 1: P_20201015_200732.jpg
P_20201015_200732.jpg
Attachment 2: P_20201015_200752.jpg
P_20201015_200752.jpg
Attachment 3: P_20201015_202615.jpg
P_20201015_202615.jpg
Attachment 4: P_20201015_204234.jpg
P_20201015_204234.jpg
  15631   Fri Oct 16 09:16:37 2020 YehonathanUpdateBHDMonte Carlo Simulations

Pushed another update to MCMC simulation. This includes:

  • Added new imbalances: ITM transmission, ITM & ETM RoCs.
  • Added new static offsets: DHARD, DSOFT, CHARD, CSOFT. All pitch. The RMS is calculated from the data Jon fetched with /input_noises/input_noises.ipynb.
  • SRCL noise ASD and RMS are now taken from data in /input_noises.
  • RF PD diagnostics were redone: Instead of post-discarding marginal simulations, simulations are now discarded when one or more of the RF PDs demodulated signal does not cross zero when the associated DOFs are scanned by 1um in the offset state.

The DOFs<->RFPD associations I use are:

DARM AS_f2_I
CARM REFL_f1_I
MICH POP_f2_Q
PRCL POP_f1_I
SRCL REFL_f2_I

However, one thing that bothers me is that for some reason ~ 15 out of 160 aLigo simulations are discarded while none for A+. It can also be seen that the A+ simulations are more spread-out which might be related.

The new simulation results are attached.

Attachment 1: MICH_AplusMCMC.pdf
MICH_AplusMCMC.pdf
Attachment 2: PRCL_AplusMCMC.pdf
PRCL_AplusMCMC.pdf
Attachment 3: SRCL_AplusMCMC.pdf
SRCL_AplusMCMC.pdf
Attachment 4: OMC_Comm_AplusMCMC.pdf
OMC_Comm_AplusMCMC.pdf
Attachment 5: OMC_Diff_AplusMCMC.pdf
OMC_Diff_AplusMCMC.pdf
Attachment 6: OMC_Angle_Yaw_AplusMCMC.pdf
OMC_Angle_Yaw_AplusMCMC.pdf
Attachment 7: OMC_Angle_Pitch_AplusMCMC.pdf
OMC_Angle_Pitch_AplusMCMC.pdf
Attachment 8: Main_Laser_RIN_AplusMCMC.pdf
Main_Laser_RIN_AplusMCMC.pdf
  15632   Fri Oct 16 19:44:41 2020 anchalSummaryGeneralLab Entry Notification

I entered 40m today at around 1:10 pm and left by 1:50 pm. I entered 104 through the machine shop entry. I took top view single picture photos of ITMY, BS, AP, ITMX, ETMX and ETMY tables. The latest photos will be put here on the wiki soon.

  15633   Mon Oct 19 15:38:42 2020 KojiUpdateElectronicsLoan: A file binder "40m wiring diagram"

I'll bring a file binder "40m wiring diagram" to home at the next chance.
There is another one on the shelf in the control room.

(I thought I put it in my bag, but it looks like that I left it somewhere around the fax area)

  15634   Mon Oct 19 15:40:02 2020 KojiUpdatePEMAlaska EQ M7.5

Alaska M7.5 20:54UTC https://earthquake.usgs.gov/earthquakes/eventpage/us6000c9hg/executive

I looked at the suspensions. The watchdogs have not been tripped.

IMC was locked but continually shaken. (and occasional unlock)

  15635   Tue Oct 20 20:12:18 2020 KojiSummaryGeneralDJI OSMO Pocket Camera Kit

I set up an action cam (DJI OSMO Pocket) and brought it back to the 40m. The kit is now placed in the control room cabinet together with the Canon DSLR.

I might have left the USBC chaging cable at home this time. Will bring it back next time.-> The cable was returned to the kit on Oct 23rd.

Attachment 1: 20201020200929_IMG_0173.JPG
20201020200929_IMG_0173.JPG
  15636   Thu Oct 22 11:14:47 2020 gautamUpdateElectronicsHV coil driver packaged into 2U chassis

I packaged the HV coil driver into a 2U chassis, hoping for better shielding from pickup. There is still considerable excess noise in measurement vs model around 100 Hz, see Attachment #1. The projected displacement noise from this noise contribution is shown in Attachment #2 - I've also plotted the contribution from the 4.5kohm (planned value for fast path series resistance) for comparison. Attachment #3 has some photos of the measurement setup so if someone sees some red flags, please let me know.

  • The noise was measured with the output load connected to a 20ohm load resistor, to simulate an OSEM.
  • The input signal was driven with an Acromag, to try and mimic the actual operating conditions as closely as possible (although the fast path input was left unconnected).
  • The KEPCO switching HV power supplies were used to power the unit.

I've run out of ideas to try and make the measurement cleaner - the presence of the rather prominent power line harmonics suggests that this is still not perfect, but what more shielding can we implement? I have to make the measurement on the circuit side of the 25 kohm series resistor, so I am using some Pomona minigrabbers to clip onto the leg of the wirewound resistor (see photos in Attachment #3), so that's not great maybe, but what's the alternative?

So if this is truly the noise of the circuit, then while it's an improvement on the current situaiton, it's unsatisfying that such a simple circuit can't match the design expectations. But how do we want to proceed?

Attachment 1: HVampNoise_driven_chassis.pdf
HVampNoise_driven_chassis.pdf
Attachment 2: HVampNoise_dispUnits.pdf
HVampNoise_dispUnits.pdf
Attachment 3: D1900163_measurementSetup.zip
  15637   Thu Oct 22 11:48:08 2020 YehonathanUpdateBHDMonte Carlo Simulations

I found this H1 alog  entry by Izumi confirming that the calibrated channels CAL-CS_* need the same dewhitening filter.

This encouraged me to download the PRCL and MICH data and using Jon's example notebook. I incorporated these noise spectra into the MCMC simulation. The most recent results are attached.

I am still missing:

  • Laser frequency noise
  • Laser RIN
  • Estimation of the LO phase noise
  • Estimation of the BHD breadboard angular noise

Also, now the MCMC repeats a simulation if it doesn't pass the RF PDs test so the number of valid simulations stays the same. I'm still not sure about why the A+ simulations are much more robust to these tests than aLigo simulations.

Attachment 1: MICH_AplusMCMC.pdf
MICH_AplusMCMC.pdf
Attachment 2: PRCL_AplusMCMC.pdf
PRCL_AplusMCMC.pdf
Attachment 3: SRCL_AplusMCMC.pdf
SRCL_AplusMCMC.pdf
Attachment 4: OMC_Comm_AplusMCMC.pdf
OMC_Comm_AplusMCMC.pdf
Attachment 5: OMC_Diff_AplusMCMC.pdf
OMC_Diff_AplusMCMC.pdf
Attachment 6: OMC_Angle_Yaw_AplusMCMC.pdf
OMC_Angle_Yaw_AplusMCMC.pdf
Attachment 7: OMC_Angle_Pitch_AplusMCMC.pdf
OMC_Angle_Pitch_AplusMCMC.pdf
Attachment 8: Main_Laser_RIN_AplusMCMC.pdf
Main_Laser_RIN_AplusMCMC.pdf
  15638   Thu Oct 22 13:04:42 2020 ranaUpdateElectronicsHV coil driver packaged into 2U chassis

what is the noise level before the HV stage? i.e. how well is the acromag noise being filtered?

  15639   Thu Oct 22 22:01:53 2020 gautamUpdateElectronicsHV coil driver packaged into 2U chassis

It's not so easy to directly measure this I think, because the filtering is rather aggressive. Attachment #1 shows the measured transfer function (dots) vs the model and Attachment #2 shows the noise. I think this checks out - but I can't definitively rule out some excess noise at 100 Hz from this stage. Because the gain of the HV stage is x31, we'd need a preamp with better than 1nV/rtHz to directly measure the noise I guess. The Acromag noise model in Attachment #2 is based on a measurement I describe here.

Quote:

what is the noise level before the HV stage? i.e. how well is the acromag noise being filtered?

Attachment 1: DACnoiseFilterGain.pdf
DACnoiseFilterGain.pdf
Attachment 2: DACnoiseFilterNoises.pdf
DACnoiseFilterNoises.pdf
  15640   Fri Oct 23 09:03:43 2020 anchalUpdateElectronicsHV coil driver packaged into 2U chassis

Andrew made a battery-powered 0.7 nVrtHz input-referred noise pre-amplifier for gain of 200. That might help you.

Quote:

we'd need a preamp with better than 1nV/rtHz to directly measure the noise I guess.

RXA: 0.7 nV is OK if you're not interested in low noise measurements. Otherwise, we have the transformer coupled pre-amp from SRS which does 0.15 nV/rHz and the Rai Weiss FET amp which has 0.35 nV for high impedance sources.

  15641   Fri Oct 23 16:41:06 2020 KojiUpdateIOOExcess laser freq noise investigation

[Koji, Rana]

We wanted to track down the excess noise seen in MC_F and other places (see the previous report by Gautam)


Setup1: The IMC was locked and MC_F signal between 500 and 1500Hz was observed. The DTT template was saved as /users/Templates/MC/MCF_noise_201023.xml

- Suspected mech resonance/jitter coupled with clipping or any other imperfections. Poked the various optics and optomechanics on the table. Basically no change. If we tap the laser chassis and the optics close to the laser source, we occasionally unlocked the IMC

- When we touched (lifted) the Innolight controller box from the shelf, for the first time we saw a significant change in the shape of the noise spectrum. The peak around the 700Hz shited towards lower frequency by a few %. Other peaks have no obvious change in the shapes and the heights.

- While observing the MC_F signal on the laptop, we went to the back of the laser controller. Placing a hand close to the fan clearly changes the peak frequency lower. By temporarily disconnecting the fan from the power supply for a short moment, the 700Hz peak could be eliminated. We also tried to see the noise level with the slow thermal servo and diagnosis DB cable disconnected, but we didn't see any significant change of the noise level.


Setup 2: Using the ALS phase tracker, we can observe the relative freq noise of the PSL laser and the ETMY AUX laser without any servo involved. This way we can freely disconnect any cables from the lasers. The measurement template for DTT was saved as /users/Templates/ALS/Y_ALS_FINE_PHASE_OUT_102320.xml

- Noise spectrum before disconnecting the cable (REF0, RMS REF1)

- The Fast PZT input to the PSL was disconnected => This made all the peaks (including the 700Hz) disappeared (REF2, RMS REF3)

- The Fast PZT input was restored as before, then the chain was disconnected at the input of the HV PZT driver (Thorlabs) => Again, this made the peaks disappeared (REF4, RMS REF5)

- The chain was disconnected at the input of the TTFSS box => Again, this made the peaks disappeared (REF6, RMS REF7)

- Disconnected the demod input and the AO cables from the IMC servo board => This made the peaks came back (REF8)

- Disconnected all the input/peripheral cables from the IMC servo board except for the connection to the TTFSS box => Still the excess noise was observed  (REF9)

- In addition to the above, the cable to the FSS box was disconnected but the ground was still touching the MC servo board => This made the peaks disappeared (REF10)

The conclusion is that the noise is injected from the main circuit of the IMC servo board.


Next time we will check if the backplane connection is doing something wrong. Also, we'll test if the presence of the RF signals does something bad to the IMC board via EMI and RFI.

We have reverted the connection and tested if we lock the IMC and Y arm. ==> We saw at least they were locked for a short period. The things are still stabilizing, but left them turned on so they keep trying to lock automatically for the night.

Attachment 1: plot.pdf
plot.pdf
  15642   Fri Oct 23 19:01:57 2020 KojiSummaryPEMPSL Particle Counter kit removed from the table

The particle counter on the 40m PSL was removed. The package was made together with the OMC lab particle counter (see the packing list below).

The kit was picked up by Radhika for a python code to read out the numbers.

=== Packing List ===

  • MET ONE 227A particle counter
    • used at the 40m. It has the particle reading and the temperature reading.
  • Power supply adapter (AC/DC) for 227A
    • Caution: It is not compatible with GT-321.
  • MET ONE GT-321
    • I found another type of particle counter in West Bridge.
  • Power supply adapter (AC/DC) for GT-321. (Labeled "for GT-321")
    • Caution: It is not compatible with 227A.
  • DB9 cable for GT-321
  • Air Filter G3111
    • When you run a particle counter attach this filter instead of the dust collecting cup to keep the air in take of the particle counter clean. This should keep the particle level down to zero.
       
Attachment 1: P_20201022_173529.jpg
P_20201022_173529.jpg
Attachment 2: P_20201022_173419.jpg
P_20201022_173419.jpg
  15643   Mon Oct 26 13:35:58 2020 KojiUpdateIOOExcess laser freq noise investigation

In fact, the problem was the grounding issue (presumably on the IOO racks).
A temporary differential receiver at the TTFSS side was built using an SR560 and a few ponoma cables. This removed the structures ~850Hz.


The MC Servo Output was disconnected from the TTFSS box and monitored with SR785. The 850Hz structure was kept visible no matter what cables, including all the acromag DB cables, were removed. This made me suspicious about the measurement setup. The SR785 was connected to an AC power strip under the SP table and this was too far from the IOO rack.

The SR785 was connected to the AC power strip on 1X2, and now the difference becomes clear. No matter if the acromag cables are connected or not, the connection (particularly ground connection) between the MC servo module and the TTFSS box causes the MC servo output contaminated. (Comparison between Blue and Orange of Attachment #1). During the measurement, the EPICS switch for the fast path was disengaged (=no signal) and the VCO gain (...so called. It's just the MC Servo Gain) was set to be 0dB.

To test if the differential receiving of the MC Servo Output at the PSL helps to reduce this noise, I've built a simple (hacky) differential receiver using an SR560. (Attachment #2)
This kept the noise level same as the disconnected case (Comparison between Green and Orange of Attachment #1, I don't think the difference between them is not significant), while the IMC is locked as before.
Note that we can see that the 36kHz line was significantly reduced. Did we remove this annoying noise?

After talking with Gautam, we decided to leave this configuration while the SE-Diff cable was replaced with a more robust one. (See Attachment #3)


The PSL laser frequency performance was evakluated in the following two ways as we did last week:
1) Use the beat frequency of the free running PSL and the Y-end laser (Attachment #4). The PSL shutter was closed and thus the IMC was not locked.
2) Use the IMC MCF while the IMC was locked. (Attachment #5)

For both cases, the improvement was confirmed.


I also tried to check the reported issue by Gautam on this elog. He used 1Hz BW, but I cheated with 16Hz BW and 10x12.8kHz span PSDs. (Attachment #6)

For the measurement, IN1 GAIN of the IMC Servo was set to be 0dB and the OUT2 was switched to monitor the IN1 noise, while IN1 was terminated by a 50Ohm.

As I mentioned above, the AC power of SR785 was taken from a 1X2 power strip. Is this the reason for the power line forest look less severe compared to the previous case???
Anyway, I tried to use the same differential receiving technique (but with gain of x100) to see if this helps. The differential receiver helped to reduce the structure above 50kHz. The floor noise level was observed to be higher. I didn't pursue this any further, but the forest of the power line looked like a part of the measurement noise. This is indicative that the grounding condition on 1X2 is really not great and we need to review the configuration of the acromag grounding.

Attachment 1: MC_Servo_Output.pdf
MC_Servo_Output.pdf
Attachment 2: 20201026135735_IMG_0175.jpg
20201026135735_IMG_0175.jpg
Attachment 3: 20201026153435_IMG_0176.jpg
20201026153435_IMG_0176.jpg
Attachment 4: Screen_Shot_2020-10-26_at_1.15.54_PM.png
Screen_Shot_2020-10-26_at_1.15.54_PM.png
Attachment 5: Screen_Shot_2020-10-26_at_1.35.19_PM.png
Screen_Shot_2020-10-26_at_1.35.19_PM.png
Attachment 6: MC_Servo_Error_Mon.pdf
MC_Servo_Error_Mon.pdf
  15644   Mon Oct 26 17:26:26 2020 gautamUpdateIOOExcess laser freq noise investigation

Apart from the questionable wiring on the Acromags, one other important difference is in the way the connections were made between the old VME crates to the Eurocrate backplanes, and how we do it now. The thick cables had their sheilds connected to the eurocrate ground (or at least, there was a dedicated ground lug on those cables which we screwed on to the ground terminals on the Eurocrate backplanes). However, in our current configuration, we interface the Acromag ADCs and DACs to the backplane via these adaptor boards. The shields of the DSUB cables are presumably NOT connected to the Eurocrate grounds. This should also be investigated as one potential cause of the grounding issue - while on some of the Eurocrate modules, the P1/P2 connectors may have either the "A" or "C" row of connectors shorted to ground, some may not, and the TTFSS may suffer from such an issue?

Note that we have this problem in all of the slow machines that were upgraded to Acromag (if this turns out to be the issue). 

Quote:

In fact, the problem was the grounding issue (presumably on the IOO racks).

  15645   Tue Oct 27 23:47:53 2020 gautamUpdateGeneralISS checkout

I wanted to look into the ISS situation. Some weeks ago, I found the PD that was previously used as the in-loop photodiode. I wanted to use this and measure the open-loop RIN at a few places (to see if there's any variation and also to check its functionality). However, I didn't get very far tonight - for a start, the PD height is 3" (while our beam height is 4" everywhere outside the vacuum), and I needed to put together a circuit to supply the 5V bias and +/- 15 V since the transimpedance is done on the head. I was only able to do a low-level functionality test tonight, checked that the DC voltage output varied linearly with the incident power (calibrated against an NF1611 photodiode, data will be put up later). I didn't get to measuring any noise performance - is an incandescent light bulb still shot noise limited at ~10 Hz < f < 10kHz? Some notes:

  1. The PD is DC coupled, and has a transimpedance of 1 kohm (inverting AD829 does the transimpedance).
  2. Probably a daughter board should be made that supplies the DC power voltages and rotues the output signal to something more convenient like a BNC connector. This daughter board can then also implement a DC coupled path (for monitoring) and AC coupled path (for servoing, fc to be determined).
  3. SR560 based ISS was implemented some years ago but I think the improvement was only seen above 100 Hz, and that too was marginal, the stabilized RIN was 10^-6 (monitored on an out-of-loop photodiode I think, but unsure). We'd probably want to aim for at least an order of magnitude better. Unclear at this point why more suppression wasn't possible back then, was it just insufficient loop gain, or was the sensing noise too high? To be investigated.

Unconnected to this work - this problem reared its ugly head again (i noticed it yesterday morning already actually). I don't have the energy to embark on a fix tonight, Koji is going to be in the lab all day tomorrow and so he will fix it.

  15646   Wed Oct 28 09:35:00 2020 KojiUpdateCDSRFM errors

I'm starting the model restarts from remote. Then later I'll show up in the lab to do more hard resets.
==> It seems that the RFM errors are gone. Here are the steps.

  1. Shutdown all the watchdogs
  2. login to c1iscex. Shutdown all the realtime models: rtcds kill --all
  3. login to c1iscey. Shutdown all the realtime models: rtcds kill --all
  4. run scripts/cds/rebootC1LSC.sh on pianosa
  5. reboot c1iscex
  6. reboot c1isxey
  7. Wait until all the machines/models are up by the script
  8. restart c1iscex models
  9. restart c1iscey models
  10. some IPC errors are still visible on the CDS status screen. Lauch c1daf and c1oaf

 

Attachment 1: Screen_Shot_2020-10-28_at_10.06.00.png
Screen_Shot_2020-10-28_at_10.06.00.png
  15647   Wed Oct 28 14:01:03 2020 not gautamUpdateGeneralISS checkout

that little PD in the black mount was never very good. The AD829 is not a good opamp for transimpedance and especially not good for low frequencies. Stefan Ballmer and I were able to get 2e-8 out of these (@100 Hz) many years ago.

I wonder if we have some of Zach's M2ISS photodetectors around, perhaps in QIL or Cryo. I doubt that any of them are in use now. Those had good performance nad BNC output.

  15648   Wed Oct 28 14:07:47 2020 gautamUpdateGeneralISS checkout

Ok I was using the PD in the black mount because Rana recommended it a few weeks ago.

Regarding the M2ISS, I acquired the hardware from QIL some months ago, including a circuit board, and 2 PDs. These had LEMO outputs though (not BNC), and the mounts are not 4". These photodiodes are what I'm using as the airBHD DCPDs right now, and some photos are here - are these the photodiodes you mentioned? Or are there yet more M2ISS photodiodes? I remember Johannes had some custom mounts extruded to make them 4" high, do you mean those? Can I retrieve them his Cryo setup?

BTW, my elog scraping shows only one spectra from Stefan in the ATF elog, and the performance there is more like 1e-7/rtHz @ 100 Hz, and that’s using a dedicated high BW servo circuit, not the SR560. Am I just missing the measurement of 2e-8/rtHz?

Quote:

that little PD in the black mount was never very good. The AD829 is not a good opamp for transimpedance and especially not good for low frequencies. Stefan Ballmer and I were able to get 2e-8 out of these (@100 Hz) many years ago.

I wonder if we have some of Zach's M2ISS photodetectors around, perhaps in QIL or Cryo. I doubt that any of them are in use now. Those had good performance nad BNC output.

  15649   Wed Oct 28 20:42:53 2020 KojiUpdateGeneralVent Prep
  1. Two arms / BS / PRM / SRM were aligned. (Attachment 1)
  2. IMC was aligned by WFS and the WFS offsets were offloaded.
  3. Suspension Status Snapshot (Attachment 2)
  4. Oplevs are aligned (Attachment 3)
  5. Xarm green was aligned in the daytime. Xarm green refl DC (C1:ALS-X_REFL_DC_OUTPUT) was 620 (aligned) ~1300 (drifted). When unlocked, it was 3750.
  6. Yarm green: I saw no flash. We don't have functional PZT alignment since the ASY M2 PZT got broken. I went to the Yend. Something funky is going on with the Yend green. I struggled to have any flash of the cavity. The apertures were not so precise. I finally got TEM00 locked, but the modematching seems exteremely low (like 1/1000?). Basically I saw no power reduction of the refl when the cavity is locked. So at least the cavity was locked but we might need to revisit when we open the chamber
    ==> Gautam thinks it was not like that. So he will check the green alignment tomorrow (Thu).
  7. Item checking: I familialized myself with the yend crane operation. Today I learned that there is a power switch on the wall (Attachment 4). The yend has two heavy door storages (Attachments 4/5). The slings to lift the heavy door are in the crane cabinet along with the y arm (Attachment 6). I didn't yet try to find the "hammer" to hit the door if the o-ring stuck too strong, although that's optional.
  8. We want to reduce the PSL power. But Gautam wants to use the arm locking with the nominal power, it will be done tomorrow by him.
     
  9. The last thing is to check the green trans power. I noticed that the green trans beams are blocked by an HWP for the BHD LO path on the PSL table. (Attachment 7)
    The HWP was moved and the process was recorded in the movie (Attachment 8). The fiber output was monitored by the BHD DC (aka AS110 DC) with the AS path blocked. The fiber output of 22.6mV (offset -2.5mV) was improved tio 29.1mV after the HWP move and the alignment adjustment.
  10. Now the green transmissions are visible by the green PDs. Attachment 9 shows the trans and ref of each green beams with and without locking to TEM00. The questionable green TRY was ~0.3. If we compare this with the histrical data (Attachment 10), it is about 1/4 of the value in the past. It's not too crazy but still quite low.

At this point, I'm leaving the lab. All the suspensions (incl SRM) are aligned. PSL/GRX/GRY shutters were left open.

Attachment 1: Screen_Shot_2020-10-28_at_19.42.27.png
Screen_Shot_2020-10-28_at_19.42.27.png
Attachment 2: Screen_Shot_2020-10-28_at_19.42.38.png
Screen_Shot_2020-10-28_at_19.42.38.png
Attachment 3: Screen_Shot_2020-10-28_at_20.42.26.png
Screen_Shot_2020-10-28_at_20.42.26.png
Attachment 4: P_20201028_222839.jpg
P_20201028_222839.jpg
Attachment 5: P_20201028_223020.jpg
P_20201028_223020.jpg
Attachment 6: P_20201028_223212.jpg
P_20201028_223212.jpg
Attachment 7: 2020-10-28-233038.jpeg
2020-10-28-233038.jpeg
Attachment 8: HWP_moving.mp4
Attachment 9: Screenshot_from_2020-10-29_01-04-06.png
Screenshot_from_2020-10-29_01-04-06.png
Attachment 10: Screenshot_from_2020-10-29_01-16-53.png
Screenshot_from_2020-10-29_01-16-53.png
  15650   Thu Oct 29 09:50:12 2020 anchalSummaryCalibrationPreliminary calibration measurement taken

I went to 40m yesterday at around 2:30 pm and Koji showed me how to acquire lock in different arms and for different lasers. Finally, we took a preliminary measurement of shaking the ETMX at some discrete frequencies and looking at the beatnote frequency spectrum of X-end laser's fiber-coupled IR and Main laser's IR pick-off.


Basic controls and measurement 101 at 40m

  • I learned a few things from Koji about how to align the cavity mirrors for green laser or IR laser.
  • I learned how to use ASS and how to align the green end laser to the cavity. I also found out about the window at ETMX chamber where we can directly see the cavity mode, cool stuff.
  • Koji also showed me around on how to use diaggui and awggui for taking measurements with any of the channels.

Preliminary measurement for calibration scheme

We verified that we can send discrete frequency excitation signals to ETMX actuators directly and see a corresponding peak in the spectrum of beatnote frequency between fiber-coupled X-end IR laser and main laser IR pickoff.

  • I sent excitation signal at 200 Hz, 250 Hz and 270 Hz at C1:SUS-ETMX_LSC_EXC channel using awggui with an amplitude of 100 cts and gain of 2.
  • I measured corresponding peaks in the beatnote spectrum using diaggui.
  • Page 1 shows the ASD data for the 4 measurements taken with Hanning window and averaging of 10.
  • Page 2 shows close up Spectrum data for the 4 measurements taken with flattop window and averaging of 10.
  • I converted this frequency signal into displacement by using conversion factor \nu_{FSR}/\frac{\lambda}{2} or \frac{L \lambda}{c}.

If full interferometer had been locked, we could have used the DARM error signal output to calibrate it against this measurement.

Data

Attachment 1: PreliminaryCalibrationData.pdf
PreliminaryCalibrationData.pdf PreliminaryCalibrationData.pdf
  15651   Thu Oct 29 12:43:35 2020 gautamUpdateGeneralVent Prep
  1. Oplev HeNe at ETMY was replaced, see here for my earlier discussion on this.
    • I thought this is a good idea since we want the Oplev as a coarse reference and it'd not be ideal if this HeNe dies during the time the optic is out of the chamber.
    • New HeNe had 2.8mW of power output as measured with Ophir power meter. This is in line with what is expected from these Lumentum heads.
    • I labelled the head with the power output and today's date, re-aligned the Oplev reflection onto its QPD. 
    • After this work, the Y-arm could be locked without the huge angular fluctuations that was visible earlier, 👍 .
  2. GTRY anomaly
    • I actually judged that there is no anomaly.
    • The GTRY CDS indicator is actually quite useless - the ADC saturates at ~3500 cts (and not 32768 as you would expect from a 16 bit ADC but that's the well-known whitening filter saturation problem). This should be fixed, but this is a task for later.
    • I measured with a DMM the voltage when the TEM00 is locked to the cavity and GTRY is 0.3 (the nominal value these days), the DC voltage was ~5.6 V. The prompt reflection from the ETM registers ~6.5 V DC. So the mode-matching isn't stellar, but this is again a known issue, and can be fixed later.
  3. Other pre-vent checks
    • The Oplevs had drifted significantly, I re-centered ITMs, ETMs and BS after aligning the arm cavities and green beams in the POX/POY lock state. See Attachment #1.
    • I locked the PRMI on carrier and used this config to re-center the PRM Oplev, see Attachment #2.
    • No further action was taken regarding SRM oplev.
    • I checked the ALS noise, see Attachment #3. The X arm ALS has excess noise at ~100 Hz that certainly wasn't there previosuly - sigh. There is nothing I can find about any changes made at EX in the elog.
    • Updated the "DriftMon" values, though I guess we don't even really use this anymore these days?
    • Re-relieved the IMC WFS offsets.
    • Cut the input power to the IMC from 1.007W to 100.1 mW (both numbers measured with Ophir power meter).
    • Replaced the 10% beamsplitter in the MCREFL path on the AS table with a Y1 HR mirror. Note that there is no beam on the IMC WFS in this configuration.
    • Was able to lock the IMC on low power to a TEM00 mode - need to set up the low power autolocker. The IMC autolocker is now set to the low power settings, and I've tested it locks a couple of times. Attachment #5 shows the low power lock in StripTool.
    • Walked around and looked at all the bellows - the jam nuts are up against their stops, and I can't move them with my hands, so I think that's okay.

If everything else looks good, I'll start letting the dry N2 into the main volume after lunch.

Quote:

Now the green transmissions are visible by the green PDs. Attachment 9 shows the trans and ref of each green beams with and without locking to TEM00. The questionable green TRY was ~0.3. If we compare this with the histrical data (Attachment 10), it is about 1/4 of the value in the past. It's not too crazy but still quite low.

BTW, nice video! @ Koji, How difficult was it to edit it into this form? 

Attachment 1: preVentAlignment.png
preVentAlignment.png
Attachment 2: PRMIcarr_PRMalignment.png
PRMIcarr_PRMalignment.png
Attachment 3: ALS_ool.pdf
ALS_ool.pdf
Attachment 4: lowPowerMC.png
lowPowerMC.png
  15652   Thu Oct 29 19:30:56 2020 gautamUpdateGeneralVent complete
  1. Jam nuts - checked that none of the nuts move by hand, which according to Steve, is sufficient. I recorded photos of all of them here.
  2. Lab particle count - at the SP table, I measured 25,910 / cf @ 0.3 um and 1220 /cf  @ 0.5 um. Steve's guidance is that the latter number should be less than 10,000, so no issues there.
  3. Valves - closed all the annuli off, and also closed VM1, VA6 and V1. The procedure calls for VM3 to be opened, presumably so that the RGA remains pumped, but I see no reason why we can't just leave that RGA volume valved off.
  4. Started letting N2 into the main volume at ~3pm local time, by opening VV1. Attachment #1 shows the valve configuration adopted for this vent. Went up to 25 torr and then switched over to the "Ultra Zero" instrument grade air cylinders.
  5. Aimed for 3-5 torr/min rate of pressure increase locally. The full vent trend can be seen in Attachment #2.
  6. Stopped letting air into the main volume when P1a pressure was 700 torr, at which point I disconnected the cylinders from the main volume, and left VV1 open so that the IFO equilibriates to the lab air pressure. I used 4 full cylinders of the instrument grade air, which is par for the course. 
  7. Since we anticipate opening the ETMY and output optics chambers, I also vented those annuli. The final state of the valves as I am leaving it for the night is shown in Attachment #3.
  8. I re-aligned the IMC mirrors so that I could lock the IMC at low power once again. Indeed, IMC trans of ~1400 cts was realized (see Attachment #4), c.f. ~1500 earlier today, I thought this is fine and didn't optimize further. I think the policy is to not lock the IMC in air unless necessary, so I'm leaving the PSL shutter closed for the night.
  9. The ITMs, ETMs and BS were re-aligned such that the Oplev spots are centered. I can see some higher order resonances of the green beams. The AS spot is fringing (the two ND=0.5 filters on the AS CCD camera were removed for better visibility). So this is fine as far as alignment is concerned.

We are now ready to take the doors off. I've already done the basic prep work (loosened bolts, cleaned chamber, carts for tools, fresh ameristat on portable HEPAs etc).

Quote:

If everything else looks good, I'll start letting the dry N2 into the main volume after lunch.

Attachment 1: ventValveStatus.png
ventValveStatus.png
Attachment 2: vent_Oct2020.jpg
vent_Oct2020.jpg
Attachment 3: ventValveStatus_overnight.png
ventValveStatus_overnight.png
Attachment 4: lowPowerIMC_afterVent.png
lowPowerIMC_afterVent.png
  15653   Mon Nov 2 12:44:25 2020 gautamUpdateGeneralETMY and OMC chamber heavy doors off

[koji, rana, gautam]

This morning, we did the following;

  1. Removed the ETMY chamber heavy door. It is stored on the rack at the east end.
  2. Removed OMC chamber heavy door. It is smaller than the other chamber doors, so doesn't sit on the standard size rack we have. So it is laid flat, on a clean sheet of ameristat, on a cart next to the NE corner of the PSL table.
  3. After taking some photos of the chamber and making sure the position of the suspension tower was marked by some stops, we removed the ETMY cage and moved it to the cleanroom area. The optic was EQ stopped during the transport, and the OSEMs were removed. The ETMY Oplev HeNe was turned off and the PSL was shuttered to allow us to work without goggles.
  4. The broken off magnet was retrieved from inside the OSEM. The shadow sensor voltage recovered a value of ~800cts, which means the LED/PD pair on the UR OSEM seems to work fine, and it was in fact the magnet blocking the PD that was the issue.
  5. In the cleanroom area, we removed the optic from the wire loop and placed it on the magnet gluing fixture. The wire is intact (for now), so there is some hope of re-suspending it in the same loop.

The OSEMs remain in the EY vacuum chamber. The next set of steps are:

  1. Clean the EP30-2 residue from the broken magnet joint - this will require some scrubbing with an acetone soaked scrub or similar implement.
  2. Reglue the broken magnet.

We will most likely work on this tomorrow. At ~1615, I briefly opened the PSL shutter and tweaked the IMC alignment. We will almost certainly change the pointing into the IMC when we remove the old OMC and rebalance that table, so care should be taken when working on that...

Quote:
  1. We are now ready to take the doors off. 
Attachment 1: CB84FD62-C48B-414F-8825-50C9DE0B47CF.jpeg
CB84FD62-C48B-414F-8825-50C9DE0B47CF.jpeg
  15654   Mon Nov 2 16:46:06 2020 gautamUpdateGeneralPlan for OMC chamber

To be a bit more clear about what we are going to do in the OMC chamber, I marked-up some photos, see Attachments #1 and #2.

  1. OM5 will be rotated to bring the IFO AS beam straight out without any splitting to the OMC.
  2. OMMT, OMC, DCPD, DCPD transimpedance amp, and all peripheral optics associated with these components, will be removed. Many of these components are mounted on a breadboard and so removing that breadboard will take care of it. These are marked with pink Xs.

I anticipate that after this work, the only components on the table will be 

  1. IM1, to send the PSL beam to the IMC.
  2. OMs 5 and 6 to bring the IFO AS beam out onto the AP table (in principle, we could try and eliminate both these optics, if the AS beam happens to exit through one of the viewports cleanly, we will not have any intervening objects in the way once the OMC and peripherals are removed).
  3. MMT2 for mode-matching the IMC transmission to the interferometer mode.

Are we in agreement with this plan?

See #15656 for the updated photo

Attachment 1: IMG_2318.JPG
IMG_2318.JPG
Attachment 2: IMG_2332.JPG
IMG_2332.JPG
  15655   Mon Nov 2 17:13:19 2020 KojiUpdateGeneralPlan for OMC chamber

I believe the mirror next to IM1 is for the green beams to be delivered to the PSL table. I think we still want to keep it. Otherwise, the plan looks fine.

  15656   Mon Nov 2 17:32:05 2020 gautamUpdateGeneralPlan for OMC chamber

Good point - looking back, I also see that I already removed the mirror at the SW corner of the table in 2016. Revised photo in Attachment #1. There is an optic on the east edge of this table whose purpose I'm not sure of, but I'm pretty sure it isn't essential to the main functionality and so can be removed.

Quote:

I believe the mirror next to IM1 is for the green beams to be delivered to the PSL table. I think we still want to keep it. Otherwise, the plan looks fine.

Attachment 1: IMG_2317.JPG
IMG_2317.JPG
  15657   Tue Nov 3 09:06:50 2020 gautamUpdateGeneralLab alarm tripped

I got a call from Calum ~830am today saying some facilities people entered the lab, opened the south entrance door, and tripped the alarm in the process. I came to the lab shortly after and was able to reset the alarm by flipping the switch on the alarm box at the south end entrance to "Alarm OFF". Then, I double checked that the door is closed, and re-enabled the alarm. The particle count at the SP table is not unusually high and the lasers (Oplev HeNe and AUX X) were still on, so doesn't look like any lasting damage was done. The facilities people were apparently wearing laser safety goggles.

  15658   Wed Nov 4 00:10:43 2020 gautamUpdateGeneralVent activities today

[koji, gautam]

  1. Glued broken off magnet - curing overnight with lamp to slightly elevate temp for curing.
  2. Remvoed material from OMC chamber as per the plan. This is all sitting wrapped up in foil on a cart for tonight, we should figure out a better storage plan eventually.

The IMC isn't resonant for a TEM00 mode at the time of writing - we are waiting for the stack to relax, at which point if the IMC isn't resonant for a TEM00 mode, we will tweak the input pointing into the IMC (we want to use the suspended cavity as the reference, since it is presumably more reliable than the table from which we removed ~50 kgs of weight and shifted the balance.

Attachment 1: IMG_0184.jpg
IMG_0184.jpg
Attachment 2: IMG_0185.jpg
IMG_0185.jpg
Attachment 3: IMG_0187.jpg
IMG_0187.jpg
Attachment 4: IMG_0207.jpeg
IMG_0207.jpeg
Attachment 5: IMG_0210.jpg
IMG_0210.jpg
  15659   Wed Nov 4 17:14:49 2020 gautamUpdateCDSc1bhd setup

I am working on the setup of a CDS FE, so please do not attempt any remote login to the IPMI interface of c1bhd until I'm done.

  15660   Thu Nov 5 22:27:34 2020 gautamUpdateGeneralVent activities today

[koji, gautam]

  1. Tweaked last steering mirror before PSL beam is launched into vacuum to get the IMC resonant for the TEM00 mode. Less than 1/8 turn in each Pitch and Yaw was required, and we recovered MC2T ~ 1300 cts (c.f. the expected ~1500 cts when the cavity is well aligned, but we didn't touch the IMC mirrors).
  2. ETMY magnet re-gluing
    • Regluing was successful. Pickle picker came off smoothly. 
    • We performed the razor blade test on all 6 magnets, the integrity of the joints seems uncompromised.
  3. ETMY cleaning
    • Applied F.C. to HR face, HR edge (to remove some residual stains) and AR surface (taking care to go around the magnets).
    • A fresh bottle each of spectroscopic grade acetone and isopropanol was dispensed into clean beakers for the work.
    • Curiously, in the lighting conditions of the cleanroom, both HR and AR faces looked surprisingly clean, even when illuminated with the green flashlight.
    • However, when we took it to the east end and looked at it again with the green flashlight, just before putting it into the chamber, we saw all sorts of stains and markings on the HR side.
    • The central aperture looks fine - the contamination did not happen during the transport so we feel confident not to futz around more with this and since we cleaned it extensively in the cleanroom, we opted not to do another round of cleaning in the chamber.
  4. ETMY re-suspension (on the existing wire loop)
    • The back OSEM-holding plates were removed for access reasons.
    • The optic was rested onto the EQ stops. 
    • Patient nudging of the wire around the optic allowed us to eventually get the wire into the V-grooves in the standoffs.
    • The wire was not damaged! (at least, to eye, free-swinging test is going on now, we will see what the eigenfrequencies and Qs are)...
    • We confirmed that the wire is seated in the v-groove, and took some close up photos.
  5. ETMY pitch balancing
    • A HeNe was brought into the cleanroom and mounted at 5.5" beam height.
    • Level-ness of the beam (i.e. parallel to the optic table) was done coarsely with a spirit level placed on the HeNe holder, and more fine adjustment was done by checking the beam height at the launch point, and again ~2 meters away.
    • All EQ stops were backed off to ensure the optic was really "free-swinging" - no OSEMs either at this point, since all this was done in the cleanroom.
    • The return beam hit the HeNe's output aperture, so we were satisfied that the pitch balancing was good to ~1mrad.
  6. ETMY transport back to EY
    • Since we want to maintain some tension in the wires, the bottom EQ stops were not raised as much as they were when the tower was transported from EY to the cleanroom.
    • As a result, we felt it'd be better for a human (Koji) to carry the cage (rather than cart it, the idea being that there would be fewer vertical impulses due to bumps on the ground etc).
    • The transport went smooth.
  7. EY chamber work
    • Optic was placed back in its original position (marked by some L-clamps).
    • In preparation for alignment work, I undid all the CDS changes I made to facilitate the temporary 3-magnet actuation. This necessitated a reboot of c1auxey VME crate.
    • OSEMs were inserted - best effort to half light as usual, and we tried to replicate the rotation in the mounts as closely as possible to what was the case before (using a photo from the last vent as reference).
    • Coarse alignment was done by making the Oplev return beam hit the QPD.
    • Better alignment of the Y-arm cavity axis was done using the green beam. 
    • IMC was locked - the beam alignment target was used to ensure the IR beam was hitting ETMY at the correct height (by moving TT2), and then the ETMY angular alignment was improved to make the return beam go back roughly collinearly.
  8. Y-arm POY locking
    • Satisfied with the alignment, we returned to the control room (light doors back on EY chamber) - cavity alignment was tweaked further to make the TRY resonances as high as possible.
    • I could lock the Y-arm length to the PSL frequency using POY as a sensor - TRY was ~0.04-0.05 (since IMCT is 1/10th its usual value, we expect it to be 0.1, so this is not bad).
  9. OMC chamber work
    • Tied down the balance weights that were previously placed after the OMC and peripheral optics were removed.
    • Checked the table leveling.
    • Checked that the AS beam is reasonably well centerd on OM5 and OM6. Took some photos.
    • Checked that the IMC could be locked after this work - it could.

So all the primary vent objectives have been achieved 🙌 . The light doors are on the chamber right now. I'm measuring the free-swinging spectra of ETMY overnight. Barring any catastrophic failures and provided all required personnel are available, we will do the final pre-close-up checks, put the heavy doors back on, and pump down starting 10 am Monday, 9 Nov 2020. Some photos here.

  15661   Fri Nov 6 11:36:37 2020 gautamUpdateGeneralETMY suspension eigenmodes

Attachment #1 shows the main result - there are 4 peaks. The frequencies are a little different from what I have on file for ETMY and the Qs are a factor of 3-4 lower (except SIDE) than what they are in vacuum, which is not unreasonable I hypothesize. The fits suggest that the peak shape isn't really Lorentzian, the true shape seems to have narrower tails than a Lorentzian, but around the actual peak, the fit is pretty good. More detailed diagnostic plots (e.g. coil-to-coil TFs) are in the compressed Attachment #2. The condition number of the matrix to diagonalize the sensing matrix (i.e. what we multiply the "naive" OSEM 2 Euler basis matrix by) is ~40, which is large, but I wouldn't read too much into it at this point.

I see no red flags here - the PIT peak is a little less prominent than the others, but looking back through the elog, this kind of variation in peak heights doesn't seem unreasonable to me. If anyone wants to look at the data, the suspension was kicked every ~1100seconds from 1288673974, 15 times.

Quote:
 

I'm measuring the free-swinging spectra of ETMY overnight. 

Attachment 1: ETMY_pkFitNaive.pdf
ETMY_pkFitNaive.pdf
Attachment 2: ETMY.tar.bz2
  15662   Fri Nov 6 14:08:44 2020 gautamUpdatePSLPMC re-locked

The PMC servo railed and so I re-locked it at ~half range. I've been noticing that the diurnal drift of the PZT control voltage has been larger than usual - not sure if it's entirely correlated with temperature on the PSL table. Anyway the cavity is locked again so all is good.

  15663   Fri Nov 6 14:27:16 2020 gautamUpdateCDSc1bhd setup - diskless boot

I was able to boot one of the 3 new Supermicro machines, which I christened c1bhd, in a diskless way (with the boot image hosted on fb, as is the case for all the other realtime FEs in the lab). This is just a first test, but it is reassuring that we can get this custom linux kernel to boot on the new hardware. Some errors about dolphin drivers are thrown at startup but this is to be expected since the server isn't connected to the dolphin network yet. We have the Dolphin adaptor card in hand, but since we have to get another PCIe card (supposedly from LLO according to the BHD spreadsheet), I defer installing this in the server chassis until we have all the necessary hardware on hand.

I also have to figure out the correct BIOS settings for this to really run effectively as a FE (we have to disable all the "un-necessary" system level services) - these machines have BIOS v3.2 as opposed to the older vintages for which there are instructions from K.T. et al.

There may yet be issues with drivers, but this is all the testing that can be done without getting an expansion chassis. After the vent and recovering the IFO, I may try experimenting with the c1ioo chassis, but I'd much prefer if we can do the testing offline on a subnet that doesn't mess with the regular IFO operation (until we need to test the IPC).

Quote:

I am working on the setup of a CDS FE, so please do not attempt any remote login to the IPMI interface of c1bhd until I'm done.

Attachment 1: Screenshot_2020-11-06_14-26-54.png
Screenshot_2020-11-06_14-26-54.png
  15664   Sun Nov 8 20:22:35 2020 gautamUpdateGeneralVent activities today

Basic IFO alignment checks were done.

  1. IMC could be locked - I tweaked the cavity alignment a little to maximize the MC transmission.
  2. Y arm can be made resonant for a TEM00 mode of the main beam. I can't run ASS successfully in this low power config. I can see that the axis isn't great, the spot is visually off-center on ITMY, but we should have plenty of actuator range to correct for this with TT1/TT2.
  3. X arm shows IR mode flashes in the TRX QPD. The green beam can be made resonant for a TEM00 mode, but that alignment doesn't yield the largest IR resonant peaks in TRX. I suspect it is due to the mis-alignment of the beam axis.
  4. AS beam was aligned onto the CCD. I could see clean Michelson fringes by tweaking the BS alignment. On the AP table, I noticed that the beam on the first steering mirror after the AS beam exits the vacuum is a little high. We can easily resolve this by tweaking OM6 pitch a bit, but even if we don't I don't see any major issues as there is plenty of clearance w.r.t. the viewport when the beam exits the vacuum.
  5. With the PRM aligned, I can see the REFL beam on the CCD, and it doesn't look clipped.
  6. I didn't bother to align the green beams to the arm cavities or re-center the Oplevs - is this necessary? It is a step in the pre-close up checklist, so maybe we should do it... The green transmission does reach the PSL table...

Tomorrow, we should do some visual checks of the chambers / EQ stops on ETMY etc but I don't see any major problems at the moment...

Quote:
 

Barring any catastrophic failures and provided all required personnel are available, we will do the final pre-close-up checks, put the heavy doors back on, and pump down starting 10 am Monday, 9 Nov 2020.

Attachment 1: IFOalignment.png
IFOalignment.png
  15665   Sun Nov 8 23:24:29 2020 KojiUpdateGeneralVent activities today

> I didn't bother to align the green beams to the arm cavities or re-center the Oplevs - is this necessary? It is a step in the pre-close up checklist, so maybe we should do it... The green transmission does reach the PSL table...

I don't think so. The beam is reaching the PSL, so we have no motivation to change the green alignment. Regarding the oplev, the green refl should come back to the PDH PD and this gives us additional beam reference. As soon as we find the green resonance after the pumping, we can tweak the green axis so that the spots on the mirrors become reasonable (as well as the green trans CCD on the PSL table).

 

  15666   Mon Nov 9 17:40:17 2020 gautamUpdateGeneralPumpdown

[koji, rana, gautam]

1100 - EY chamber inspected, no issues were found --> EY heavy door on

1200 - OMC chamber was inspected. OM6 was marginally tweaked to bring the beam down a little in pitch, and also a little northwards in Yaw. --> Heavy door on.

1230 - Pumpdown started. Initially, the annuli volume was pumped down. The procedure calls for doing this with the small turbopumps. However, V7 was left open, and hence, in the process, the TP1 foreline pressure (=P2) hit ~30 torr. This caused TP1 to shutdown. We were able to restart it without issue. This case was not caught by the interlock code, which was running at the time. It should be recitified.

1330 - OMC breadboard clean optics and DCPD hardware were wrapped up and packed into tupperware boxes and stored along the south arm. OMC cavity itself, the OMMT, and the breadboard the OMC was sitting on are wrapped in foil/Ameristat and stored in cabinet S13, lower 2 shelves.

1915 - P1a = 0.5 torr pressure reached. Switched over to pumping the main volume with TP1, backed by TP2 and TP3, which themselves are backed by their respective dry pumps and also the AUX drypump for some extra oomph. All cooling fans available in the area were turned on and directed at the turbo pumps. RV2 was used to throttle the flow suitably.

It was at this point that we hit a snag - RV2 has gotten stuck in a partially open position, see Attachment #1. We can see that the thread doesn't move in response to turning the rotary dial. Fortunately, the valve is partially open, so the main volume continues to be pumped - see Attachment #2 for the full history of today's pumping. We are leaving the main volume pumped in this configuration overnight (TP1 pumping main volume backed by TPs 2 and 3, which are in turn backed by their respective drypumps and also the AUX dry pump). I think there is little to no risk of any damage to the turbo pumps, the interlocks should catch any anomalies. The roughing pumps RP1 and RP3 were turned off and that line was disconnected and capped.

What are our options?

  1. The main volume is able to reach the "nominal" pressure of 1e-5 torr, just takes longer.
  2. At some point, we may be able to pump the main volume directly with TP2 and TP3 - it is unclear at this point whether it's better to have the conductance limited TP1, which has a higher pumping capacity, or have the smaller TPs 2 and 3 pump through a larger conductance. 
  3. Depending on how low the ultimate pressure gets, we may be able to run the usual IFO activities until the replacement pressure gauges arrive in ~1 week, at which point we can vent the pumpspool (leaving the main volume isolated) and either repair this valve or replace it with one of the spares we have.

We need some vacuum experts to comment. Why did this happen? Is this an acceptable failure mode of the valve?

KA Ed:
2230 - P1a = 0.025 torr. The pressure is coming down with log-linear scale. x0.1 per 2.5 hours or so.

Attachment 1: IMG_8937.jpg
IMG_8937.jpg
Attachment 2: pumpdown.png
pumpdown.png
  15667   Tue Nov 10 11:31:13 2020 KojiUpdateGeneralPumpdown

Main volume pressure as of 11:30AM 2020/11/10

Attachment 1: Screen_Shot_2020-11-10_at_11.30.21.png
Screen_Shot_2020-11-10_at_11.30.21.png
  15668   Tue Nov 10 11:59:37 2020 gautamUpdateVACStuck RV2

I've uploaded some more photos here. I believe the problem is a worn out thread where the main rotary handle attaches to the shaft that operates the valve.

This morning, I changed the valve config such that TP2 backs TP1 and that combo continues to pump on the main volume through the partially open RV2. TP3 was reconfigured to pump the annuli - initially, I backed it with the AUX drypump but since the load has decreased now, I am turning the AUX drypump off. At some point, if we want to try it, we can try pumping the main volume via the RGA line using TP2/TP3 and see if that allows us to get to a lower pressure, but for now, I think this is a suitable configuration to continue the IFO work.

There was a suggestion at the meeting that the saturation of the main volume pressure at 1mtorr could be due to a leak - to test, I closed V1 for ~5 hours and saw the pressure increased by 1.5 mtorr, which is in line with our estimates from the past. So I think we can discount that possibility.

Attachment 1: damagedThread.001.jpeg
damagedThread.001.jpeg
Attachment 2: IFOstatus.png
IFOstatus.png
Attachment 3: P1a_leakTest.png
P1a_leakTest.png
  15669   Tue Nov 10 12:41:23 2020 gautamUpdateIOO1W > IMC

Looking back through the elog, 1mtorr is the pressure at which it is deemed safe to send the full power beam into the IMC. After replacing the HR mirror in the MCREFL path with a 10% reflective BS, I just cranked the power back up. IMC is locked. With the increased exposure on the MC2T camera, lots of new scattered light has become visible.

Attachment 1: CD93A725-FB5C-4F67-BB2E-D122205114B0.jpeg
CD93A725-FB5C-4F67-BB2E-D122205114B0.jpeg
  15670   Tue Nov 10 14:30:06 2020 gautamUpdateIOOWFS2 broken

While proceeding with the interferometer recovery, I noticed that there appeared to be no light on WFS2. I confirmed on the AP table that the beam was indeed hitting the QPD, but the DC quadrants are all returning 0. Looking back, it appears that the failure happened on Monday 26 October at ~6pm local time. For now, I hand-aligned the IMC and centered the beams on the WFS1 and MC2T QPDs - MCT is ~15000 cts and MC REFL DC is ~0.1, all consistent with the best numbers I've been able to obtain in the past. I don't think the servo will work without 1 sensor without some retuning of the output matrix.

It would appear that both the DC and RF outputs of WFS2 are affected - I dithered the MC2 optic in pitch (with the WFS loop disabled) at 3.33 Hz, the transmission and WFS1 sensors see the dither but not WFS2. It could be that I'm just not well centerd on the PD, but by eye, I am, so it would appear that the problem is present in both the DC and RF signal paths. I am not going into the PD head debugging today.

Quote:

Looking back through the elog, 1mtorr is the pressure at which it is deemed safe to send the full power beam into the IMC. After replacing the HR mirror in the MCREFL path with a 10% reflective BS, I just cranked the power back up. IMC is locked. With the increased exposure on the MC2T camera, lots of new scattered light has become visible.

Attachment 1: WFS2broken.png
WFS2broken.png
Attachment 2: WFS2broken_RF.png
WFS2broken_RF.png
  15671   Tue Nov 10 15:13:41 2020 ranaUpdateGeneralETMY suspension eigenmodes

For the input matrix diagonalization, it seemed to me that when we had a significant seismic event or a re-alignment of the optic with the bias sliders, the input matrix also changes.

Meaning that our half-light voltage may not correspond to the half point inside the LED beam, but that rather we may be putting the magnet into a partially occluding state. It would be good to check this out by moving the bias to another setting and doing the ringdown there.

  15672   Tue Nov 10 17:46:06 2020 gautamUpdateGeneralIFO recovery

Summary:

  1. Recovery was complicated by RFM failure on c1iscey - see Attachment #1. This is becoming uncomfortably frequent. As a result, the ETMY suspension wasn't being damped properly. Needed a reboot of c1iscey machine and a restart of the c1rfm model to fix.
  2. POX/POY locking was restored. Arm alignment was tuned using the dither alignment system.
  3. AS beam was centered on its CCD (I put a total of ND=1.0 filters back on the CCD). Note that the power in the AS beam is ~4x what it was given we have removed the in-vacuum pickoff to the OMC.
  4. Green beams were aligned to the arm cavities. See Attachment #2. Both green cameras were adjusted on the PSL table to have the beam be ~centered on them.
  5. ALS noise is far too high for locking, needs debugging. See Attachment #3.
  6. AS beam was aligned onto the AS55 photodiode. With the PRM aligned, the REFL beam was centerd on the various REFL photodiodes. The PRMI (resonant carrier) could be locked, see Attachment #4.

I want to test out an AS port WFS now that I have all the parts in hand - I guess the Michelson / PRMI will suffice until I make the ALS noise good again, and anyways, there is much assembly work to be done. Overnight, I'm repeating the suspension eigenmode measurement.

Attachment 1: RFMerrs.png
RFMerrs.png
Attachment 2: IFOrecovery.png
IFOrecovery.png
Attachment 3: ALS_ool.pdf
ALS_ool.pdf
Attachment 4: PRMIcarr.png
PRMIcarr.png
  15673   Thu Nov 12 14:26:35 2020 gautamUpdateGeneralETMY suspension eigenmodes

The results from the ringdown are attached - in summary:

  • The peak positions have shifted <50 mHz from their in-air locations, so that's good I guess
  • The fitted Qs of the POS and SIDE eigenmodes are ~500, but those for PIT and YAW are only ~200
  • The fitting might be sub-optimal due to spurious sideband lobes around the peaks themselves - I didn't go too deep into investigating this, especially since the damping seems to work okay for now
  • There is up to a factor of 5 variation in the response at the eigenfrequencies in the various sensors - this seems rather large
  • The condition number of the matrix that would diagonalize the sensing is a scarcely believable 240, but this is unsurprising given the large variation in the response in the different sensors. Unclear what the implications are - I'm not messing with the input matrix for now
Attachment 1: ETMY.tar.bz2
  15674   Thu Nov 12 14:31:27 2020 gautamUpdateElectronicsSR560s in need of repair/battery replacement

I had to go through five SR560s in the lab yesterday evening to find one that had the expected 4 nV/rtHz input noise and worked on battery power. To confirm that the batteries were charged, I left 4 of them plugged in overnight. Today, I confirmed that the little indicator light on the back is in "Maintain" and not "Charge". However, when I unplug the power cord, they immediately turn off.

One of the units has a large DC output offset voltage even when the input is terminated (though it is not present with the input itself set to "GND" rather than DC/AC). Do we want to send this in for repair? Can we replace the batteries ourselves?

Attachment 1: IMG_8947.jpg
IMG_8947.jpg
  15675   Thu Nov 12 14:55:35 2020 gautamUpdateElectronicsMore systematic noise characterization

Summary:

I now think the excess noise in this circuit could be coming from the KEPCO switching power supply (in fact, the supplies are linear, and specd for a voltage ripple at the level of <0.002% of the output - this is pretty good I think, hard to find much better).

Details:

All component references are w.r.t. the schematic. For this test, I decided to stuff a fresh channel on the board, with new components, just to rule out some funky behavior of the channel I had already stuffed. I decoupled the HV amplifier stage and the Acromag DAC noise filtering stages by leaving R3 open. Then, I shorted the non-inverting input of the PA95 (i.e. TP3) to GND, with a jumper cable. Then I measured the noise at TP5, using the AC coupling pomona box (although in principle, there is no need for this as the DC voltage should be zero, but I opted to use it just in case). The characteristic bump in the spectra at ~100Hz-1kHz was still evident, see the bottom row of Attachment #1. The expected voltage noise in this configuration, according to my SPICE model, is ~10 nV/rtHz, see the analysis note.

As a second test, I decided to measure the voltage noise of the power supply - there isn't a convenient monitor point on the circuit to directly probe the +/- HV supply rails (I didn't want any exposed HV conductors on the PCB) - so I measured the voltage noise at the 3-pin connector supplying power to the 2U chassis (i.e. the circuit itself was disconnected for this measurement, I'm measuring the noise of the supply itself). The output is supposedly differential - so I used the SR785 input "Float" mode, and used the Pomona AC coupling box once again to block the large DC voltage and avoid damage to the SR785. The results are summarized in the top row of Attachment #1.

The shape of the spectra suggests to me that the power supply noise is polluting the output noise - Koji suggested measuring the coherence between the channels, I'll try and do this in a safe way but I'm hesitant to use hacky clips for the High Voltage. The PA95 datasheet says nothing about its PSRR, and seems like the Spice model doesn't include it either. It would seem that a PSRR of <60dB at 100 Hz would explain the excess noise seen in the output. Typically, for other Op-Amps, the PSRR falls off as 1/f. The CMRR (which is distinct from the PSRR) is spec'd at 98 dB at DC, and for other OpAmps, I've seen that the CMRR is typically higher than the PSRR. I'm trying to make a case here that it's not unreasonable if the PA95 has a PSRR <= 60dB @100 Hz.

So what are the possible coupling mechanisms and how can we mitigate it?

  1. Use better power supply - I'm not sure how this spec of 10-50 uV/rtHz from the power supply lines up in the general scheme of things, is this already very good? Or can a linear power supply deliver better performance? Assuming the PSRR at 100 Hz is 60 dB and falls off as 1/f, we'd need a supply that is ~10x quieter at all frequencies if this is indeed the mechanism.
  2. Better grounding? To deliver the bipolar voltage rails, I used two unipolar supplies. The outputs are supposedly floating, so I connected the "-" input of the +300 V supply to the "+" input of the -300 V supply. I think this is the right thing to do, but maybe this is somehow polluting the measurement?
  3. Additional bypass capacitors? I use 0.1 uF, 700V DC ceramic capacitors as bypass capacitors close to the leads of the PA95, as is recommended in the datasheet. Can adding a 10uF capacitor in parallel provide better filtering? I'm not sure if one with compatible footprint and voltage rating is readily available, I'll look around.

What do the analog electronics experts think? I may be completely off the rails and imagining things here.


Update 2130: I measured the coherence between the positive supply rail and the output, under the same conditions (i.e. HV stage isolated, input shorted to ground). See Attachment #2 - the coherence does mirror the "bump" seen in the output voltage noise - but the coherence is. only 0.1,  even with 100 averages, suggesting the coupling is not directly linear - anyways, I think it's worth it to try adding some extra decoupling, I'm sourcing the HV 10uF capacitors now.

Attachment 1: powerSupplyNoise.pdf
powerSupplyNoise.pdf
Attachment 2: coherence.pdf
coherence.pdf
  15676   Thu Nov 12 15:40:42 2020 KojiUpdateElectronicsMore systematic noise characterization

Yes. The datasheet has a recommendation circuit with 10uF caps. Companies are careful to show reproducible, reliably functional circuit examples on datasheets. So, if the caps are there you should try to replicate the design.

Quote:

Additional bypass capacitors? I use 0.1 uF, 700V DC ceramic capacitors as bypass capacitors close to the leads of the PA95, as is recommended in the datasheet. Can adding a 10uF capacitor in parallel provide better filtering? I'm not sure if one with compatible footprint and voltage rating is readily available, I'll look around.

  15677   Mon Nov 16 00:02:34 2020 ranaUpdateElectronicsMore systematic noise characterization

true. also try to choose a cap with a goow high frequency response. In the Electronics Noise book by Ott there's some graph about this. I bet you good do a Bing search and also find something more modern. Basically we want to make sure that the self resonance is not happening at low frequencies. Might be tought to find one with a good HF response, a high voltage rating, and > 1uF.

Quote:

Yes. The datasheet has a recommendation circuit with 10uF caps. Companies are careful to show reproducible, reliably functional circuit examples on datasheets. So, if the caps are there you should try to replicate the design.

Quote:

Additional bypass capacitors? I use 0.1 uF, 700V DC ceramic capacitors as bypass capacitors close to the leads of the PA95, as is recommended in the datasheet. Can adding a 10uF capacitor in parallel provide better filtering? I'm not sure if one with compatible footprint and voltage rating is readily available, I'll look around.

  15678   Mon Nov 16 16:00:19 2020 gautamUpdateEquipment loanLB1005-->Cryo lab

Shruti picked it up @4pm.

ELOG V3.1.3-