40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 327 of 341  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  13268   Tue Aug 29 15:35:19 2017 SteveUpdateVACvacuum pump specifications & manuals

RP1 and RP3 roughing pump manual of Leybold D30A oily rotory pump

Fore pump of TP2 & TP3 Varian SH-100 Dry Scroll

TP2 and TP3 small turbo drag pump  Varian 969-9361 

TP2 and TP3 turbo controller Varian 969-9505

TP1 magnetically suspended turbo pump  Osaka TG390MCAB, sn360 and controller TC010M  and note : this  pump  running on 208VAC single phaseIt is not on the UPS !  

                                                             Osaka Maglev Manual        and Osaka Controller Communication Wiring                                                                                                                                

VC1 cryo pump CTI-Cryogenics Cryo Torr 8 sn 8g23925  SAFETY note: compressor single phase 208VAC and the head driver 3 phase 208VAC Compressor and driver have each separate power cord!

Installed at 40m wiki  also

Quote:

The V1 gate valve specs installed at 40m wiki page. VAT model number 10846-UE44-0007 Our main volume pumping goes through this 8" id gate valve V1 to Maglev turbo  or Cryo pump to  VC1

The ion pumps have 6" id gate valves:VAT 10844-UE44-AAY1,  Pneumatic actuator with position indicator and double acting solenoid valve 115V 60Hz  Purchased 1999 Dec 22

UHV gate valves 2.5" id. VAT  10836-UE44    Pneumatic actuator with position indicator and double acting solenoid valve 115V 60 hz, IFO to RGA  VM1 &  RGA to Maglev  VM2

mini UHV gate valve 1.5" id.   VAT  01032-UE01      2016 cataloge page 14,   manual - no position indicator, VM4  next to manual adjustable fine leak valve to RGA

UHV angle valve 1.5" id, model VAT 28432-GE41, Viton plate seal, pneumatic actuator with position indicator & solenoid valve 115V & single acting closing spring  MEDM screen: VM3,VC2, V3,V4,V5,V6,VA6,V7 & annuloses Each chamber annulos has 2 valves.

UHV angle valve 1.5" id, model VAT 57132-GE05   go page 208,   Metal tip seal, manual actuating only with position indicator,   MEDM screen: roughing RV1 and venting VV1 hand wheel needed to close to torque spec

UHV angle valve  1.5" id. model VAT 28432-GE01           Viton plate seal, manual operation only at IT gauges Hornet & Super Bee and  ion pumps roughing  ports. These are not labeled.

                                                      

The Cryo pump interlock wiring was added too

Note: all moving valve plate seals are single.

 

  13321   Tue Sep 19 11:05:26 2017 SteveUpdateVACRGA scan at day 334

 

 

Attachment 1: RGAscan334d.png
RGAscan334d.png
  13403   Fri Oct 27 10:14:11 2017 SteveUpdateVACRGA scan at day 372

Valve configuration: Vacuum normal

Note: Tp2 running at 75Krpm 0.25A 26C has a  load high pitch sound today. It's fore line pressure 78 mTorr. Room temp 20C

 

Attachment 1: RGA_scan_d372.png
RGA_scan_d372.png
  13407   Mon Oct 30 10:09:41 2017 SteveUpdateVACTP2 failed

 IFO pressure 1.2e-5 Torr at 9:30am

Quote:

Valve configuration: Vacuum normal

Note: Tp2 running at 75Krpm 0.25A 26C has a  load high pitch sound today. It's fore line pressure 78 mTorr. Room temp 20C

 

Atm. 1,  This was the vacuum condition  this morning.

               IFO P1  9.7 mTorr, V1 openV4 was in closed position , ~37 C warm Maglev at normal 560Hz rotation speed with foreline pressure 3.9 Torr because V4 closed 2 days ago when TP2 failed .....see Atm.3

               The error messege at TP2  controller was: fault overtemp.

I did the following to restored IFO pumping: stopped pumping of the annulose with TP3 and valves were configured so TP3 can be the forepump of the Maglev.

closed VM1 to protect the RGA,  close PSL shutter .....see Gautam  entry

aux fan on to cool down Maglev-TP1, room temp 20 C,

aux drypump turned on and opend to TP3 foreline to gain pumping speed,

closed PAN to isolate annulos pumping,

opened V7 to pump Maglev forline with TP3 running at 50Krpm, It took 10 minutes to reach P2  1mTorr from 3.9 Torr

aux drypump closed off at P2  1 mTorr, TP3 foreline pressure 362 mTorr.......see Atm.2

As we are running now:

IFO pressure 7e-6 Torr at Hornet cold cathode gauge at 15:50  We have no IFO CC1 logging now.  Annuloses are in 3-5 mTorr range are not pumped.

TP3 as foreline pump of TP1 at 50 Krpm, 0.24 A, 24 C, it's drypump forline pressure 324 mTorr

V4 valve cable is disconnected.

I need help with wiring up the logging of the Hornet cold cathode gauge.

 

 

 

Attachment 1: tp2failed.png
tp2failed.png
Attachment 2: ifo_1.0E-5_Torrit.png
ifo_1.0E-5_Torrit.png
Attachment 3: tp2failed2dago.png
tp2failed2dago.png
Attachment 4: 4days.png
4days.png
  13409   Mon Nov 6 09:09:43 2017 SteveUpdateVACsetting up new TP2 turbo

Our new Agilent Technology TwisTorr 84FS AG rack controller ( English Manual pages 195-297 )  RS232/485, product number X3508-64001, sn IT1737C383

This controller, turbo and it's drypump needs to be set up into our existing vacuum system. The intake valve of this turbo (V4) has to have a hardwired interlock that closes V4 when rotation speed is less than 20% of preset RPM speed.

The unit has an analoge 10Vdc output that is proportional to rotation speed. This can be used with a comperator to direct the interlock or there may be set software option in the controller to close the valve if the turbo slows down more than 20%

The last Upgrade of the 40m Vacuum System  1/2/2000 discribes our  vauum system  LIGO-T000054-00-R 

Here the LabView / Metrabus controls were replaced by VME processor and  an Epic interface

We do not have schematics of the hardware wiring.

We need help with this.

 

  13423   Fri Nov 10 08:52:21 2017 SteveUpdateVACTP3 drypump replaced

PSL shutter closed at 6e-6 Torr-it    

   The foreline pressure of the drypump is 850 mTorr at 8,446 hrs of seal life

V1 will be closed for ~20 minutes for drypump replacement..........

9:30am dry pump replaced, PSL shutter opened at 7.7E-6 Torr-it

  Valve configuration: vacuum normal as  TP3 is the forepump of the Maglev  & annuloses are not pumped.

Quote:

TP3 drypump replaced at 655 mTorr, no load, tp3 0.3A 

This seal lasted only for 33 days at  123,840 hrs

The replacement is performing well: TP3 foreline pressure is 55 mTorr, no load, tp3 0.15A at 15 min  [ 13.1 mTorr at d5 ]

 

Valve configuration: Vacuum Normal, ITcc 8.5E-6 Torr

Quote:

Dry pump of TP3 replaced after 9.5 months of operation.[ 45 mTorr d3 ]

The annulosses are pumped.

Valve configuration: vac normal, IFO pressure 4.5E-5 Torr [1.6E-5 Torr d3 ] on new ITcc gauge, RGA is not installed yet.

Note how fast the pressure is dropping when the vent is short.

Quote:

IFO pressure 1.7E-4 Torr on new not logged cold cathode gauge. P1 <7E-4 Torr

Valve configuration: vac.normal with anunulossess closed off.

TP3 was turned off with a failing drypump. It will be replaced tomorrow.

All time stamps are blank on the MEDM screens.

 

 

  13454   Sun Nov 26 19:38:40 2017 SteveUpdateVACTP3 drypump replaced again

The TP3 foreline pressure was 4.8 Torr, 50K rpm 0.54A and 31C........Maglev rotation normal 560 Hz.......    IFO pressure 7.2e- 6 Torrit was not effected

V1 closed ......replaced drypump.........V1 opened

IFO 6.9e-6 Torrit at 19:55, TP3fl 18 mT,  50Krpm 0.15A 24C

VM1 is still closed

 

Attachment 1: after_replacement.png
after_replacement.png
  13459   Thu Nov 30 10:38:39 2017 SteveUpdateVACannuloses are not pumped

Annuloses are not pumped for 30 days, since TP2 failed.  IFO pressure 7e-6 Torr it,  Rga 2.6e-6 Torr

Valve configuration: Vacuum Normal as TP3 is the forepump of Maglev, annuloses are not puped at 1.1 Torr

TP3 50K rpm,  0.15A  24C, foreline pressure 16.1 mTorr

 

Quote:

The TP3 foreline pressure was 4.8 Torr, 50K rpm 0.54A and 31C........Maglev rotation normal 560 Hz.......    IFO pressure 7.2e- 6 Torrit was not effected

V1 closed ......replaced drypump.........V1 opened

IFO 6.9e-6 Torrit at 19:55, TP3fl 18 mT,  50Krpm 0.15A 24C

VM1 is still closed

 

 

Attachment 1: AnnulosesNotPumped.png
AnnulosesNotPumped.png
  13495   Tue Jan 2 15:43:35 2018 SteveUpdateVACpumpdown after power outage

 

Quote:

There was a power outage.

The IFO pressure is 12.8 mTorr-it and it is not pumped. V1 is still closed. TP1 is not running. The Rga is not powered.

The PSL output shutter is still closed. 2W Innolight turned on and manual beam block placed in its beampath.

3 AC units turned on at room temp 84F

IFO pumped down from 44 mTorr to 9.6e-6 Torr with Maglev  backed with only TP3

Aux drypump  was helping our std drypump during this 1 hour period. TP3 reached 32 C and slowed down 47K rpm

The peak foreline pressure at P2  was ~3 Torr

Hornet cold cathode gauge setting:   research mode, air,

                                                            2830 HV  1e-4A  at 9.6e-6 Torr,

                                                         [  3110 HV  8e-5A at 7.4e-6 Torr one day later ]

Annuloses are at 2 Torr, not pumped

Valve configuration:  vacuum normal, RGA is still off

PSL shutter is opened automatically. Manual block removed.

End IR lasers and doublers are turned on.

 

NOTE: Maglev " rotation X " on vacuum medm screen is not working! " C1:Vac-TP1_rot " channel was removed.  Use " NORMAL X " for rotation monitoring.

*We removed this (i.e. rotation) field from the MEDM screen to avoid confusion.

Attachment 1: pumpdown_from_44_mTorr.png
pumpdown_from_44_mTorr.png
  13588   Tue Jan 30 10:22:20 2018 SteveUpdateVACRGA scan at day 175

pd80b rga scan at 175 day.  IFO pressure 7.3e-6 Torr-it

Condition: vacuum normal, annuloses not pumped. Rga turned on yesterday.

The rga was not on since last poweroutage Jan 2, 2018 It is warming up and outgassing Atm2

Attachment 1: RGApd80-b-468-175d.png
RGApd80-b-468-175d.png
Attachment 2: RgaOn20hrs.png
RgaOn20hrs.png
  13615   Wed Feb 7 15:50:42 2018 SteveUpdateVACIFO pressure monitoring

Hornet cold cathode gauge analoge output  [ DSub9 pin 3 and 7 ] are wired to go ETMX Acromag. It was reading 4.9V at 7.8e-6 Torr [ 3,110 V  8.35e-5A ] at the end of a 24ft BNC cable. Now it has to be hook up to an Acromag channel.

This will replace the not functioning C1: Vac-CC1_pressure

gautam: the motivation behind hooking this gauge up to our DAQ system is that non-vacuum-system-experts have a quick diagnostic to make sure everything is in order. This gauge is physically placed adjacent to V1, and so if something goes wrong with our vacuum pumps, we would see the effect here immediately. we did note that occassionally, the reading fluctuated by ~1V on the DMM used to check the voltage output at the end of the BNC cable, so we still need to run some long-term stability analysis once this channel is hooked up to the Acromag.  For future reference, in order to make this gauge work, we need to check that

  1. Error flag has been cleared.
  2. HV is ON (state has to be manually toggled).
Quote:

 

Quote:

There was a power outage.

The IFO pressure is 12.8 mTorr-it and it is not pumped. V1 is still closed. TP1 is not running. The Rga is not powered.

The PSL output shutter is still closed. 2W Innolight turned on and manual beam block placed in its beampath.

3 AC units turned on at room temp 84F

IFO pumped down from 44 mTorr to 9.6e-6 Torr with Maglev  backed with only TP3

Aux drypump  was helping our std drypump during this 1 hour period. TP3 reached 32 C and slowed down 47K rpm

The peak foreline pressure at P2  was ~3 Torr

Hornet cold cathode gauge setting:   research mode, air,

                                                            2830 HV  1e-4A  at 9.6e-6 Torr,

                                                         [  3110 HV  8e-5A at 7.4e-6 Torr one day later ]

Annuloses are at 2 Torr, not pumped

Valve configuration:  vacuum normal, RGA is still off

PSL shutter is opened automatically. Manual block removed.

End IR lasers and doublers are turned on.

 

NOTE: Maglev " rotation X " on vacuum medm screen is not working! " C1:Vac-TP1_rot " channel was removed.  Use " NORMAL X " for rotation monitoring.

*We removed this (i.e. rotation) field from the MEDM screen to avoid confusion.

 

Attachment 1: CC_analog.png
CC_analog.png
  13637   Fri Feb 16 15:57:58 2018 SteveUpdateVACTP3 drypump replaced

The forline pressure of TP3 was 399 mTorr

It was replaced this morning at  TP3 controller 134,638hrs with the "failed TP2 station" drypump. The foreline pressure now at TP3 is 100 mTorr at 6 hrs of operation.[ at day 3  63 mT ]

IFO pressure at CC Hornet 7.9e - 6 Torr

Valve configuration: vacuum normal as TP3 is the forepump of the Maglev & the annuloses are not pumped

Quote:

PSL shutter closed at 6e-6 Torr-it    

   The foreline pressure of the drypump is 850 mTorr at 8,446 hrs of seal life

V1 will be closed for ~20 minutes for drypump replacement..........

9:30am dry pump replaced, PSL shutter opened at 7.7E-6 Torr-it

  Valve configuration: vacuum normal as  TP3 is the forepump of the Maglev  & annuloses are not pumped.

Quote:

TP3 drypump replaced at 655 mTorr, no load, tp3 0.3A 

This seal lasted only for 33 days at  123,840 hrs

The replacement is performing well: TP3 foreline pressure is 55 mTorr, no load, tp3 0.15A at 15 min  [ 13.1 mTorr at d5 ]

 

Valve configuration: Vacuum Normal, ITcc 8.5E-6 Torr

Quote:

Dry pump of TP3 replaced after 9.5 months of operation.[ 45 mTorr d3 ]

The annulosses are pumped.

Valve configuration: vac normal, IFO pressure 4.5E-5 Torr [1.6E-5 Torr d3 ] on new ITcc gauge, RGA is not installed yet.

Note how fast the pressure is dropping when the vent is short.

Quote:

IFO pressure 1.7E-4 Torr on new not logged cold cathode gauge. P1 <7E-4 Torr

Valve configuration: vac.normal with anunulossess closed off.

TP3 was turned off with a failing drypump. It will be replaced tomorrow.

All time stamps are blank on the MEDM screens.

 

 

 

  13647   Wed Feb 21 17:20:32 2018 johannesUpdateVACHornet gauge connected to DAQ.

I wired the six available BNC connectors on the front panel of the new XEND slow DAQ to physical Acromag channels. There were two unused ADC channels and eight DAC channels, of which I connected four. The following entries were added to /cvs/cds/caltech/target/c1auxex2/ETMXAUX2.db /caltech/target/c1auxex2/ETMXaux2.db

Connector Acromag Channel EPICS Name
In1 XT1221C #6 C1:Vac-CC1_HORNET_PRESSURE_VOLT
In2 XT1221C #7 C1:PEM-SEIS_XARM_TEMP_MON C1:PEM-SEIS_EX_TEMP_MON
Out1 XT1541B #4 C1:PEM-SEIS_XARM_TEMP_CTRL C1:PEM-SEIS_EX_TEMP_CTRL
Out2 XT1541B #5 Not Assigned
Out3 XT1541B #6 Not Assigned
Out4 XT1541B #7 Not Assigned

C1:Vac-CC1_HORNET_PRESSURE_VOLT is converted to the additional soft channel C1:Vac-CC1_HORNET_PRESSURE in units of torr using the conversion  10^{(\mathrm{Voltage}-10)} stated in the manual. A quick check showed that the resulting number and the displayed pressure on the vacuum gauge itself agree to ~1e-8 torr. Gautam added the new EPICS calc channel to the C0EDCU and restarted FB, now the data is being recorded.

Three of the output channels do not have a purpose yet, so their epics records were created but remain inactive for the time being.

Attachment 1: VacLog.png
VacLog.png
  13653   Fri Feb 23 07:47:54 2018 SteveUpdateVACCC1 Hornet

We have the IFO pressure logged again! Thanks Johannes and Gautam

This InstruTech cold cathode ionization vacuum gauge " Hornet " was installed 2016 Sep 14

Here is the CC1 gauge history of 10 years from 2015 Dec 1

The next thing to do is put this channel C1:Vac-CC1_HORNET_PRESSURE  on the 40m Vacuum System Monitor   [ COVAC_MONITOR.adl ] 

gautam 1pm: Vac MEDM screen monitor has been edited to change the readback channel for the CC1 pressure field - see Attachment #2. Seems to work okay.

Attachment 1: InstruTech_Hornet_CC1.png
InstruTech_Hornet_CC1.png
Attachment 2: CC1_readback_updated.png
CC1_readback_updated.png
  13664   Mon Mar 5 10:13:21 2018 gautamUpdateVACvacuum health

In Steve's absence, I've tried to keep an eye on the health of the vacuum system. From Attachment #1, the pressure of the main volume seems stable, no red flags there. I also don't here any anomalously loud sounds near the vacuum pumps. I've changed the N2 cylinders that keep V1 open twice, on Wednesday and Sunday of last week. So in summary, the vacuum system looks fine based on all the metrics I know of.

Attachment 1: VacuumStatus.png
VacuumStatus.png
  13685   Fri Mar 16 09:36:56 2018 SteveUpdateVACRGA scan at day 511,218d

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrees

Quote:

pd80b rga scan at 175 day.  IFO pressure 7.3e-6 Torr-it

Condition: vacuum normal, annuloses not pumped. Rga turned on yesterday.

The rga was not on since last poweroutage Jan 2, 2018 It is warming up and outgassing Atm2

 

Attachment 1: RgaScan511d.png
RgaScan511d.png
Attachment 2: 08.png
08.png
  13702   Mon Mar 26 09:25:18 2018 SteveUpdateVACVM1 opened

CC1 old MKS cold cathode gauge randomly turns on- off. This makes software interlock close VM1 to protect RGA  So the closed off RGA region pressure goes up and the result is distorted RGA scan.

CC1 MKS gauge is disconnected and VM1 opened. This reminds me that we should connect our interlocks to CC1 Hornet Pressure gauge.

Quote:

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrres

 

 

Attachment 1: CC4VM1.png
CC4VM1.png
  13709   Tue Mar 27 08:58:21 2018 SteveUpdateVACVM1 opened.......scan fine

 

Quote:

CC1 old MKS cold cathode gauge randomly turns on- off. This makes software interlock close VM1 to protect RGA  So the closed off RGA region pressure goes up and the result is distorted RGA scan.

CC1 MKS gauge is disconnected and VM1 opened. This reminds me that we should connect our interlocks to CC1 Hornet Pressure gauge.

Quote:

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrres

 

 

 

Attachment 1: rga2018march27.png
rga2018march27.png
  13918   Wed Jun 6 10:02:52 2018 SteveUpdateVACRGA scan
Attachment 1: RGA302d.png
RGA302d.png
Attachment 2: annuloses_NOT_pumped.png
annuloses_NOT_pumped.png
Attachment 3: temp_vac.png
temp_vac.png
  13919   Wed Jun 6 10:44:52 2018 gautamUpdateVACAnnulus pressure channels added to frames

[steve, gautam]

We added the following channels to C0EDCU.ini and restarted the daqd processes. Channels seem to have been added successfully, we will check trend writing later today. Motivation is to have a long term record of annulus pressure (even though we are not currently pumping on the annulus).

C1:Vac-PASE_status

C1:Vac-PASV_status

C1:Vac-PABS_status

C1:Vac-PAEV_status

C1:Vac-PAEE_status

plot next day

Attachment 1: AnsPressureLogged.png
AnsPressureLogged.png
  14059   Thu Jul 12 16:18:22 2018 SteveUpdateVACVent preparations

We are getting ready to vent.

 

Attachment 1: before_Vent.png
before_Vent.png
Attachment 2: before_Vent_cond.png
before_Vent_cond.png
  14064   Fri Jul 13 10:54:55 2018 aaronUpdateVACVent 80

[aaron, steve]

Steve gave me a venting tutorial. I'll record this in probably a bit more detail than is strictly necessary, so I can keep track of some of the minor details for future reference.

Here is Steve's checklist:

  • Check that all jam nuts are tightened
  • all viewports are closed
  • op levs are off
  • take a picture of the MEDM screens
  • Check particle counts
  • Check that the cranes work & wiped
  • Check that HV is off

Gautam already did the pre-vent checks, and Steve took a screenshot of the IFO alignment, IMC alignment, master op lev screen, suspension condition, and shutter status to get a reference point. We later added the TT_CONTROL screen. Steve turned off all op levs.

We then went inside to do the mechanical checks

  • N2 cylinders in the 40m antechamber are all full enough (have ~700psi/day of nitrogen)
  • We manually record the particle count
    • this should be <10,000 on the 0.5um particles to be low enough to vent, otherwise we will contaminate the system
    • note: need to multiply the reading on the particle counter by 10 to get the true count
    • the temperature inside the PSL enclosure should be 23-24C +/- 3 degrees
    • We recorded the particle counts at ~830 and ~930, and the 0.5um count was up to ~3000
  • We put a beam stop in front of the laser at the PSL table
  • Checked that all HV supplies are either off or supplying something in air
    • we noticed four HV supplies on 1X1 that were on. Two were accounted for on the PSL table (FSS), and the other two were for C1IOO_ASC but ran along the upper cable rack. We got ahold of Gautam (sorry!) and he told us these go to the TT driver on OMC_SOUTH, where we verified the HV cables are disconnected. We took this to mean these HV supplies are not powering anything, and proceeded without turning these HV off.
    • There are HV supplies which were all either off or supplying something in-air at: 1Y4, 1Y2, OMC N rack, 1X9 (green steering HV)
  • Checked that the crane works--both move up and down
    • vertex crane switch is on the wall at the inner corner of the IFO
    • y arm crane switch is on the N wall at the Y end
    • turn off the cranes at the control strip after verifying they work
  • While walking around checking HV, we checked that the jam nuts and viewports are all closed
    • we replaced one viewport at the x arm that was open for a camera

After completing these checks, we grabbed a nitrogen cylinder and hooked it up to the VV1 filter. Steve gave me a rundown of how the vacuum system works. For my own memory, the oil pumps which provide the first level of roughing backstream below 500mtorr, so we typically turn on the turbo pumps (TP) below that level... just in case there is a calibrated leak to keep the pressure above 350mtorr at the oil pumps. TP2 has broken, so during this vent we'll install a manual valve so we can narrow the aperture that TP1 sees at V1 so we can hand off to the turbo at 500mtorr without overwhelming it. When the turbos have the pressure low enough, we open the mag lev pump. Close V1 if things screw up to protect the IFO. This 6" id manual gatevalve will allow us throttle the load on the small turbo while the maglev is taking over the pumping  The missmatch in pumping speed is 390/70 l/s [ maglev/varian D70 ]  We need to close down the conductive intake of the TP1 with manual gate valve so the 6x smaller turbo does not get overloaded...

We checked CC1, which read 7.2utorr.

Open the medm c0/ce/VacControl_BAK.adl to control the valves.

Steve tells me we are starting from vacuum normal state, but that some things are broken so it doesn't exactly match the state as described. In particular, VA6 is 'moving' because it has been disconnected and permanently closed to avoid pumping on the annulus. During this v ent, we will also keep pumping on the RGA since it is a short vent; steve logged the RGA yesterday.

We began the vent by following the vacuum normal to chamber open procedure.

  1. VM1 closed
  2. We didn't open VM3, because we want to keep the RGA on
  3. Closed V1
  4. Connect the N2 to the VV1 filter
    1. first puged the line with nitrogen
    2. We confirmed visually that V1 is closed
  5. We opened VM2 to pump on the RGA with the mag lev pump.
    1. This is a nonstandard step because we are keeping the RGA pumped down.
    2. The current on TP3 is ~0.19A, which is a normal, low load on the pump
  6. VV1 opened to begin the vent at ~10:30am
    1. use crescent wrench to open, torque wrench wheel to close
    2. Keep the pressure regulator below 10 psi for the vent. We started the vent with about 2psi, then increased to 8psi after confirming that the SUS sensors looked OK.
  7. We checked the pressure plot and ITMX/ETMX motion to make sure we weren't venting too quickly or kicking the optics
    1. Should look at eg C1:SUS-ITMX_SENSOR_LL, as well as C1:Vac-P1_pressure
  8. Once the pressure reaches 25torr, we switched over to dry air
    1. wipe off the outside dolly wheels with a wet rag, and exit through the x-arm door to get the air. Sweep off the area outside the door, and wipe off new air containers with the rag.
    2. Bring the cylinder inside, get the regulator ready/purged, and swap relatively quickly.
    3. We increased the vent speed to 10psi. 
    4. Steve says the vents typically take 4 of 300 cf cylinders from Airgas "Ultra Zero" AI  UZ300 that contains 0.1 PPM of THC

Everything looks good, so I'm monitoring the vent and swapping out cylinders.

At 12:08pm, the pressure was at 257 torr and I swapped out in a new cylinder.

Steve: Do not overpressurize the vacuum envelope! Stop around 720 Torr and let lab air do the rest. Our bellows are thin walled for seismic isolation.

Attachment 1: vent80wtiptilts.png
vent80wtiptilts.png
  14066   Fri Jul 13 16:26:52 2018 SteveUpdateVACVent 80 is completing...

Steve and Aaron,

6 hrs vent is reaching equlibrium to room air. It took 3 and a half instrument grade air cilynders [ AI UZ300 as labelled ] at 10 psi pressure. Average vent speed ~ 2 Torr/min

Valve configuration: IFO at atm and RGA is pumped through VM2 by TP1 maglev.

 

Attachment 1: @atm.png
@atm.png
Attachment 2: vent80_7h.png
vent80_7h.png
Attachment 3: ventregN2&Air_c.jpg
ventregN2&Air_c.jpg
  14073   Mon Jul 16 15:07:19 2018 KojiSummaryVACOven C vent

[Steve Koji]

- Attachment1: Removed the thermal cap. Checked the temperature of the oven. It was totally cold.

- Attachment2: Confirmed the RGA section was isolated. The pumps for the RGA was left running.

- Attachment3: Closed the main valve. The pumps for the main volume was left running.

- Attachment4: Started removing the rid. This did not change the gause readings as they were isolated from the venting main volume.

- Attachment5: Opened the rid. Took the components out on a UHV foil bag. The rid was replaced but loosely held by a few screws with the old gasket, just to protect the frange and the volume from rough dusts.

Attachment 1: P_20180716_141512.jpg
P_20180716_141512.jpg
Attachment 2: P_20180716_141601.jpg
P_20180716_141601.jpg
Attachment 3: P_20180716_141610.jpg
P_20180716_141610.jpg
Attachment 4: P_20180716_141827.jpg
P_20180716_141827.jpg
Attachment 5: P_20180716_143901.jpg
P_20180716_143901.jpg
  14074   Mon Jul 16 18:12:00 2018 KojiUpdateVACAdding a manual gate valve between TP1 and V1/VM2

[Steve Koji]

We are in the process of adding a manual gate valve between TP1 (Osaka Maglev) and the other gate valves (I suppose V1 and VM2).
The work is still on going and we will continue to work on this tomorrow. Because this section is isolated from the main volume, this work does not hold off the possible rough pumping tomorrow morning.

The motivation of this work is as follows:
- Since TP2 failed, the main vacuum volume has been pumped down by TP1 and TP3. However TP3 is not capable to handle the large pressure difference at the early stage of the turbo pumping. This cause TP3 to have excessive heating or even thermal shutdown.
- The remedy is to put a gate valve between TPs and the main vacuum to limit the amount of gas flowing into the TPs. This indeed slows down the pumping speed of turbo, but this is not the dominant part of the pumping time.

Actual work:
- Comfirmed TP1 is isolated.
- Unscrewed the flange of TP1.
- Remove TP1. This required to lift up TP1 with some shim as the nuts interferes with the TP1 body. (Attachment1, 2, 3)
- Now remove 10inch flange adapter. (Attachment4)
-
Attach 10"-8" adapter and 8" rotational sleeve. (Attachment5)

Attachment 1: P_20180716_155413.jpg
P_20180716_155413.jpg
Attachment 2: P_20180716_155645.jpg
P_20180716_155645.jpg
Attachment 3: P_20180716_155738.jpg
P_20180716_155738.jpg
Attachment 4: P_20180716_162307.jpg
P_20180716_162307.jpg
Attachment 5: P_20180716_172000.jpg
P_20180716_172000.jpg
  14079   Tue Jul 17 18:16:38 2018 SteveSummaryVACpumpdown 81 at 6 hrs

Precondition:  4 days at atm.   Atm5

HEPA tent used during the vent at ETMY  It reduced partical count 10 fold of 0.5 and 0.3 micron particals. Atm6

New items in vacuum:  Clean manual gate valve [Cetec made] from John Worden with 6" id....as it came from Hanford... [ Throttle able gate valve- TGV ] Atm3

                                 ( note: we have 3 more identical in the lab. The original intention was to use them for purging gates )

                                  Optiform Au plated reflector , Induceramics heating elements, similar as existing Cooner cables and related lenses, hardwear. see 14078

                                  OMC related item : none......... 14,110

 

The pumpdown is at 510 mTorr with RP1 & RP3 still pumping. Koji will shut it down the roughing later tonight. Tomorrow morning I will start the pumping by switching over to TP1 maglev.

Thanks for Koji and Gautam'  help of the installation of the manual gate valve. Atm4  This will allow us to control the load on our Varian foreline D70 turbo TP3

 

Attachment 1: pd81@6hrs.png
pd81@6hrs.png
Attachment 2: before_c.jpg
before_c.jpg
Attachment 3: tgv_c.jpg
tgv_c.jpg
Attachment 4: TGVinstalled.jpg
TGVinstalled.jpg
Attachment 5: 4_days_vent.png
4_days_vent.png
Attachment 6: tentHEPA.jpg
tentHEPA.jpg
  14080   Tue Jul 17 22:25:41 2018 KojiSummaryVACpumpdown 81 at 6 hrs

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

  14082   Wed Jul 18 12:49:08 2018 SteveSummaryVACpumpdown 81 at 6 +4.5hrs

The manual gate valve scan was clean. Atm1     TP1 was pumping on it overnight.

                                                Pumpdown continued to hand over the pumping to TP1 maglev turbo

V1 was opened at P1 400 mTorr  with manual gate at 3/4 turn open position as Magev at 560 Hz rotation.

Two aux fans on to hold tubo temps TP1 & TP3 . Atm3

This is the first time we pumping down from atm with ONE small "beer can" turbo  and throttled gate valve to control load on small turbo forepump

The 70 l/s turbo is operating at 50k RPM, 0.7 A and 31 C,  pumping speed  ~ 44 mTorr/h at 200-400 mTorr range with aux drypump in the foreline of TP3

Watching foreline pressures and current one can keep opening gate valve little by little the so the load is optimized. It is working but not fast.

Let's keep small turbo at 0.8 Amp and 32 C max at this pumpdown. 

Quote:

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

Attachment 1: manlGateScan.png
manlGateScan.png
Attachment 2: handing_over_Mag.png
handing_over_Mag.png
Attachment 3: TGVw2auxfans_.jpg
TGVw2auxfans_.jpg
  14083   Wed Jul 18 17:36:50 2018 SteveSummaryVACpumpdown 81 at 6 +9 hrs completed

IFO P1 6e-4 Torr,  manual gate valve is fully open

The annuloses will be pumped down tomorrow.

Valve configuration: vacuum normal, RGA and annuloses are not pumped

Quote:

The manual gate valve scan was clean. Atm1     TP1 was pumping on it overnight.

                                                Pumpdown continued to hand over the pumping to TP1 maglev turbo

V1 was opened at P1 400 mTorr  with manual gate at 3/4 turn open position as Magev at 560 Hz rotation.

This is the first time we pumping down from atm with one small "beer can" turbo  and throttled gate to control load on small turbo forepump

The 70 l/s turbo is operating at 50k RPM, 0.7 A and 31 C,  pumping speed  ~ 44 mTorr/h at 200-400 mTorr range.

Watching foreline pressures and current one can keep opening gate valve little by little the so the load is optimized. It is working but not fast.

Let's keep small turbo at 0.8 Amp and 32 C max at this pumpdown. 

Quote:

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

Attachment 1: pd81completed.png
pd81completed.png
Attachment 2: pd81@30hrs.png
pd81@30hrs.png
  14085   Thu Jul 19 01:56:25 2018 gautamSummaryVACAUX pump shutdown

[koji, gautam]

Per Steve's instructions, we did the following:

  • TP3fl pressure reading was 65 torr.
  • TP3 controller reported pumping current of ~0.18A, temperature of 24C.
  • We throttled the manual valve which was connecting the "AUX" pump to the TP3fl.
  • The TP3fl pressure went up to 330 torr.
  • TP3fl controller reported current of 0.22A, temperature of 24C.
  • After ~5mins, we shut the AUX pump off.
  • We have monitored it over the last 1hour, no red flags.
    • (Before stopping AUX RP)
      0:56AM TP3 I=0.18A, P=6W, 23degC, TP3FL: 66
    • 0:59AM TP3 I=0.22A, P=7W, 23degC, TP3FL: 336
    • 1:15AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 320
    • 1:31AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 310
    • 2:06AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 301
    • 5:06AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 275
  14087   Thu Jul 19 11:01:03 2018 SteveSummaryVACpd81 @ 2e-5 Torr

Cold cathode gauge just turned on.

Attachment 1: pd81@2days.png
pd81@2days.png
  14088   Thu Jul 19 13:35:30 2018 SteveSummaryVACannuloses pumped

Roughing down the annuloses required closing V1 for 13 minutes

IFO is 2.2e-5 Torr

Attachment 1: AnsPumped.png
AnsPumped.png
  14098   Mon Jul 23 09:58:52 2018 SteveSummaryVACRGA scan at day 6

 

 

Attachment 1: pd81-560Hz-d6.png
pd81-560Hz-d6.png
  14137   Mon Aug 6 09:34:02 2018 SteveUpdateVACRGA scan at day 20

 

 

Attachment 1: pd81d20.png
pd81d20.png
  14167   Thu Aug 16 07:50:28 2018 SteveUpdateVACpumpdown 81 at day 30

 

 

Attachment 1: pd81d30.png
pd81d30.png
  14168   Thu Aug 16 14:48:14 2018 SteveUpdateVACwhy do we need a root pump?

Basic Pump Throughput Concepts

What is Pump Throughput?

The manufacturer of a vacuum pump supplies a chart for each pump showing pumping speed (volume in unit time) vs pressure. The example, for a fictitious pump, shows the pumping speed is substantially constant over a large pressure range.

By multiplying pumping speed by pressure at which that pumping speed occurs, we get a measure called pump throughput. We can tabulate those results, as shown in the table below, or plot them as a graph of pressure vs pump throughput. As is clear from the chart,  pump throughput (which might also be called mass flow) decreases proportionally with PRESSURE, at least over the pressure range where pumping speed is constant.

 

Pumping Speed Pressure Pressure x Pumping Speed
100 L/sec 10 torr 1000 torr.liter/sec
100 L/sec 1 torr 100 torr.liter/sec
100 L/sec 0.1 torr 10 torr.liter/sec
100 L/sec 0.01 torr

1 torr.liter/sec

The roughing pump speed actually will reach 0 l/s  at it's ultimate pressure performance.

Our roughing pump  pumping speed will slowly drop  as chamber pressure drops. Below 10 Torr this decrease is accelerated and bottoms out. This where the Root pump can help. See NASA evaluation of dry rough pumps...What is a root pump 

We have been operating succsessfully with a narrow margin. The danger is that the Maglev forline peaks at 4 Torr. This puts load on the small turbo TP2, TP3 &  large TP1

The temperature of these TP2 & 3  70 l/s drag turbos go up to 38 C and their  rotation speed slow to 45K rpm from 50K rpm because of the large volume 33,000 liters

Either high temp or low rotation speed of drag turbo or long time of overloading  can shut down the small turbo pumps......meaning: stop pumping, wait till they cool down

The manual gate valve installed helped to lower peak temp to 32C It just took too long.

We have been running with 2 external fans [one on TP1 & one on TP3]  for cooling and one aux drypump to help lowering the foreline pressure of TP2 & 3

The vacuum control upgrade should include adding root pump into the zero pumping speed range.

 

Atm1,   Pump speed chart:   TP1  turbo -red, root pump -blue and mechanical pump green. Note green color here representing an oily rotory pump. Our small drypumps [SH-100] typically run above 100 mTorr

                                           They are the forepump of TP2 & 3     Our pumpdown procedure: Oily Leybold rotory pumps ( with safety orifice 350 mT to atm ) rough to 500 mTorr

                                                                                                 Here we switch over to TP2 & 3 running at 50k RPM with drypumps SH-100 plus Aux Triscroll

                                                                                                 TP1- Maglev rotating full speed when V1 is opened at full volume at 500 mTorr 

                         History: the original design of the early 1990s had no dry scroll pumps. Oil free dry scrools replaced the oily forepumps of TP2 & TP3 in ~2002  at the cost of degrading the forline pressure somewhat.

                                     We had 2 temperature related Maglev failers in 2005 Aug 8 and 2006 April 5  Osaka advised us to use AUX fan to cool TP1  This helped. 

Atm2,   Wanted Root pump - Leybold EcoDry 65 plus  

Atm3,   Typical 8 hrs pumpdown from 2007 with TP2 & 3 

Atm4,   Last pumpdown zoomed in from 400 mT to 1mT with throttled gate  valve took 9 hrs  The foreline pressure of TP1 peaked at 290 mT, TP3 temperature peaked at 32C

            This technic is workable, but 9 hrs is too long.

Atm5,   The lowest pressure achived in  the 40m Vacuum Envelope 5e-7 Torr with pumps Maglev  ~300 l/s,  Cryo 1500 l/s  and 3 ion pumps of 500 l/s      [ in April 2002 at pumpdown 53 day 7 ] with annuloses at ~ 10 mTorr

Atm6,  Osaka TG390MCAB Throughput with screen ~300 L/s at 12 cfm backing pump

Attachment 1: PUMPSPEED_CHAR.pdf
PUMPSPEED_CHAR.pdf
Attachment 2: Leybold_Broschuere_8Seiten_EN_ANSICHT.pdf
Leybold_Broschuere_8Seiten_EN_ANSICHT.pdf
Attachment 3: pd65.jpg.png
pd65.jpg.png
Attachment 4: pd81completed.png
pd81completed.png
Attachment 5: best_.pdf
best_.pdf
Attachment 6: Osaka390.pdf
Osaka390.pdf
  14183   Fri Aug 24 10:51:23 2018 SteveUpdateVACpumpdown 81 at day 38

 

 

Attachment 1: d38.png
d38.png
  14189   Wed Aug 29 09:56:00 2018 SteveUpdateVACMaglev controller needs service

TP-1 Osaka maglev controller  [  model TCO10M,  ser V3F04J07 ]  needs maintenance. Alarm led  on indicating  that we need Lv2 service.

The turbo and the controller are in good working order.

*****************************

Hi Steve,

Our maintenance level 2 service price is $...... It consists of a complete disassembly of the controller for internal cleaning of all ICB’s, replacement of all main board capacitors, replacement of all internal cooling units, ROM battery replacement, re-assembly, and mandatory final testing to make sure it meets our factory specifications. Turnaround time is approximately 3 weeks.

  RMA 5686 has been assigned to Caltech’s returning TC010M controller. Attached please find our RMA forms. Complete and return them to us via email, along with your PO, prior to shipping the cont

Best regards,

Pedro Gutierrez

Osaka Vacuum USA, Inc.

510-770-0100 x 109

*************************************************

our TP-1 TG390MCAB is 9 years old. What is the life expectancy of this turbo?

                        The Osaka maglev turbopumps are designed with a 100,000 hours(or ~ 10 operating years) life span but as you know most of our end-users are

                        running their Osaka maglev turbopumps in excess of 10+, 15+ years continuously.     The 100,000 hours design value is based upon the AL material being rotated at

                        the given speed.   But the design fudge factor have somehow elongated the practical life span.  

We should have the cost of new maglev & controller in next year budget. I  put the quote into the wiki.

 

                         

 

  14207   Fri Sep 21 16:51:43 2018 gautamUpdateVACc1vac1 is unresponsive

Steve pointed out that some of the vacuum MEDM screen fields were reporting "NO COMM". Koji confirmed that this is a c1vac1 problem, likely the same as reported here and can be fixed using the same procedure.

However, Steve is worried that the interlock won't kick in in case of a vacuum emergency, so we are leaving the PSL shutter closed over the weekend. The problem will be revisited on Monday.

  14215   Mon Sep 24 15:06:10 2018 gautamUpdateVACc1vac1 reboot + TP1 controller replacement

[steve, gautam]

Following the procedure in this elog, we effected a reset of the vacuum slow machines. Usually, I just turn the key on these crates to do a power cycle, but Steve pointed out that for the vacuum machines, we should only push the "reset" button.

While TP1 was spun down, we took the opportunity to replace the TP1 controller with a spare unit the company has sent us for use while our unit is sent to them for maintenance. The procedure was in principle simple (I only list the additional ones, for the various valve closures, see the slow machine reset procedure elog):

  • Turn power off using switch on rear.
  • Remove 4 connecting cables on the back.
  • Switch controllers.
  • Reconnect 4 cables on the back panel.
  • Turn power back on using switch on rear.

However, we were foiled by a Philips screw on the DB37 connector labelled "MAG BRG", which had all its head worn out. We had to make a cut in this screw using a saw blade, and use a "-" screwdriver to get this troublesome screw out. Steve suspects this is a metric gauge screw, and will request the company to send us a new one, we will replace it when re-installing the maintaiend controller. 

Attachments #1 and #2 show the Vacuum MEDM screen before and after the reboot respectively - evidently, the fields that were reading "NO COMM" now read numbers. Attachment #3 shows the main volume pressure during this work.

Quote:

The problem will be revisited on Monday.

Attachment 1: beforeReboot.png
beforeReboot.png
Attachment 2: afterReboot.png
afterReboot.png
Attachment 3: CC1.png
CC1.png
  14217   Wed Sep 26 10:07:16 2018 SteveUpdateVACwhy reboot c1vac1

Precondition: c1vac1 & c1vac2 all LED warning lights green [ atm3 ], the only error message is in the gauge readings NO COMM, dataviewer will plot zero [ atm1 ], valves are operational

When our vacuum gauges read " NO COMM " than our INTERLOCKS  do  NOT communicate either.

So V1 gate valve and PSL output shutter can not be triggered to close if the the IFO pressure goes up.                        

   [ only CC1_HORNET_PRESSURE reading is working in this condition because it goes to a different compuer ] 

Quote:

[steve, gautam]

Following the procedure in this elog, we effected a reset of the vacuum slow machines. Usually, I just turn the key on these crates to do a power cycle, but Steve pointed out that for the vacuum machines, we should only push the "reset" button.

While TP1 was spun down, we took the opportunity to replace the TP1 controller with a spare unit the company has sent us for use while our unit is sent to them for maintenance. The procedure was in principle simple (I only list the additional ones, for the various valve closures, see the slow machine reset procedure elog):

  • Turn power off using switch on rear.
  • Remove 4 connecting cables on the back.
  • Switch controllers.
  • Reconnect 4 cables on the back panel.
  • Turn power back on using switch on rear.

However, we were foiled by a Philips screw on the DB37 connector labelled "MAG BRG", which had all its head worn out. We had to make a cut in this screw using a saw blade, and use a "-" screwdriver to get this troublesome screw out. Steve suspects this is a metric gauge screw, and will request the company to send us a new one, we will replace it when re-installing the maintaiend controller. 

Attachments #1 and #2 show the Vacuum MEDM screen before and after the reboot respectively - evidently, the fields that were reading "NO COMM" now read numbers. Attachment #3 shows the main volume pressure during this work.

Quote:

The problem will be revisited on Monday.

 

Attachment 1: NOcomm.png
NOcomm.png
Attachment 2: Reboot_&_sawp.png
Reboot_&_sawp.png
Attachment 3: c1vac1&2_.jpg
c1vac1&2_.jpg
  14229   Thu Oct 4 08:25:50 2018 SteveUpdateVACrga scan pd81 at day 78

 

 

Attachment 1: pd81d78.png
pd81d78.png
  14244   Fri Oct 12 08:27:05 2018 SteveUpdateVACdrypump

Gautam and Steve,

Our TP3 drypump seal is at 360 mT [0.25A load on small turbo]  after one year.  We tried to swap in old spare drypump with new tip  seal. It was blowing it's fuse, so we could not do it.

Noisy aux drypump turned on and opened to TP3 foreline [ two drypumps are in  the foreline now ]  The pressure is 48 mT and 0.17A load on small turbo.

Attachment 1: forepump.png
forepump.png
  14247   Fri Oct 12 17:37:03 2018 SteveUpdateVACpressure gauge choices

We want to measure the pressure gradient in the 40m IFO

Our old MKS cold cathodes are out of order. The existing working gauge at the pumpspool is InstruTech CCM501

The plan is to purchase 3 new gauges for ETMY, BS and MC2 location.

Basic cold cathode     or    Bayard-Alpert Pirani

    

 

  14256   Mon Oct 15 13:59:42 2018 SteveUpdateVACdrypump replaced

Steve & Bob,

Bob removed the head cover from the housing to inspect the condition of the the tip seal. The tip seal was fine but the viton cover seal had a bad hump. This misaligned the tip seal and it did not allow it to rotate.

It was repositioned an carefully tithened. It worked. It's starting current transiant measured 28 A and operational mode 3.5 A

This load is normal with an old pump. See the brand new DIP7 drypump as spare was 25 A at start and  3.1 A in operational mode. It is amazing how much punishment a slow blow ceramic 10A  fuse can take [ 0215010.HXP ]

In the future one should measure the current pick up [ transient <100ms ] after the the seal change with Fluke 330 Series Current Clamp

 

It was swapped in and the foreline pressure dropped to 24 mTorr after 4 hours. It is very good. TP3 rotational drive current  0.15 A at 50K rpm   24C

Quote:

Gautam and Steve,

Our TP3 drypump seal is at 360 mT [0.25A load on small turbo]  after one year.  We tried to swap in old spare drypump with new tip  seal. It was blowing it's fuse, so we could not do it.

Noisy aux drypump turned on and opened to TP3 foreline [ two drypumps are in  the foreline now ]  The pressure is 48 mT and 0.17A load on small turbo.

 

Attachment 1: drypump_swap.png
drypump_swap.png
  14262   Mon Oct 22 15:19:05 2018 SteveUpdateVACMaglev controller serviced

Gautam & Steve,

Our controller is back with Osaka maintenace completed. We swapped it in this morning.

Quote:

TP-1 Osaka maglev controller  [  model TCO10M,  ser V3F04J07 ]  needs maintenance. Alarm led  on indicating  that we need Lv2 service.

The turbo and the controller are in good working order.

*****************************

Hi Steve,

Our maintenance level 2 service price is $...... It consists of a complete disassembly of the controller for internal cleaning of all ICB’s, replacement of all main board capacitors, replacement of all internal cooling units, ROM battery replacement, re-assembly, and mandatory final testing to make sure it meets our factory specifications. Turnaround time is approximately 3 weeks.

  RMA 5686 has been assigned to Caltech’s returning TC010M controller. Attached please find our RMA forms. Complete and return them to us via email, along with your PO, prior to shipping the cont

Best regards,

Pedro Gutierrez

Osaka Vacuum USA, Inc.

510-770-0100 x 109

*************************************************

our TP-1 TG390MCAB is 9 years old. What is the life expectancy of this turbo?

                        The Osaka maglev turbopumps are designed with a 100,000 hours(or ~ 10 operating years) life span but as you know most of our end-users are

                        running their Osaka maglev turbopumps in excess of 10+, 15+ years continuously.     The 100,000 hours design value is based upon the AL material being rotated at

                        the given speed.   But the design fudge factor have somehow elongated the practical life span.  

We should have the cost of new maglev & controller in next year budget. I  put the quote into the wiki.

 

                         

 

 

Attachment 1: our_controller_is_back.png
our_controller_is_back.png
  14264   Wed Oct 31 17:54:25 2018 gautamUpdateVACCC1 hornet power connection restored

Steve reported to me that the CC1 Hornet gauge was not reporting the IFO pressure after some cable tracing at EX. I found that the power to the unit had been accidentally disconnected. I re-connected the power and manually turned on the HV on the CC gauge (perhaps this can be automated in the new vacuum paradigm). IFO pressure of 8e-6 torr is being reported now.

Attachment 1: cc1_Hornet.png
cc1_Hornet.png
  14279   Tue Nov 6 23:19:06 2018 gautamUpdateVACc1vac1 FAIL lights on (briefly)

Jon and I stuck a extender card into the eurocrate at 1X8 earlier today (~5pm PT), to see if the box was getting +24V DC from the Sorensen or not. Upon sticking the card in, the FAIL LEDs on all the VME cards came on. We immediately removed the extender card. Without any intervention from us, after ~1 minute, the FAIL LEDs went off again. Judging by the main volume pressure (Attachment #1) and the Vacuum MEDM screen (Attachment #2), this did not create any issues and the c1vac1 computer is still responsive.

But Steve can perhaps run a check in the AM to confirm that this activity didn't break anything.

Is there a reason why extender cards shouldn't be stuck into eurocrates?

Attachment 1: Screenshot_from_2018-11-06_23-18-23.png
Screenshot_from_2018-11-06_23-18-23.png
Attachment 2: Screenshot_from_2018-11-06_23-19-26.png
Screenshot_from_2018-11-06_23-19-26.png
  14281   Wed Nov 7 08:32:32 2018 SteveUpdateVACc1vac1 FAIL lights on (briefly)...checked

The vacuum and MC are OK

Quote:

Jon and I stuck a extender card into the eurocrate at 1X8 earlier today (~5pm PT), to see if the box was getting +24V DC from the Sorensen or not. Upon sticking the card in, the FAIL LEDs on all the VME cards came on. We immediately removed the extender card. Without any intervention from us, after ~1 minute, the FAIL LEDs went off again. Judging by the main volume pressure (Attachment #1) and the Vacuum MEDM screen (Attachment #2), this did not create any issues and the c1vac1 computer is still responsive.

But Steve can perhaps run a check in the AM to confirm that this activity didn't break anything.

Is there a reason why extender cards shouldn't be stuck into eurocrates?

 

Attachment 1: Vac_MC_OK.png
Vac_MC_OK.png
  14291   Tue Nov 13 16:15:01 2018 SteveUpdateVACrga scan pd81 at day 119

 

 

Attachment 1: pd81-d119.png
pd81-d119.png
Attachment 2: pd81-560Hz-d119.png
pd81-560Hz-d119.png
ELOG V3.1.3-