40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 119 of 339  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  1317   Wed Feb 18 03:17:40 2009 YoichiUpdateLSCLocking
Yoichi, Kakeru,

Last night, the cm_step script failed at the hand-off of CARM error signal from TR_DC to PO_DC.
This was fixed by reducing the PO_DC gain by a factor of 2.
Currently the script fails when changing C1:LSC-DEMOD_GAIN to zero.
To be honest, I don't fully understand the purpose of this step.
  15471   Sun Jul 12 02:42:01 2020 gautamUpdateLSCLocking (on rossa)

Main goals tonight were:

  1. Check if I can lock the interferometer by working on rossa - indeed, I could! It is much snappier than the ageing pianosa. The viewing angle of the CRT monitors from this corner isn't so good though.
  2. Measure step responses for the arm ASC loops to see if any insight can be gained into these loops. Analysis forthcoming...
Attachment 1: ASCsteps.png
ASCsteps.png
  1334   Tue Feb 24 02:23:40 2009 YoichiUpdateLockingLocking - MC board bad
Rob, Yoichi, Alberto, Kiwamu, Kakeru

We found that the OMC alignment feedback was on for the POS X loop even though the OMC was not locked.
This caused the PZT mirror to be tilted in yaw a lot. This was probably the reason for the mysterious shift in the AS beam last week, because the AS RF beam is picked up after this PZT mirror.
Rob aligned the OMC and we re-centered the AS PDs and the CCD.
This changed the DARM RF gain, so we changed it from 3 to 1. This gain used to be -1. It is still not understood why the polarity was changed.
The MC length was changed ? We should check the sideband transmission.

After this, we reached to the arm power 4. But the IFO loses lock immediately after the moving zero is turned off.
At this stage, the CARM loop bandwidth is supposed to be high enough that the moving zero is no longer necessary.
However, when we measured the MCL loop gain with several different AO path gains, the loop shape did not change at all.
This led us to suspect the AO path may not be connected. The cabling from the common mode board to the MC board seemed ok.
We tested the signal flow in the MC board using a signal generator and an oscilloscope.
Then we found that a signal injected to the IN2 (AO path) does not reach to the TP1A (right after the boost stages), though the signal is visible in the OUT2 (monitor BNC right after the initial amplifier (B-amp) for the AO path). The signal from IN1 (MC REFL) can be observed at TP1A. This means something is broken between the B-amp and the sum-amp in the AO path.
We will check the MC board tomorrow.
  15037   Wed Nov 20 01:07:18 2019 gautamUpdateLSCLocking - progress

Summary:

  1. CARM offset was reduced to 0 with the PRMI locked.
  2. TRY levels touched ~200 (Recycling gain ~10, IFO is still undercoupled).
  3. TRX level never went so high - I suspect QPD issues or clipping in the beampath.

Details:

  • Attachment #1 is a StripTool summary of the lock - encouragingly, the PRMI stayed locked for several 10s of minutes even when the CARM offset was brought to 0.
  • The MICH signal was pretty glitchy - we increased the gain of the MICH and PRCL loops and thought we saw some improvement, but needs more quantitative investigation.
  • Main differences in locking procedure today were:
    • Added some POPDC to the MICH/PRCL trigger elements in addition to POP22
    • Tried adding a DARM offset before doing the final steps of CARM offset reduction, and then zerod the DARM offset too.
  • The TRX level never went as high as TRY - even though on the CRT monitors, both arms seemed to saturate somewhat more evenly. Potentially the EX QPD needs a checkout, or there is some clipping in the in-air TRX path. Although, puzzilingly, the POXDC level never goes as high as POYDC either. So maybe the buildup is really lower in the XARM? For the daytime tomorrow.

Next steps:

  1. Check the EX QPD / TRX situation.
  2. Figure out how to make the PRMI lock more stable as I reduce the CARM offset.
  3. Start figuring out the CM board, as we'd want to do the handoff to RF at some point.
Attachment 1: PRFPMI.png
PRFPMI.png
  15038   Wed Nov 20 12:14:17 2019 gautamUpdateLSCLocking - progress

I took a look at the TRX/TRY RIN reported in the single arm POX/POY lock, and compared the performance of the two available PDs at each of the two ends. Attachment #1 shows the results. Some remarks:

  1. The noise performance of the two QPDs at each end isn't identical - is there some transimpedance gain difference?
  2. The lower plot shows the angular motion reported by each QPD when the arm cavity is locked. The EX QPD seems much more sensitive than the EY QPD.
  3. I estimate that in this condition, each photodiode is receiving ~20uW of power, corresponding to a shot noise limited RIN of ~10^-7. None of the photodiodes saturate this bound.
  4. There are some ND filters placed in front of the QPDs at both ends. Do we really need these ND filters? I estimate that for the highest buildups, we will have ~10kW * 15ppm * 0.5 ~75mW of power incident on the QPD, so ~20mW per segment. Assuming silicon responsivity of 0.2 A/W, a transimpedance of 1kohm would give us 4V of signal. But the schematic shows higher transimpedance. Do we still have the switching capability for this QPD?
Quote:

Next steps:

  1. Check the EX QPD / TRX situation.
Attachment 1: TRX_TRY_comparison.pdf
TRX_TRY_comparison.pdf
  15034   Mon Nov 18 21:04:38 2019 gautamUpdateLSCLocking - some ideas

Some ideas Koji suggested:

  1. Try approaching the CARM offset zero point "from the other side" - i.e. start with a CARM offset of the opposite sign (I typically use negative CARM offset).
  2. With the PRMI locked, try bringing one arm onto resonance while the other arm is held off resonance. 

For the second idea, it is convenient to be able to control the arms in the XARM/YARM basis as opposed to the CARM/DARM basis as we usually do when going through the locking sequence. After some fiddling, I am able to reliably execute this transition, and achieve a state where the FP arm cavities are resonant for the IR with the ALS beat note frequency being the error signal being used. Some important differences:

  1. The frequency actuator (ETM) is weaker in this case than in the CARM/DARM basis (where MC2 is the frequency actuator) due to the longer length of the arm cavity (and for ETMX, the higher coil driver series resistance). I had to twiddle the limits of the servo banks to accommodate this. 
  2. The ALS error signal is significantly noisier than POX/POY. Hence, the control signal RMS is often in danger of saturating the DAC range. I implemented a partial fix by adding a 1st order Butterworth LPF with 1kHz corner frequency. According to the model, this eats <5 degrees of phase at the desired UGF of ~150 Hz.
  1329   Fri Feb 20 03:52:23 2009 YoichiUpdateLockingLocking Tonight
Yoichi, Peter

Tonight, we had a problem with the DD hand off.
It failed when the RG filters of MICH for the bounce-roll modes are engaged.
The reason for the failure was that the MICH UGF was too low (~10Hz).
As in the Peter's elog entry, we found that the AS PDs are mis-centered.
Even after we fixed the centering, the MICH UGF was still too low. So we increased the MICH feedback gain by a factor of 10.
The reason for the gain decrease is unknown. It seems almost like the BS coils get weaker.
I checked the UGF of the BS OL loops. These are around 4Hz, so fine. We should check the HWP on the AP table tomorrow.

After the DD hand-off goes ok, the switching of DARM signal from DC to RF failed.
I found that the gain and the polarity of the RF signal were wrong.
AS166 is one of the PDs we found mis-centered (and re-centered). But how can you flip the sign of the signal ?

After this, the cm_step script goes until the activation of the moving zero, but fails when the arm power is increased to 0.7.
Also the ontoMCL script succeeds only 50% of the time.
  17087   Wed Aug 17 10:27:49 2022 CiciUpdateGeneralLocking X-arm AUX laser

TL;DR: Got the x-arm aux laser locked again and took more data - my fit on my transfer functions need improvement and my new method for finding coherence doesn't work so I went back to the first way! See attached file for an example of data runs with poor fits. First one has the questionable coherence data, second one has more logical coherence. (ignore the dashed lines.)

------------------------------------------------------------------------------------

  • The aux laser on the x-arm was still off after the power shutdown, so Paco and I turned it back on, and realigned the oplev of the ETMX - initial position was P = -0.0420, Y = -5.5391.
  • Locked the x-arm and took another few runs - was calculating coherence by I/Q demodulation of the buffers and then recombining the I/Q factors and then taking scipy.signal.coherence(), but for some reason this was giving me coherence values exclusively above 0.99, which seemed suspicious. When I calculated it the way I had before, by just taking s.s.coherence() of the buffers, I got a coherence around 1 except for in noisy areas of the data where it dropped more significantly, and seemed to be more correlated to the data. So I'll go back to using that way.
  • I also think my fits are not great - my standard error of the fits (calculated using the coherence as weight, see Table 9.6 of Random Data by Piersol and Bendat for the formula I'm using) are enormous. Now that I have a good idea that the UGF is between 1 - 15 kHz, I'm going to restrict my frequency band and try to fit just around where the UGF would be. 

--------------------------------------------------------------------------------

To do:

  • Reduce frequency band and take more data
  • Get fit with better standard error, use that error to calculate the uncertainty in the UGF!
Attachment 1: rpi_OLG_2022_08_16_17_00_41.pdf
rpi_OLG_2022_08_16_17_00_41.pdf
Attachment 2: rpi_OLG_2022_08_16_17_01_21.pdf
rpi_OLG_2022_08_16_17_01_21.pdf
  2583   Tue Feb 9 17:18:45 2010 josephbSummaryComputersLocking Y arm successful with fully replaced front-end for ITMY

We were able to lock the Y-arm using Megatron and the RCG generated code, with nothing connected to c1iscey.

All relevant cables were disconnected from c1iscey and plugged into the approriate I/O ports, including the digital output.  Turns out the logic for the digital output is opposite what I expected and added XOR bitwise operators in the tst.mdl model just before it went out to DO board.  Once that was added, the Y arm locked within 10 seconds or so.  (Compared to the previous 30 minutes trying to figure out why it wouldn't lock).

  9945   Tue May 13 03:30:10 2014 JenneUpdateLSCLocking activities - no progress

[Jenne, Rana, EricQ]

We tried a few times to engage the AO path while holding CARM on sqrtTrans and DARM on ALS, but failed every time.  Since we cannot stably hold lock at arm powers of 1, even though we were able to do so early last week, we think that we have a problem (obviously).  One noticeable thing is that while held with ALS, the Xarm transmission fluctuates almost full power.

As we were seeing late last week, the Xarm IR transmission while held with ALS was fluctuating wildly, whether we were locked on individual arms or on CARM/DARM. 

Tonight we took some out of loop spectra, with different HEPA settings, to see how that affected things.  It looks like HEPA at the nominal ~20% is okay, but anything higher than that starts to affect the Xarm beatnote sensing, while it mostly leaves the Yarm beatnote sensing okay.  Perhaps this is something that isn't tightened enough in the Xarm path, or something on a skinny floppy mount that needs to be more secure.

I am still a little confused though, why we don't see large power fluctuations in *both* arms while using ALS to control CARM/DARM.  Why are we not seeing this Xarm noise being fed back into the Yarm, through either the ETM via DARM, or common stuff via CARM actuating on MC2.

Note that the change at high frequency is because I switched from using non-DQ channels to DQ channels, so that's not anything to pay attention to.  The noise reduction we see is below about 20Hz.

ALS_outofloop.pdf


Rana pointed out that our POPDC level was very small.  We don't have screens for them, but the DC PDs have the same analog whitening as the RF PD signals do.  I changed C1:LSC-POPDC_WhiteGain.VAL from 0 to 11.  Now our POPDC while locked on sidebands is about 8,000 counts.

We also swapped the cables between the SR785 and the CM board around.  Now channel 2 of the 785 goes to TP2A, channel 1 goes to TP2B, and the source goes to EXCB.  This is so that we can break the AO loop with the disable switch just after the slow/fast split, and look at the transfer function before we close the loop. 

  10485   Wed Sep 10 02:53:32 2014 JenneUpdateLSCLocking activities - nothing new :(

[Jenne, EricQ]

No major progress today.  

I fixed a bug in my lockloss script that was asking it to start gathering data just after the lockloss, rather than some seconds beforehand.  Ooops.  Anyhow, with this handy-dandy plotting, I still don't know why we are losing lock when we have PRMI on REFL33, CARM on sqrtInvTrans, and DARM on AS55.  I don't see any oscillations, just the arm power drops off, and a moment later the POP power drops.  

For example, here is one of the best states we got to tonight.  Data for this is in ..../scripts/LSC/LocklossData/1094369700 .  You can re-create the plot by going to ..../scripts/LSC/LocklossData/  and doing ./PlotLockloss.py 1094369700 .  We had set the triggers for the trans PD/QPD such that we were using the QPD transmission signals the whole time (above trans of 0.2).  We saw that the noise at high frequency during low transmission powers for sqrtInvTrans as an error signal was higher using the QPDs than with the Thorlabs PDs, but that both cases are below the noise for ALS.  The arm powers were pretty steady above 3 for the last bit of this lock stretch.  I lost lock while trying to transition DARM over to AS55Q.  CARM was on sqrtInvTrans(QPDs), PRMI on REFL33 I&Q as usual.

LocklossZoom.png

 


Other things from this evening:

* When I was starting, I saw that when I locked the PRMI, the PRM was oscillating in pitch. Oscillation only happened when PRM pitch oplev was on.  I'm not sure what could have changed to make the oplev loop unstable, but the gain was 7.0, and now I have left it at 5.0.

* I recentered the PRM and ITMY oplevs.

* Plugged in the Yend PDH error monitor and pzt output monitors, since I forgot them last week.  Hopefully this will allow the Yend SLOW servo to work, and keep us away from the limits of the PZT range.

  10486   Wed Sep 10 02:59:42 2014 ericqUpdateLSCLocking activities - nothing new :(

Some small things I did tonight which did little to nothing to help:

  • I reset the offsets in the SQRTINV FMs to try and match the DC level of the ALS CARM error signal as best as possible, to avoid moving away from the set-point too much, as I was worried we were wandering into regions of too low optical gain. 
  • I turned off the WFS, and hand tweaked the MC alignment. The WFS loops / matrices definitely have some room for improvement, and I was worried that excess angular motion of the MC was coupling into CARM. MC refl is much calmer in the last ~1.5 hrs since I turned off the WFS. 

My main concern with tonights situation was the huge low frequency fluctuations of TRY while CARM/DARM locked on ALS. We saw this being very smooth very recently, but when one arm is fluctuating by multiple line widths, it isn't surprising that locks aren't stable. I want to know why the out of loop stability is so unpredictable. 

  6420   Wed Mar 14 23:02:09 2012 KojiUpdateLSCLocking activity

Kiwamu and Koji

The target is to realize DRMI or PRMI + one arm with ALS.

The focus of the night is to achive stable lock of the PRMI (SB resonant) with 3f signals.
Particularly, REFL165 is back now, we are aiming to see if any of the 165 signals is useful.

We made a comparison between  REFL33Q/REFL165Q/AS55Q to find any good source of MICH.
However, none of them showed a reasonable shape of the spectra. They don't have reasonable coherence between them.

Nonetheless, we have tried to lock the IFO with those REFL signals. But any of them were useful to keep the PRMI (SB resonant).
The only kind of stable signal for MICH was AS55Q as we could keep the PRMI locked.

  11180   Fri Mar 27 20:32:17 2015 KojiSummaryLSCLocking activity

- Adjutsed the IMC WFS operating point. The IMC refl is 0.42-0.43.

- The arms are aligned with ASS

- The X arm green was aligned with ASX. PZT offsets slides were adjusted to offload the servo outputs.

- I tried the locking once and the transition was successfull. I even tried the 3f-1f transition but the lock was lost. I wasn't sure what was the real cause.

I need to go now. I leave the IFO at the state that it is waiting for the arms locked with IR for the full locking trial.

  14974   Thu Oct 17 11:19:28 2019 gautamUpdateLSCLocking activity last night
  1. Tuning the MICH-->PRM output matrix element
    • Locked the PRMI with the carrier field resonant in the PRC.
    • REFL11 used to control PRCL, AS55 for MICH.
    • Turned on the sensing notches in the control filter bank. Drove a line in MICH at 311.10 Hz.
    • Tweaked the MICH-->PRM matrix element to minimize the coupling witnessed.
    • As shown in Attachment #1, the minimum coupling was found to be at the value -0.34 (the old value was -0.2655).
    • The minimum was very sharp. A 1% change from the optimum value increased the peak height by > x2. Is this reasonable?
  2. Some sensing matrix measurements: After tuning the output matrix element, I locked the PRMI (ETMs misaligned) in four configurations:
    • PRMI locked with carrier resonant. REFL11_I used for PRCL control, AS55_Q used for MICH control.
    • PRMI locked with sidebands resonant. REFL11_I used for PRCL control, AS55_Q used for MICH control.
    • PRMI locked with sidebands resonant. REFL11_I used for PRCL control, REFL165_I used for MICH control (based on sensing matrix measurement and offsets from previous config).
    • PRMI locked with sidebands resonant. REFL33_I used for PRCL control, AS55_Q used for MICH control.
    • The attached GIF shows the evolution of the demodulated sensing lines as we move through configurations.
       
    • The actual PDFs are attached as a zip, Attachment #2.
  3. PRMI locking with arms under ALS control
    • The arm cavity lengths were controlled as usual with ALS. This system needs some noise budgeting.
    • I set the CARM offset to -8 (arbitrarily chosen, approximately equal to 20nm, but anyways well above the cavity linewidth).
    • Then I re-aligned the PRM, and attemped to lock the PRMI using the 3f settings determined with no arm cavities --> no success.
    • Tried locking using the 1f error signals instead - in this config, the lock could be established.
    • However, I saw that there was significant light on the AS camera, and I had to put in an offset into the MICH loop to make ASDC go as low as possible.
    • I guess it is possible that the ALS control wasn't precise enough and the leaked light to the dark port was because of differential reflectivity of the arm cavities?
    • Anyways, I ran a sensing matrix measurement with the interferometer in this configuration, and I found that the MICH signal in REFL165 had rotated significantly.
    • I also found that the 3f DC offsets in this configuration were ~5x greater than what was the case for the lock with no arm cavities.

This is as far as I got last night. The first step is to see how reliable the settings determined last night are, today. I don't understand how changing the output matrix element can have brought about such a significant change in the MICH/PRCL separation in all the RF photodiodes.

Attachment 1: MICH2PRCLnulling.pdf
MICH2PRCLnulling.pdf
Attachment 2: consolidatedSensingMatrices.pdf.zip
  8491   Thu Apr 25 10:19:10 2013 KojiSummaryLSCLocking activity on Apr 24th

Last night I worked on the several locking configurations:

General preparations / AS table inspection

- The AS beam looked clipped. I went to the AP table and confirmed this is a clipping in the chamber.
  This may be fixed by the invacuum PZTs.

Modulation frequency tuning

RFPD Mon of the MC demodulator was check with the RF analyzer. Minimized the 25.8MHz (=55.3-29.5MHz) peak by changing the marconi freq.
This changed the modulation freq from 11.066147MHz to 11.066134MHz. This corresponds to the change of the MC round-trip length from
27.090952m to 27.090984m (32um longer).

Michelson tests

- I wonder why I could not see good Michelson signal at REFL ports.

- I roughly aligned the Michelson. On the AP table, the RF analyzer was connected to the REFL11 RF output.
  By using "MAX HOLD" function of the analyzer, I determined that the maximum output of the 11.07MHz peak
  was -61.5dBm.

- I went to the demodboard rack. I injected -61dBm from DS345 into the RFEL11 demodboard. This produced
  clean sinusoidal wave with the amplitude of 4 count. The whitening gain was 0dB.

- The output from the PD cable was -64.0dBm. So there is ~2.5dB loss in the cable. Despite this noise, the demodulation
  system should be sufficiently low noise. i.e. the issue is optical

- The Michelson was locked with AS55Q. And the REFL11 error signals were checked.Fringe like feature was there.
  This suggested the scattering from the misaligned PRM. The PRM was further misaligned. Then some reasonable
  (yet still noisy) Michelson signal appeared. (Usual misaligned PRM is not at the right place)

  Q. How much scattering noise (spurious cavity between PRM and the input optics) do we have when the PRM is aligned?
  Q. Where should we put the glass beam dumps in the input optics?
  Q. Can we prepare "safe" misaligned place for the PRM with the beam dump?

- The Michelson was locked with REFL11Q. From the transfer function measurement, the gain difference between AS55Q (whitening gain 24dB)
  and REFL11Q was 32dB. The whitening gain was 0dB. In fact I could not lock the Michelson with the whitening gain 33dB (saturation???)
  The element in the Input matrix was 1, The gain of the servo was +100. BS was actuated.

Coupled cavity tests

- At least REFL11 is producing reasonable signals. So what about the other REFL ports? The Michelson signals in the other frequencies
  were invisible. So I decided to use three-mirror coupled cavity with the loss PRC.

- Aligned X arm, Misaligned ETMX, ITMY. Aligned PRM.

- Locked the PRM-ITMX cavity with REFL11 and REFL33.

- Aligned ETMX. If I use REFL11I for the PRC locking, I could not lock the coupled cavity. But I could with REFL33I.
  This is somewhat familiar to me as this is the usual feature of the 3f signal.

- The coupled cavity could be locked "forever". To realize this I needed to tweak the normalization factor from 1.0 to 1.6.
  Q. How does the coupled cavity change the response of the cavity? Can we compensate it by something?
  Q. Measure open loop transfer functions to check if there is any issue in the servo shapes.

- Transmission during the lock is 3.2 while the nominal TRX with PRM misaligned was 0.93.
  This corresponds to power recycling gain of 0.17.

 - X arm:

    - Source: POX11I, phase 79.5 deg, whitening gain 36dB
    - Input matrix: POX11I->1.0->XARM, Normalization TRX*1.60
    - XARM servo gain +0.8, actuation ETMX
    - XARM trigger 0.25 up, 0.05 down. XARM Filter trigger untouched.

- PRC: (sideband locking)
    - Source: REFL33I, phase -34.05 deg, whitening gain 30dB
    - Input matrix: REFL33I->1.0->PRCL, Normalization None
    - PRCL servo gain +4.0, actuation PRM
    - PRCL trigger None

- Same test for the Y arm. At the moment ETMY did not have the OPLEV.
  Same level of transmission (~3.3)

 - Y arm:

    - Source: POY11I, phase -61.00 deg, whitening gain 36dB
    - Input matrix: POY11I->1.0->YARM, Normalization TRX*2.1
    - YARM servo gain +0.25, actuation ETMX
    - YARM trigger 0.25 up, 0.05 down. YARM Filter trigger untouched.

- PRC: (sideband locking)
    - same as above

Sideband PRMI attempt

    - Now I got some kind of confidence on the REFL33 signal.
    - So I tried to get any stable setup for sb PRMI, then to find any reasonable MICH signals anywhere else than AS55Q.
    - With REFL33I(PRCL) & AS55Q(MICH), I got maximum ~10sec lock. It regularly locked. It was enough long to check
      the spectrum on DTT. But it was not enough long to find anything about the MICH signals at the REFL ports.

    - I tried REFL33Q for MICH. The lock was even shorter but could lock for 1~2 sec.

    Q. What is the cause of the lock loss? I did not see too much angluar fluctuation. The actuation was also quiet (below 10000).

- PRCL: (sideband locking)
    - Same as above except for
      - the PRCL servo gain +0.05, No limitter at the servo output.
      - Trigger POP22I (low pass filtered by LP10) 20 up, 3 down

- MICH:
    - AS55Q -24.125 24dB -> x1.0 -> MICH -0.7, No limitter -> ITMX/Y differential
    or
    - REFL33Q -34.05dB -> x2.0 -> MICH same as above
    - For both case, trigger POP22I (low pass filtered by LP10) 20 up, 3 down

 

At this point Jenne came back from dinner. Explained what I did and handed over the IFO.

  8500   Sat Apr 27 00:21:06 2013 KojiUpdateLSCLocking activity on Apr 26th

When I talked with Den via phone, he recommended to use the trigger and normalization with POP110I.
So I decided to try this approach. Also I investigated how the REFL33 signals are useful.

I could find the state where the PRMI(sb) locks regularly, although the lock is ~1min at most.

PRCL: REFL33I
whitening gain 30dB, -14.0deg (finely tuned in lock)
-> x1.0 -> Triggered by POP110I (20up, 1down)
-> Normalized by POP110I x0.04
-> Gain 0.2~0.12 FM3, 4, 5, 6 always on, no triggered FMs
-> PRM

MICH: REFL33Q
whitening gain 30dB, -14.0deg (finely tuned in lock)
-> x1.0 -> Triggered by POP110I (20up, 1down)
-> Normalized by POP110I x0.04
-> Gain -20 FM4, 5 always on, no triggered FM
-> ITMX (-1.0) and ITMY (+1.0)

I needed to tune the phase very precisely to reach this state. Also the alignment of the michelson and PRM
was very crtiical to acquire the lock.

Later in the same night I was plagued by PRM alignment drift. It seems that the PRM alignment is bistable or
slightly drifting in pitch. I had to align PRM continuously. When the PRMI is locked, the alignment fluctuation
was mainly in yaw. This was as people commented before.

Attachment 1: Screenshot.png
Screenshot.png
  1364   Fri Mar 6 05:44:14 2009 YoichiUpdateLockingLocking distracted by the QPD whitenning problem again
Tonight, I was able to ramp up the arm power to around 20. Then the DARM loop started to oscillate and the IFO lost lock in a few seconds.
I repeated this several times, then realized that the transmission QPDs were not working properly again due to the well known sticky slider problem.
I should have run slider_twiddle script. Since the DARM RF signal is normalized by the sqrt(TRX+TRY), it is reasonable that the DARM loop got unstable.

The fact that I was able to go up to arm power = 20 means there is nothing saturating below this power level.
  1365   Fri Mar 6 15:23:39 2009 YoichiUpdateLockingLocking distracted by the QPD whitenning problem again
By looking at the time series of DARM signal at the time of a lock loss, the oscillation frequency was about 3.5kHz (see the attm1 and its zoomed version attm2).
I will measure the DARM loop gain around this frequency next.


Quote:
Tonight, I was able to ramp up the arm power to around 20. Then the DARM loop started to oscillate and the IFO lost lock in a few seconds.
I repeated this several times, then realized that the transmission QPDs were not working properly again due to the well known sticky slider problem.
I should have run slider_twiddle script. Since the DARM RF signal is normalized by the sqrt(TRX+TRY), it is reasonable that the DARM loop got unstable.

The fact that I was able to go up to arm power = 20 means there is nothing saturating below this power level.
Attachment 1: lockLoss3.pdf
lockLoss3.pdf
Attachment 2: lockLoss3-zoom.pdf
lockLoss3-zoom.pdf
  1296   Thu Feb 12 11:21:54 2009 YoichiUpdateLSCLocking effort resumed
Last night, I restarted the locking work.
Quite some time was wasted by the disconnected REFL199 by Alberto for the cavity length measurement.
From now on, please put the interferometer back to the original state every day.
If possible, please refrain from changing the IFO settings (cabling, optics, etc).
It is also very important to always restore the full IFO alignment after you are done with your work.

While I was working on the optimization of the DD hand-off, the DRMI alignment got into a strange state.
Even when I did the whole dither alignment procedure from the beginning (from x-arm), the AS166Q did not go above 1000.
PRMI looks ok (SPOB goes above 1100). I could lock the DRMI but the lock position hops to other modes easily.
Manual tweaks of SRM did not help.
After running the whole alignment procedure several times in vain, I was too tired and went home.
I noticed that the single arm lock shows power drops again. There are some offsets in the arm lock loops.
This may have prevented the Michelson alignment from being optimal. I will check this today.
  557   Tue Jun 24 15:15:09 2008 JohnSummaryLSCLocking efforts
Rob, Rana, John

In the past week or so we've been working on reducing the CARM offset using a DC signal (SPOB DC).
We were able to get up to arm powers of around 30 (where a single arm cavity lock is a power of 1)
before instability set in and we would lose lock for, as yet, unknown reasons.

In recent nights locking efforts have taken a few backward steps.

Since last Thursday engaging the AO path has proved troublesome, i.e. engaging it would instantly
cause loss of lock. This seems to be related to problems with the mode cleaner servo. For the past
few nights it has been behaving strangely and could not be operated with the usual super boost stages.
Last night the situation was improved. MC boost stages could be used and the AO path engaged. The
cause of this problem and its spontaneous resolution are not understood.

Last night we were unable to switch CARM to SPOB DC. I've attached a spectrum of the MC2 length signal.
This path is being used for CARM and so gives an indication of the frequency noise after the mode
cleaner. At the moment the plot is calibrated in units of Rana's gut feeling. We already tested to see if
any of the excess noise was introduced by the WFS. No evidence was found. We'll try to make a useful
calibration soon and see if our problems are related to excess frequency noise.

Another realisation from last night was the effect of arm detuning on the analogue CARM path. When CARM is detuned
the coupled cavity pole removes an extra 90 degrees of phase. The digital path has the `moving zero' to compensate
for this. The analogue path has no such compensation and can therefore become unstable at moderate detunings.
We propose trying to reduce the CARM offset further before engaging the analogue path. This will give higher
gain and move the UGF to a region of increased phase margin.
Attachment 1: mcl080623.png
mcl080623.png
  11126   Tue Mar 10 03:37:03 2015 ericqUpdateLSCLocking efforts

[Q, J]

Not much luck locking tonight; we made the RF transition to CARM numerous times, but it never lasted more than a minute or so. We were able to take a couple of loop and spectrum measurements as we transistioned. 

Here are some spectra showing the noise evolution of CARM_IN1 and DARM_IN1 as we start to transition CARM to RF. We did not manage to grab spectra while CARM was RF only; we can go back in the DQ to find some data. 

As we transition, our phase bubble is shrinking, which may explain our poor stability. On the following plot, I actually mistyped the legend. The cyan trace is ALL RF. I'm not sure why we have a 1/f^2 shape from 100->200Hz. 

[


We adjusted the pole compensation frequency by looking at REFL11/ALS during a CARM swept sine measurement, the -3db/-45degree point looked more like 80Hz. Strangely, the compensated REFL11 signal appears to lag the ALS signal around the UGF. Maybe this is a loop effect? 


In terms of practical improvements, I've written a script that reliably transitions from POX/POY IR lock to ALS CARM/DARM lock already on resonance. This is saving us a bunch of time. I've svn'd the new ALS script and the new carm_cm_up that uses it. 


We looked into the odd oplev behavior as well. We had earlier seen what looked like railed values on the FM output medm screen (which seemed unexpected for an AC coupled loop), but dataviewer showed it was actually ringing/railing at some 10+Hz as the oplev beam fell off the QPD. The ringing continues even after the quadrant values stop crossing zero, so I think it may be the filters themselves misbehaving. Why there is new behavior here is still beyond me. 


We lost a fair bit of time to a fussy mode cleaner tonight; there was a good 45 minute stretch where it refused to lock for more than a minute or so, the PC drive angriliy never falling below 5. The thing I changed when it started working was using the fast C1:IOO-MC_F channel instead of the slow C1:IOO-MC_FAST_MON as a readback for the FSS input offset; oddly there is a DC difference between the two. This has resulted in a FSS offset of ~4.2, whereas it was previously ~1.8. After this change, the PC drive fell to ~1.0 levels, and the IMC has been mostly ok. 


Given our problems stabilizing the RF lock, we attempted to give the FOOL path a shot, since we now had a better idea of the neccesary REFL11 gain. In short, no luck. Every attempt to use some RF signal just disturbed the lock further. We didn't really pursue it too much after a couple of attempts showed little promise. 

Attachment 1: 2015-03-10_rfCarmOLG.png
2015-03-10_rfCarmOLG.png
Attachment 2: 2015-03-10_rfTransitions.png
2015-03-10_rfTransitions.png
  10267   Wed Jul 23 23:43:28 2014 ericqUpdateLSCLocking efforts; Wrath of the Mode Cleaner

 [Koji, ericq]

We were working on getting back into the locking groove tonight.

The POP2F and REFL3F demod angles needed some tuning to lock the PRC reliably. The green alignments were mostly fine, the X end PZT ASS works reasonably well. Suspensions, especially the ITMs, seemed to be drifting a fair deal; today was fairly hot out, I guess.

We only got to the point of attempting the SqrtInv handoff once (which failed because I forgot to check the filter bank offsets). This was because the Mode Cleaner refused to stay locked longer than ~5-10 minutes at a time. We adjusted the MC and FSS servo offsets by the usual means, but this didn't make a difference.

We discussed and decided that the time is right to roll up our sleeves and dig into the MC loop, and try to figure out why these intermittent times of unreliability keep cropping up. We will check out the servo board, and see if we can find the missing phase than Evan observed, as well as characterize the FSS/PZT crossover, and investigate what kind of conditions we may create that cause the PC to saturate.

  15012   Tue Nov 5 11:52:27 2019 gautamUpdateLSCLocking notes

Summary:

I am still unable to achieve arm powers greater than TRX/TRY ~10 while keeping the PRMI locked. A couple of times, I was able to get TRY ~50, but TRX stayed at ~10, or even dropped a little, suggestive of a DARM offset? On the positive side, the ALS system seems to work pretty reliably, and I can keep the arms controlled by ALS for several tens of minutes.

Details:

  • Despite my POP beam path improvements, I saw the POP22 level drop as I lowered the CARM offset.
  • One strange feature last night was that with the arms held off resonance using ALS, I had to flip the sign and increase the gain by ~x2 of the REFL33_I-->PRCL loop in order to lock the PRMI. This was confirmed by locking on the 1f error signals and measuring the ratio of the response between the 1f and 3f signals while shaking PRCL using DTT swept sine.
  • At different CARM offsets, I noted that the DC offset level on the 1f photodiodes (i.e. REFL11 and AS55) were changing significantly.
  • I ran a measurement of the sensing matrix with the arm powers hovering around ~10, which is just before I lose the PRMI lock - managed to stay locked for >5 minutes, but the sensing matrix seems to suggest that the REFL33 demod angle needs to be rotated - maybe this is the reason why the PDH horn-to-horn voltage of REFL33 is lower now than it was last week? No idea why that should be, I was around the LSC rack but if the situation is so fragile, seems hopeless.
  • MICH sensed by REFL165_Q still seems stable, so that's good...
  • So my best hypothesis at the moment is that the PRCL optical gain is falling as I reduce the CARM offset (due to DC offset? or something else?). Needs some detailed modeling for more insight, I'm out of ideas for tests to run while locking as I've gone through the full gamut of OLTF and sensing matrix measurements at various CARM offsets without getting any clues as to what's going on.
Attachment 1: PRMI3f_ALS_Nov4sensMat.pdf
PRMI3f_ALS_Nov4sensMat.pdf
  15466   Fri Jul 10 01:25:28 2020 gautamUpdateLSCLocking notes

More tomorrow, but I tried the following tonight:

  1. Dither alignment for PRC / MICH seems to work when the PRFPMI is locked. Unfortunately, the correct settings for the arm cavity dither alignment loops continue to elude me.
  2. I tried some arm ASC loop characterization by stepping the error points of these loops - I saw some weird cross coupling between the loops that needs investigation.
  3. I'm unable to turn an integrator on for the "Common YAW" QPD loop - unclear why this is, but every time I attempt to engage said integrator, the lock is immediately blown. Needs some investigation of the signals.
  4. With the PRC / MICH angular DoFs aligned with the dither alignemnt, and the arm ASC loops hand tuned, I was able to get the darkest dark port I've seen. In terms of ASDC counts, it was ~ 200, which after undoing all the digital gains etc corresponds to ~100 uW of light. I think we can get a rough estimate of the contrast defect by accounting for (i) T_SRM, (ii) OMC pickoff fraction (iii) other losses between the BS dark port and the AP table (iv) 50/50 BS between AS55 and AS110 PD (the ASDC signal is derived from the former) and (v) the throughput of the 55 MHz sideband to the dark port, although there are many uncertainties. 
  14160   Tue Aug 14 00:27:55 2018 gautamUpdateLSCLocking prep

In preparation for attempting some DRMI locking, I did the following:

  • Slow machine reboots for unresponsive c1psl, c1susaux and c1iscaux. The latter requried a manual burtrestore to recover the usual LSC PD whitening settings.
  • Shuttered AUX laser (which was on Standby anyways) - we should really install a remotely controllable shutter for this on the AS table.
  • Re-aligned PMC (half turn of knob in yaw, full turn in pitch) - IMC transmission 15,000cts ---> 15,600cts.
  • Squished sat. box cables at ITMX and ETMX.

Not related to this work, but I turned the Agilent NA off since we aren't using it immediately.

  14954   Tue Oct 8 18:35:09 2019 gautamUpdateLSCLocking prep

In preparation for some locking work tonight, I did the following at the POP in air table with the PRMI locked on carrier:

  1. Raised the POP camera by ~5mm. The POP spot is now well centered on the CCD view.
  2. Tweaked alignment onto the PDA10CF photodiode that serves as (i) POP22, (ii) POP110, and (iii) POP DC. In lock the POPDC level went from ~800 cts to ~1200 cts.
  3. Moved the QPD that witnesses part of the POP beam such that the spot was centered on the photodiode. This may be useful for collecting some FF data or if we want to try feedback to stabilize the PRMI.

TBC...

  1301   Fri Feb 13 13:35:38 2009 YoichiUpdateLSCLocking status
Yoichi, Jenne, Alberto, Rob

Last night, the locking proceeded until the CARM -> MC_L hand-off.
However, the MC_F gets saturated (as expected) and the IFO loses lock soon after the hand-off.
So we need to offload MC_F.
We ran the offloadMCF script, but it did not work, i.e. just waiting for CARM mode.
Looks like an EPICS flag is not set right.
  1304   Sat Feb 14 16:53:26 2009 robUpdateLSCLocking status

Quote:
Yoichi, Jenne, Alberto, Rob

Last night, the locking proceeded until the CARM -> MC_L hand-off.
However, the MC_F gets saturated (as expected) and the IFO loses lock soon after the hand-off.
So we need to offload MC_F.
We ran the offloadMCF script, but it did not work, i.e. just waiting for CARM mode.
Looks like an EPICS flag is not set right.


I found a '$<' in the offloadMCF script. I don't know precisely what that construct means, but I think it caused the script to wait for input when it shouldn't. It probably got in there accidentally. We need to be careful when we're opening scripts just to look at how they work that we don't accidentally change them. I like to use the command 'less' for this purpose.

With this gone, the script worked properly, although the lock didn't last long. I don't know if the next stage in the process is failing or if it's just a bit too noisy in the afternoon. I didn't get a chance to do much testing since the sus controller (susvme1) went nuts. In retrospect, this could be due to something in the script, so maybe we should try a burt restore to Friday afternoon next time someone wants to look at it.
  1305   Sun Feb 15 09:35:00 2009 YoichiUpdateLSCLocking status

Quote:

I found a '$<' in the offloadMCF script. I don't know precisely what that construct means, but I think it caused the script to wait for input when it shouldn't.


'$<' acts like 'read' in csh. I might have put it in the offloadMCF script to debug the behavior of the script.
Sorry I probably forgot to remove it from the script when I left.
  1306   Sun Feb 15 15:53:21 2009 RobUpdateLSCLocking status

Quote:

I didn't get a chance to do much testing since the sus controller (susvme1) went nuts. In retrospect, this could be due to something in the script, so maybe we should try a burt restore to Friday afternoon next time someone wants to look at it.


I tried the burt restore today, it didn't work. Also tried some switching of timing cables, and multiple reboots, to no avail. This will require some more debugging. We might try diagnosing the clock driver and fanout modules, the penteks, and we can also try rebooting the whole FE system.
  1323   Thu Feb 19 04:16:17 2009 YoichiUpdateLSCLocking status
Rob, Yoichi

We checked the CM-MC cross over just before turning off the moving zero.
There was a slight bump in the gain of the MC_L loop at (I believe) the optical spring freq. (~400Hz) just below 0 dB. The phase margin there was very thin.
Removing the moving zero will increase the bump more and make the loop unstable.
Rob suggested to increase the AO gain a bit more.

To see if the AO path is really working, I connected the OUT2 of the MC board to a spare DAQ channel (C1:PEM-OSA_APTEMP).
I confirmed that the PO_DC signal is actually coming to the AO path input of the MC board.
I also hooked up the SR785 to the A excitation channel of the common mode board, so that we can measure the loop gain of the AO path.
After these preparation, the lock acquisition process became somewhat unstable. The ifo loses lock randomly at various places in the lock acquisition steps.
So, as of 4:00 am, I have not gotten a chance to try Rob's suggestion nor the TF measurement with SR785 yet.
I will continue the work tomorrow (i.e. tonight ??).

  1336   Wed Feb 25 03:10:24 2009 YoichiUpdateLockingLocking status
Rob, Yoichi, Kakeru, Kiwamu

Tonight, CARM -> MCL hand off was not stable. The MCF signal monotonically went up to +2V after CARM and MCL gain was turned down to zero.
This was repeatable and it only goes up (not down).
After a while, we found that putting sleep (~5sec) between the zeroing of CARM gain and MCL gain prevents this problem.

Handing off of CARM error signal from TR to PODC was also not robust.
It seems that the suitable gain changes every time.

tdsavg started to exit with errors. We rebooted fb40m.
When tdsavg returns an error, the cm_step script tries to write NaN into SPOB DC offset.
To prevent this, I put the tdsavg in a while loop which runs until tdsavg returns something other than NaN.

I was able to hand off to PODC several times, but could not proceed further because the IFO lost lock soon.
  1458   Wed Apr 8 02:47:42 2009 YoichiUpdateLockingLocking status
This is a summary of activities in the last few nights, although there is not much progress.

The attachment 1 and 2 show the CARM and DARM responses around 3.8kHz at different arm power levels.
The CARM error signal was PO_DC and the DARM error signal was AS2Q.
The excitations were both applied to the ETMs (I temporarily modified the output matrix so that the unsed XARM filter bank can be used to excite CARM and DARM).
DARM and CARM show very similar behavior as the power goes up.

The third attachment shows transfer functions to various signals from CARM and DARM excitations (ETMs).
Though the plot contains many curves, look at PO_DC curves (green and black).
PO_DC is used as CARM error signal but it has a larger response to DARM than CARM (by 10dB or so).
This is not good.

Although the 3.8kHz problem still exists, tonight I was able to go up to arm power = 80 a couple of times, where we are ready to hand off from PO_DC to the RF CARM signal. The hand off failed. I'm now optimizing the hand off gain, but it is difficult because the interferometer is unstable at this power level.
Attachment 1: CARM_TFs.pdf
CARM_TFs.pdf
Attachment 2: DARM_TFs.pdf
DARM_TFs.pdf
Attachment 3: DARM-CARM-Coupling.pdf
DARM-CARM-Coupling.pdf
  1522   Sat Apr 25 03:27:34 2009 YoichiUpdateLockingLocking status
Yoichi, Peter,

We are working on the final step of the lock acquisition, RF CARM hand off.
I was able to hand off the CARM error signal to RF once, but lost lock when decreasing the CARM offset to zero (it was too rapid).
I will try to make the process more robust tomorrow.
  5512   Thu Sep 22 01:45:41 2011 KeikoUpdateLSCLocking status update

Keiko, Anamaria

Tonight we want to measure the LSC matrix for PRMI and compare the simulation posted last night (#5495).

First. we locked MICH and PRCL, and measured the OLT to see how good the locking is. The following rough swept sine plots are the OLTs for MICH and PRCL. The gain setting was -10 and 0.5 for MICH and PRCL, respectively. Integrators were off. Looking at the measured plots, MICH has about 300 Hz UGF, when the gain is -20, and PRCL has about 300 HZ UGF, too, when the gain is 0.8.

MICH-OLT.pdf

PRCL-OLT.pdf

As these lokings seemed good, so we tried the LSC matrix code written by Anamaria. However it is not working well at this point. When the script add excitations to the exc channels, they kick the optics too much and the lockings are too much disturbed...

Also, we have been trying to lock PRC with the SB resonant, it doesn't work. Looking at the simulated REFL11I (PRCL) signal (you can see it in #5495 too), the CR and SB resonances have the opposite signs... But minus gain never works for PRCL. It only excites the mirror rather than locking.

  5516   Thu Sep 22 11:50:37 2011 KojiUpdateLSCLocking status update

Both loops basically have no phase margins. i.e. unstable. How can you lock PRMI with these servos?

Quote:

The following rough swept sine plots are the OLTs for MICH and PRCL. The gain setting was -10 and 0.5 for MICH and PRCL, respectively. Integrators were off. Looking at the measured plots, MICH has about 300 Hz UGF, when the gain is -20, and PRCL has about 300 HZ UGF, too, when the gain is 0.8.

 

  5513   Thu Sep 22 04:49:14 2011 AnamariaUpdateLSCLocking status update - Some Scripts, No Louck

The scripts I wrote can be found in /users/anamaria/scripts/sensemat/

]There are two of them:

- one that sets all the switches, gains, frequencies, etc, then cycles through the various RFPDs I and Q into the LOCKIN signal, so as to see the sensing matrix.

- the second one is a matlab script that takes the crappy file tdsavg outputs and makes it into a cute mag/phase matrix.

They're quite primitive at this point, I've forgotten a lot of tcsh... may improve later. But could be useful later to someone else at least.

I don't think it's particularly the fault of the script that we can't measure the sensing matrix. We can slam on the excitation by hand, and it holds for a little while. I set a wait time for lock to adjust, and most times it just oscillates a bit for a few seconds. Also, the script turns on the excitation and it's done, the rest is just measurement, then turns it off at the end. So during the script, there's not much to deal with, except keeping the lowpass filters quiet when switching the signal to demod; but that doesn't go anywhere, so it definitely doesn't disturb the ifo. Turns out pressing the RSET clear history button needs a 2 to make it happen.

I think I might prefer to set the excitation to run, and then do the old retrieve-data-later-nds-matlab thing. I do not trust these measurements without coherence and a bit of variance study, given instabilities.

Point is... Even on carrier, the PRC lock is not stable by any means. Can barely turn on low freq boosts, every other lock. Until we fix the lock stability issue, there's not much to measure I guess.

Unfortunately, I don't know how to make that happen. Before we leave on Friday we could do a few sanity checks such as measuring the noise of the RFPDs vs ADC+whitening, which I may have said I would do; and perhaps setting up a couple OSAs, one on REFL, one on AS, to make sure we know what the sidebands are doing. Both of which Rana suggested at some point.

(There used to be a quote here from Keiko here but I got mad when it reformated my entire log to be one cluster- hence the look)

  14962   Thu Oct 10 01:12:56 2019 gautamUpdateLSCLocking studies

Summary:

  1. ALS control of arms in the CARM/DARM basis seems pretty robust - I was able to hold lock for >40mins tonight. The scripted transition from POX/POY control to ALS control is pretty deterministic now.
  2. The PRMI could be locked with the arms detuned from resonance by applying an offset to the CARM loop error point.
  3. Much daytime work remains to be done before attempting any sort of reliable locking.

Hardware issues that need addressing:

  1. Both EX and EY Trans QPDs need a look. I believe the one at EY is simply blocked (on account of the mode spectroscopy project), while the one at EX shows a weird discontinuity between the Thorlabs PD and the QPD. Could be just a gain/normalization issue I guess. See Attachment #1.
  2. While the PRMI stayed locked, I don't think I was using anywhere close to optimal settings. Need to run some sensing lines, measure transfer functions etc, to make the PRMI + arms lock more robust. The PRMI always lost lock when I brought the CARM offset to 0. Could also benefit from some finesse modeling I guess. I could not get a reliable estimate of what the PRG is tonight, because the PRMI didn't stay locked as I approached 0 CARM offset.
  3. REFL 55 whitening board needs a checkup.
Attachment 1: PRFPMIstudies.png
PRFPMIstudies.png
  1419   Tue Mar 24 03:05:25 2009 YoichiUpdateLockingLocking tonight
MC1 issue:
The MC1 seems to be drifting still. I found it was off from the SUS drift-mon reference values and restored the alignment using the SUS drift-mon before I went home for dinner.
But when I came back being happy with the Japanese victory over S-Korea at the WBC final, the MC was unhappy again.
I restored the alignment of the MC1 using the SUS drift-mon once again and centered the WFS QPDs.
I will leave the MC unlocked again tonight to see the drift. You are welcome to lock the MC in the morning as I will have corrected enough data by the time people come in.

Computer overloads:
I removed some filters from suspensions to off load susvme computers.
Nonetheless, both susvme1 and susvme2 are still over loaded during the dither alignment. The alignment results are in general ok. So this is not a too serious problem.
But still it would be nice to resolve.

3.8kHz hunting:
I made several measurements of the AO path loop gains (using the SR785) and the transfer functions from the CARM excitation (actuation to the ETMs) to the PO_DC signal as the arm powers are increased.
There is a similar structure as in the AO loop found also in the CARM->PO_DC transfer functions. This implies that the problem is likely to be in the PO_DC sensor not in the MC->VCO actuator. But the MC and the VCO could still be the
cause of the problem because they were in the control loop when the CARM->PO_DC TF were measured.
The peak frequency does not seem to depend on the arm power, but the conclusion is not definite because I was only able to measure the TFs from arm power 5 to 10 (not much difference).
I will make plots and post them later.

To Do for tomorrow:
Tonight the CARM error signal was noisier than the reference spectra (broad band white noise appeared). I should check the beam centering of the SPOB PD.
Also someone should center the oplevs of the mirrors as some of them are off.
Continue to measure the TFs at various power levels.
Try to put another (Thorlabs?) PD at the POB port to get PO_DC from it.
  15491   Fri Jul 17 00:18:13 2020 gautamUpdateGeneralLocking updat
  1. I found that an EPICS channel wasn't reset to the correct value by burtrestore after the FE bootfest yesterday.
    • This cost me the whole of last night, found it finally tonight. 
    • I'll try and modify the locking scripts to better capture such errors, but ideally, we should just use Guardian or something since it's made for this purpose already.
    • Anyways, tonight I was able to re-acquire the PRFPMI lock in a completely scripted way.
  2. Locking CARM on POX remains out of reach.
    • I think this has to do with the fact that the zero-crossing of the CARM and REFL error signals are dependent on the 3f PRCL/MICH error point offsets.
    • So even if the DC gain is right, the fact that we use POX for the digital AO path and REFL for the analog AO path is leading to some conflict I think.
    • Ran out of energy tonight, I'll try again tomorrow.

The DQ channels of the ETM coils were active tonight, so I'll make the coil driver actuation budget over the next couple of days.

  1399   Fri Mar 13 05:16:21 2009 YoichiUpdateLockingLocking update
Yoichi, Osamu,

With adjustments of the loop gains during the CARM offset reduction, the IFO reaches arm_power = 25 sort of robustly unless the 3.8kHz oscillation rings up.
At arm_power = 25, the CARM and DARM start to oscillate at around 400Hz. Probably I need more gain tweaks.
Annoying thing is that the 3.8kHz oscillation sometimes rings up suddenly and kills the lock.
This can happen anywhere above arm_power = 6 or so.
Because of a strange structure in the CARM loop gain around 3.8kHz, we cannot increase the CARM UGF beyond 1kHz.
The attached plots are the AO path open loop transfer function (attm2 is the zoom of attm1) measured at arm_power = 13.

Tomorrow, I will lock the X-arm and measure the transfer function from the AO path input to the X-arm error signal to see
if there is the same structure at 3.8kHz (X-arm error signal has the 3.8kHz peak).
Attachment 1: AOTF2.png
AOTF2.png
Attachment 2: AOTF2-zoom.png
AOTF2-zoom.png
  10814   Thu Dec 18 02:23:34 2014 ericqUpdateLSCLocking update

 [ericq, Diego]

Some locking efforts tonight; many locklosses due to PRC angular motion. Furthest progress was arm powers of 15, and I've stared at the corresponding lockloss plot, with little insight into what went wrong. (BTW, lastlock.sh seems to catch the lock loss reliably in the window)

15lockloss.png

CARM and DARM loops were measured not long before this lock loss, and had nominal UGFs (~120Hz, ~20deg PM). However, there was a reasonably clear 01 mode shape at the AS camera, which I did nothing to correct. Here's a spectrum from *just* before the lockloss, recovered via nds. Nothing stands out to me, other than a possible loss of DARM optical gain. (I believe the references are the error signal spectra taken in ALS arms held away + PRMI on 3F configuration)

15spec.pdf

The shape in the DARM OLTF that we had previously observed and hypothesized as possible DARM optical spring was not ever observed tonight. I didn't induce a DARM offset to try and look for it either, though.

Looking into some of the times when I was measuring OLTFs, the AS55 signals do show coherence with the live DARM error signal at the excitation frequencies, but little to no coherence under 30Hz, which probably means we weren't close enough to swap DARM error signals yet. This arm power regime is where the AS55 sign flip has been modeled to be...


A fair amount of time was spent in pre-locking prep, including:

  • The usual X green beat alignment tweak, to make the X ALS control not terrible
  • Both ITM oplevs were centered
  • For some reason, I had to flip the signs of the REFL165 matrix elements for the PRMI...
  • "Restore PRMI SB" has ASC automatically enabled, which results in unexpected kicks even with LSC off, which caused a few minutes head-scratching
  14983   Tue Oct 22 00:52:27 2019 gautamUpdateLSCLocking updates
  1. Transition of arms from POX/POY to CARM/DARM was much smoother today - a change was made at the EX PDH setup, see here.
  2. Reliable settings for 3f locking with arms held off resonance seem to have been found.
  3. Took sensing matrix in this condition, measured loop TFs.
  4. Reduced CARM offset - reached arm powers ~50 at which point the PRMI lost lock. Reacquisition was quick though.
    • The POP22_I level seemed to decay as I reduced the CARM offset.
    • This would suggest that somehow the PRCL lock point is getting shifted as I reduce the CARM offset.
    • Tonight, I will investigate this more.
Attachment 1: PRMI3f_ALS_Oct21sensMat.pdf
PRMI3f_ALS_Oct21sensMat.pdf
  15014   Wed Nov 6 02:08:48 2019 gautamUpdateLSCLocking updates

Summary:

There seems to be stronger-than-expected coupling between CARM and the 3f sensors. 

Details:

Full analysis tomorrow, but I collected sensing matrix measurements with lines driven in PRCL,MICH and CARM at a couple of CARM offsets. I also wanted to calibrate the CARM offset to physical units so I ran some scans of the CARM offset and collected the data so I can use the arm cavity FSR to calibrate CARM. Koji suggested using REFL165_I for PRCL and REFL165_Q for MICH control - this would allow us to see if the problem was with the 1f sideband only. While the lock could be established, we still couldn't push the arm powers above 10 without breaking the PRMI lock. While changing the CARM offset, we saw a significant shift in the DC offset level of the out-of-loop REFL33_I signal. Need to think about what this means...

  15185   Tue Feb 4 02:13:02 2020 gautamUpdateLSCLocking updates

Summary:

The CARM-->RF transition remains out of reach. No systematic diagnosis scheme comes to mind.

Details:

  • Config is PRFPMI, SRM is misaligned macroscopically.
  • PRMI can easily be locked with 3f signals while CARM is offset from resonance. Aided by DAFI, I turned on the PR violin filter in the BS output section to prevent it from ringing up, making the lock much more robust.
  • When the CARM offset is reduced
    • POP22 level dips and sometimes goes negative - i don't see this in my simple simulations. POP22 is the trigger signal for MICH/PRCL loops, so to prevent the PRMI lockloss, I mix in some POPDC into the trigger matrix element.
    • Once the circulating power exceeds ~10, the ALS noise apparently increases.
    • The arms "buzz" through resonance, but the power fluctuation is nearly 0-200 in TRX/TRY, corresponding to several CARM linewidths, but all the out-of-loop ALS noise measurements have me believe that we are close to the CARM linewidth in noise. So we should only see ~factor of 2 fluctuation in power.
    • The RF error signal for CARM (=REFL 11) doesn't show any features that i can use to aid the transition / diagnose what is going on systematically.
  • Koji suggested changing the actuation for CARM from MC2 to the ETMs, and check if the MC OSEMs witness the excess motion at small CARM offsets
    • The ALS transition is scripted, so I had to make a modified version that accommodates this changed actuation scheme.
    • The usual CARM-->MC2 matrix element is -1. 
    • The frequency actuation strength of MC2 is ~3x that of the ETMs. Additionally, ETMX has 5x the series resistance of ETMY. So I used the output matrix elements shown in Attachment #1 so as to get the same loop UGF with the same loop gains elsewhere in the chain. Confirmed the actuation strength is the same using the sensing matrix infrastructure and comparing line heights.
    • Attachment #2 shows the measured UGF - both CARM and DARM look okay to me.
  • With this new ALS output matrix actuation scheme, I was able to make it to PRMI + arms on zero offset a couple of times tonight, but the drifting input alignment makes the PRMI lock not so robust anymore.

TBC. Mercifully at least the shaker stayed still tonight.

Attachment 1: modifiedOutMat.png
modifiedOutMat.png
Attachment 2: OLTFs.pdf
OLTFs.pdf
  15192   Thu Feb 6 01:25:50 2020 gautamUpdateLSCLocking updates

Summary:

I managed to partially stabilize the arm citculating powers - they stay in a region in which the REFL 11 signal is hopefully approximately linear and so I can now measure some loop TFs and tweak the transition appropriately. 

Procedure:

The main change I made tonight was to look at the REFL11 signal as I swept the ALS CARM offset through 0. I found that the maximum arm powers coincided with a non-zero REFL11 signal value (i.e. a small CARM offset was required at the input to the CARM_B filter bank). Not so long ago, I had measured the PM/AM ratio for 11 MHz to be ~10^5 - so it's not entirely clear to me where this offset is coming from. Then, I was able to turn on the integrator (z:p = 20:0) in the CARM_B filter bank while maintaining high POP_DC. At this point, I ramped up the IN2 gain on the IMC servo board (= AO path), and was able to further stabilize the power. 

Attachment #shows this sequence from earlier in the evening. Note that in this state, both ALS and IR control of CARM is in effect. The circulating power is fluctuating wildly - partly this is probably the noisy ALS control path, but there is also the issue of the (lack of) angular control - although looking at the transmon QPDs and the POP QPD signals, they seem pretty stable.

The next step will be to try and turn off the ALS control path. Eventually, I hope to transition DARM control to AS55 as well. But at this point, I can at least begin to make sense of some of the time series signals, and get some insight into how to improve the lock.

Quote:

No systematic diagnosis scheme comes to mind.

Attachment 1: semiStableArms.png
semiStableArms.png
Attachment 2: armAngStability.png
armAngStability.png
  15278   Tue Mar 17 01:22:03 2020 gautamUpdateLSCLocking updates

Summary:

No real progress tonight - I made it a bunch of times to the point where CARM was RF only, but I never got to run a measurement to determine what the DARM_B loop gain should be to make the control fully RF.

Details:

  • Touched up PMC alignment.
  • There were very few BNC cables available at the rack near SW corner of the PSL table - the short BNC cables are NOT meant to be daisy chained to make long cables to run along the arm, I removed all those.
  • Restored SR785 at LSC rack for CARM TF measurements.
  • I was able to get the CARM UGF ~5 kHz, but everytime I was trying to run a DTT swept sine to measure the ratio of DARM_B_IN1 / DARM_A_IN1, the lock was lost - not sure if this is because of the excitation injected or something else.
  • I'll probably give this another shot Wednesday eve.
  373   Thu Mar 13 02:52:06 2008 LisaConfigurationLSCLocking with 3f
Today we have tried to use the reflected signal demodulated at 3*f1 ~ 99 MHz (REFL31) for length control.
This signal is cool because it is generated by the beating of sidebands, so it is not very sensitive to what the carrier does inside the IFO.
In particular, its gain and the demodulation phase shouldn't change much while changing the CARM offset during the locking sequence.
The idea is therefore to use REFL31_I and REFL31_Q for controlling MICH and PRCL, with the goal of making the lock acquisition sequence more robust.

We minimized hardware changes by using the 199MHz demodulation board, changing the local oscillator to 99.586317 MHz, with an amplitude of +10 dbm (the 3f signals are therefore acquired as LSC-PD6_I and LSC-PD6-Q).

We locked both the PRM and the DRM in a stable way using the REFL31_I and REFL31_Q, after tuning the demodulation phase (50) and removing their offsets.
On the other hand, we weren't able to acquire the lock in the DRM configuration directly by using the 3f signals. We needed instead to use the f signals first, and switch to the 3f signals once the lock was already acquired, otherwise ending up locking DRM at a different working point.
One explanation for that might be the fact that the beam impinging upon the 3f diode is too big compared with the diode size (only 1 mm, half of the size of the f1 diode).
For these reason, in presence of misalignments, some of the reflected light goes in high order modes, which can be partially (or all) off the diode, thereby generating multi-zero crossing in the demodulated error signal.

The next step before making the test with the whole IFO is therefore to modify the telescope in front of the 3f diode in order to reduce the beam size and repeat the tests we did tonight in DRM configuration.


P.S.: We made a test by changing the frequency of the local oscillator by a little bit and then coming back to the original value. We observed that the phase of the signal can change, so every time this frequency is moved the 3f demod phase need to be retuned.

John, Rob, Rana, Lisa
  8508   Mon Apr 29 22:13:41 2013 KojiUpdateLSCLocking with ASDC

Today the locking was not as easy as that was last Friday.
So I tried something new. Today Rana talked about the ASDC locking with POPDC normalization.
This technique was tried. (This is somewhat similar to DC readout.)

PRCL
Signal source: REFL33I / Normalization POP110I x 0.04 / Trigger POP110I 20up 3down, otherwise  untouched from Friday locking
Servo: input matrix 1.00 -> PRCL Servo FM3/4/5/6 Always ON G=+0.06
Actuator: output matrix 1.00 -> PRM

MICH
Signal source: ASDC Offset -109.5 (nominal of the day -49.5) / Normalization POPDC x 1.00 / Trigger POP110I 20up 3down
Servo: input matrix 1.00 -> MICH Servo FM5 Always On G=+10000
ActuaroL output matrix -1.00 -> ITMX / +1.00 -> ITMY

Observation

- POP110I was ~120 during the lock (cf 170 on Friday). So there is some small leakage from the dark port.

- Lock was easier when FM4 of the MICH loop was turned off.

- During the lock horizontal motion of the intracavity mode was visible as usual.

Screenshot.png

ELOG V3.1.3-