40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 100 of 341  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  13468   Thu Dec 7 22:24:04 2017 johannesOmnistructureComputersAcromag XEND progress

 

Quote:
 
  • Need to calibrate the +/- 10V swing of the analog channels via the USB utility, but that requires wiring the channels to the connectors and should probably be done once the unit sits in the rack
  • Need to wire power from the Sorensens into the chassis. There are +/- 5V, +/- 15V and +/- 20V present. The Acromags need only +12V-32V, for which I plan to use the +20V, and an excitation voltage for the binary channels, for which I'm going to wire the +5V. Should do this through the fuse rails on the side.
  • The current slow binary channels are sinking outputs, same as the XT1111 16-channel module we have. The additional 4 binary outputs of the XT1541 are sourcing, and I'm currently not sure if we can use them with the sos driver and whitening vme boards that get their binary control signals from the slow system.
  • Confirm switching of binary channels (haven't used model XT1111 before, but I assume the definitions are identical to XT1121)
  • Setup remaining essential EPICS channels and confirm that dimensions are the same (as in both give the same voltage for the same requested value)
  • Disconnect DIN cables, attach adapter boards + DSUB cables
  • Testing

Getting the chassis ready took a little longer than anticipated, mostly because I had not looked into the channel list myself before and forgot about Lydia's post which mentions that some of the switching controls have to be moved from the fast to the slow DAQ. We would need a total of 5+5+4+8=22 binary outputs. With the existing Acromag units we have 16 sinking outputs and 8 sourcing outputs. I looked through all the Eurocrate modules and confirmed that they all use the same switch topology which has sourcing inputs.

While one can use a pull-down resistor to control a sourcing input with a sourcing output,

pulling down the MAX333A input (datasheet says logic low is <0.8V) requires something like 100 Ohms for the pull down resistor, which would require ~150mA of current PER CHANNEL, which is unreasonable. Instead, I asked Steve to buy a second XT1111 and modified the chassis to accomodate more Acromag units.

I have now finished wiring the chassis (except for 8 remaining bypass controls to the whitening board which need the second XT1111), calibrated all channels in use, confirmed all pin locations via the existing breakout boards and DCC drawings for the eurocrate modules, and today Steve and I added more fuses to the DIN rail power distribution for +20V and +15V.

There was not enough contingent free space in the XEND rack to mount the chassis, so for now I placed it next to it.

c1auxex2 is currently hosting all original physical c1auxex channels (not yet calc records) under their original name with an _XT added at the end to avoid duplicate channel names. c1auxex is still in control of ETMX. All EPICS channels hosted by c1auxex2 are in dimensions of Volts. The plan for tomorrow is to take c1auxex off the grid, rename the c1auxex2 hosted channels and transfer ETMX controls to it, provided we can find enough 37pin DSub cables (8). I made 5 adapter boards for the 5 Eurocrate modules that need to talk to the slow DAQ through their backplane connector.

  13469   Fri Dec 8 12:06:59 2017 johannesOmnistructureComputersc1auxex2 ready - but need more cables

The new slow machine c1auxex2 is ready to deploy. Unfortunately we don't have enough 37pin DSub cables to connect all channels. In fact, we need a total of 8, and I found only three male-male cables and one gender changer. I asked Steve to buy more.

Over the past week I have transferred all EPICS records - soft channels and physical ones - from c1auxex to c1auxex2, making changes where needed. Today I started the in-situ testing

  1. Unplugged ETMX's satellite box
  2. Unplugged the eurocrate backplane DIN cables from the SOS Driver and QPD Whitening filter modules (the ones that receive ao channels)
  3. Measured output voltages on the relevant pins for comparison after the swap
  4. Turned off c1auxex by key, removed ethernet cable
  5. Started the modbus ioc on c1auxex2
  6. Slow machine indicator channels came online, ETMX Watchdog was responsive (but didn't have anything to do due to missing inputs) and reporting. PIT/YAW sliders function as expected
  7. Restoring the previous settings gives output voltages close to the previous values, in fact the exact values requested (due to fresh calibration)
  8. Last step is to go live with c1auxex2 and confirm the remaining channels work as expected.

I copied the relevant files to start the modbus server to /cvs/cds/caltech/target/c1auxex2, although kept local copies in /home/controls/modbusIOC/ from which they're still run.

I wonder what's the best practice for this. Probably to store the database files centrally and load them over the network on server start?

  13470   Fri Dec 8 23:31:31 2017 johannesFrogsASSc1ass slow channel offloading scripts with small

While staring at epics records all day I noticed something about the PIT/YAW offset sliders and ASS offset offloading to slow channels scripts that I'm not sure others are aware off, so I'll briefly discuss it in this post.

The PIT and YAW sliders directly control soft channels that are hosted on the slow machine. Secondary epics records disentangle them for the individual coils:

  • UL = PIT+YAW
  • LL = -PIT+YAW
  • UR = PIT-YAW
  • LR = -PIT-YAW

These channels are the direct input for the physical output channels that generate the control voltage.

The fast channels for PIT and YAW have a numerical correction factor built in that accounts for differences between the OSEMs, but the slow channels don't. This means that the slow PIT/YAW controls are not entirely orthogonal but have crosstalk on the order of 10 percent. This in itself is not that dramatic, however the offload offsets scripts for the dither alignment use the fast PIT/YAW values as inputs, which represent the necessary adjustments to the OSEMs only after the individual correction factors have been applied. The offloading to slow knows nothing of this calibration difference between the OSEMs. The result is that there is a ~10 percent of the offset correction error on the mirror alignment AFTER offloading. This will of course converge after a few iterations, but in any case it is recommendable to run the dither alignment again after offloading and not offload the new offsets to the fast channels.

  13471   Wed Dec 13 09:49:23 2017 johannesUpdateASSwiring diagram

I attached a wiring schematic from the slow DAQ to the eurocrate modules. Of these, pins 1-32 (or 1A-16C) and pins 33-64 (17A-32C) are on separate DSub connectors. Therefore the easiest solution is to splice the slow DIO channels into the existing breakouts so we can proceed with the transition. This will still remove a lot of the current cable salad. For the YEND we can start thinking about a more elegant solution (For example a connector on the front panel of the Acromag chassis for the fast DIO) now that the problem is better defined.

Attachment 1: 1Y9.pdf
1Y9.pdf
  13473   Thu Dec 14 00:32:56 2017 johannesUpdateASSAcromag new crate; c1auxex2 configured as gateway server for acromag

This splicing in of fast binary channels we discussed at yesterday's and today's meetings is getting messy with the current chassis. Cleaning up the cable mess was a key point, so I got a 4U height DEEP chassis from Rich and drew up a front panel for a modular approach that we can use at the other 40m locations as well. The front panel will have slots for smaller slot panels to which we can mount the breakout boards as before, so all the wiring that I've done can be transfered to this design. If some new connector standard is required it will be easy to draw a new slot panel from a template, for now I'll make some with two DSub37 and IDC50. Since this chassis is so huge it will have ample space for cross-connects.

I also moved the communication of c1auxex2 with the Acromag units off the martian network, connecting them with a direct cable connection out of the second ethernet port. To test if this works I configured the second ethernet port of c1auxex2 to have the IP address 192.168.114.1 and one of the acromag units to have 192.168.114.11, and initialized an IOC with some test channels. Much to my surprise this actually worked straight out of the box, and the test channels can be accessed from the control room computers without having a direct ethernet link to the acromag modules. huzzah!

Steve: it would be nice to have all plugs- connectors lockable

 

Attachment 1: fp_mod_4U.pdf
fp_mod_4U.pdf
Attachment 2: IMG_20171213_171541850_HDR.jpg
IMG_20171213_171541850_HDR.jpg
  13478   Thu Dec 14 23:27:46 2017 johannesUpdateDAQaux chassis design

Made a front and back panel and slot panels for DSub and IDC breakouts. I want to send this out soon, are there any comments? Preferences for color schemes?

Attachment 1: auxdaq_40m_4U_front.pdf
auxdaq_40m_4U_front.pdf
Attachment 2: auxdaq_40m_4U_rear.pdf
auxdaq_40m_4U_rear.pdf
Attachment 3: auxdaq_40m_4U_DSub37x2.pdf
auxdaq_40m_4U_DSub37x2.pdf
Attachment 4: auxdaq_40m_4U_IDC50.pdf
auxdaq_40m_4U_IDC50.pdf
  13479   Fri Dec 15 00:26:40 2017 johannesUpdateCDSRe: CDS recovery, NFS woes
Quote:

Didn't touch Xarm because we don't know what exactly the status of ETMX is.

The Xarm is currently in its original state, all cables are connected and c1auxex is hosting the slow channels.

  13517   Tue Jan 9 00:07:03 2018 johannesUpdateDAQetmx slow daq chassis

All parts received and assembly near complete, small problem detected because the two DSub connectors are too close together for two cables to fit at the same time. Gautam and I will make some additional slot panels tomorrow using a waterjet cutter, so we can spread the breakout boards out and remedy this.

Fast binary channels need to be spliced into DSub connectors. Aaron is on this. All other, slow connections are already wired from before and have been tested for correct pins on the backplane DIN connectors.

 

The Acromag modules require only a positive supply voltage between +12 and +30 VDC and draw a maximum of 2.8W at that. This raises the question if we want this supply rail to be regulated or take the raw power from the Sorensens. Consulting with Ben Abbott: The Acromags in LIGO do not operate with regulated power. We could easily accomodate the standard regulator boards D1000217 in the chassis, which is probably a good idea if we want to place any custom electronics inside the chassis in the future, for example for whitening or active lowpass filtering.

  13524   Wed Jan 10 14:17:57 2018 johannesConfigurationComputer Scripts / Programsautoburt no longer making backups

I was looking into setting up autoburt for the new c1auxex2 and found that it stopped making automatic backups for all machines after the beginning of the new year. There is no 2018 folder (it was the only one missing) in /opt/rtcds/caltech/c1/burt/autoburt/snapshots and the /latest/ link in /opt/rtcds/caltech/c1/burt/autoburt/ leads to the last backup of 2017 on 12/31/17 at 23:19.

The autoburt log file shows that the back script last ran today 01/10/18 at 14:19, as it should have, but doesn't show any errors and ends with "You are at the 40m".

I'm not familiar with the autoburt scheduling using cronjobs. If I'm not mistaken the relevant cronjob file is /cvs/cds/rtcds/caltech/c1/scripts/autoburt/autoburt.cron which executes /cvs/cds/rtcds/caltech/c1/scripts/autoburt/autoburt.pl

I've never used perl but there's the following statement when establishing the directory for the new backup:

  $yearpath = $autoburtpath."/snapshots/".$thisyear;
  # print "scanning for path $yearpath\n";
  if (!-e $yearpath) {
    die "ERROR: Year directory $yearpath does not exist\n";
  }

I manually created the /opt/rtcds/caltech/c1/burt/autoburt/snapshots/2018/ directory. Maybe this fixes the hickup? Gotta wait about 30 minutes.

  13525   Wed Jan 10 15:25:43 2018 johannesConfigurationComputer Scripts / Programsautoburt making backups again
Quote:

I manually created the /opt/rtcds/caltech/c1/burt/autoburt/snapshots/2018/ directory. Maybe this fixes the hickup? Gotta wait about 30 minutes.

It worked. The first backup of the year is now from Wednesday, 01/10/18 at 15:19. Ten days of automatic backups are missing. Up until 2204 the year folders had been pre-emptively created so why was 2018 missing?

gautam: this is a bit suspect still - the snapshot file for c1auxex at least seemed to be too light on channels recorded. this was before any c1auxex switching. to be investigated.

  13529   Wed Jan 10 22:24:28 2018 johannesUpdateDAQetmx slow daq chassis

This evening I transitioned the slow controls to c1auxex2.

  1. Disconnected satellite box
  2. Turned off c1auxex
  3. Disconnected DIN cables from backplace connectors
  4. Attached purple adapter boards
  5. Labeled DSub cables for use
  6. Connected DSub cables to adapter boards and chassis
  7. Initiated modbus IOC on c1auxex2

Gautam and I then proceeded to test basic functionality

  1. Pitch bias sliders move pitch, yaw moves yawyes.
  2. Coil enable and monitoring channels work yes
  3. Watchdog seems to work. yes We set the treshold for tripping low, excited the optic, watchdog didn't disappoint and triggered.
  4. All channels Initialize with "0" upon machine/server script restart. This means the watchdog happens to be OFF, which is good yes. It would be great if we could also initialize PIT and YAW to retain their value from before to avoid kicking the optic. This is not straightforward with EPICS records but there must be a way.
  5. We got the local damping going yes.
  6. There is some problem with the routing of the fast BIO channels through the new chassis - so the ANALOG de-whitening filter seems to be always engaged, despite our toggling the software BIO bits no. Something must be wrongly wired, as we confirmed by returning only the FAST BIO wiring to the pre-acromag state (but everything else is now controlled by acromag) and didn't have the problem anymore. Or some electrical connection is not made (I had to use gender changers on these connectors due to lack of proper cabling)
  7. The switches for the QPD gain stages did not work. no I suspect a wiring problem, since the switching of the coil enables did work.

Arms are locked, have been for ~1hour with no hickups. We will leave it like this overnight to observe, and debug further tomorrow.

  13537   Fri Jan 12 10:02:05 2018 johannesUpdateDAQetmx slow daq chassis
Quote:

There is some problem with the routing of the fast BIO channels through the new chassis - so the ANALOG de-whitening filter seems to be always engaged, despite our toggling the software BIO bits no. Something must be wrongly wired, as we confirmed by returning only the FAST BIO wiring to the pre-acromag state (but everything else is now controlled by acromag) and didn't have the problem anymore. Or some electrical connection is not made (I had to use gender changers on these connectors due to lack of proper cabling)

The switches for the QPD gain stages did not work. no I suspect a wiring problem, since the switching of the coil enables did work.

Both issues were fixed. In both cases it was two separate causes that prevented them from working.

The QPD gain stage switch software channels were assigned to wrong physical pins of the Acromag, and additionally their DSub cable was swapped with a different one.

The BIO switching had its signal and ground wires swapped on ALL connections, and part of it was also suffering from the cable-mixup.

Both issues were fixed. All backplane signals are now routed through the Acromag chassis.

 

Gautam and I did notice that occasionally ETMX alignment will start drifting as evident from the OpLev. I want to set up a diagnostic channel to see if the DAC voltages coming from the Acromag are responsible for this.

  13543   Fri Jan 12 19:15:34 2018 johannesUpdateDAQetmx slow daq chassis

Steve and I removed c1auxex from 1X9 today to make space for the DAQ chassis. Steve installed rails for mounting. To install the box I had to remove all cabling, for which I used the usual precautions (disconnect satellite box etc.)

On reconnect c1auxex2 didn't initialize the physical EPICS channels (the 'actual' acromag channels), apparently it had trouble communicating. A reboot fixed this. It's possible that this is because of the direct cable connection without a network switch that exists
between the Acromags and c1auxex. The EPICS server was started automatically on reboot.

Currently the channel defaults need to be loaded manually after every EPICS server script restart with burt. I'm looking for a good way to automate this, but the only compiled burt binaries for x86 (that we can in principle run on c1auxex2 itself) on the martian network are from EPICS version 3.14.10 and throw a missing shared object error. Could be that simply some path variable is missing.

The burt binaries are not distributed by the lscsoft or cdssoft packages, so alternatively we would need to compile it ourselves for x86 or get it working with the older epics version.

  13554   Wed Jan 17 22:44:14 2018 johannesUpdateDAQAcromag checks

This happened because there are multiple ways to scale the raw value of an EPICS channel to the desired output range. In the CryoLab I was using one way, but the EPICS records I copied from c1auxex were doing it differently. Basically this:

DTYP  - Data type -
LINR "NO CONVERSION" vs "LINEAR"
RVAL Raw value
EGUF Engineering units full scale
EGUL Engineering units low
ASLO Manual scaling factor
AOFF Manual offset
VAL Value

If the "LINR" field is set to "LINEAR", the fields EGUF and EGUL are used to convert the raw value to the channel value VAL. To use them, one needs to enter the voltages that return the maximum and minimum values expected for the given data type. It used to be +10V and -10V, respectively, and was copied that way but that doesn't work with the data type required for the Acromag units. For -some- reason, while the the ADC range is -10V to +10V, this corresponds to values -20000 to +20000, while for the DAC channels it's -30000 to +30000. I had observed this before when setting up the DAQ in the CryoLab, but there we were using "NO CONVERSION", which skips the EGUF and EGUL fields, and used the ASLO and AOFF for manual scaling to get it right. When I mixed the records from there with the old ones from c1auxex this got lost in translation. Gautam and I confirmed by eye that this indeed explains the different levels well. This means that the VMon channelsfor the coils are also showing the wrong voltages, which will be corrected, but the readback still definitely works and confirms that the enable switches do their job.

Quote:
  1. I take back what I said about the OSEM PD mon at the meeting - there does seem to be to be some overall calibration factor (Attachment #1) that has scaled the OSEM PD readback channels, by a factor of (20000/2^15), which Johannes informs me is some strange feature of the ADC, which he will explain in a subsequent post.

 

  13555   Wed Jan 17 23:36:12 2018 johannesConfigurationGeneralAS port laser injection

Status of the AS-port auxiliary laser injection

  • Auxiliary laser with AOM setup exists, first order diffracted beam is coupled into fiber that leads to the AS table.
  • There is a post-PMC picked-off beam available that is currently just dumped (see picture). I want to use it for a beat note with the auxiliary laser pre-AOM so we can phaselock the lasers and then fast-switch the phaselocked light on and off.
  • I was going to use the ET3010 PD for the beat note unless someone else has plans for it.
  • I obtained a fixed triple-aspheric-lens collimator which is supposed to have a very small M^2 value for the collimation on the AS table. I still have the PSL-lab beam profiler and will measure its output mode.
  • Second attached picture shows the space on the AS table that we have for mode-matching into the IFO. Need to figure out the desired mode and how to merge the beams best.
Attachment 1: PSLbeat.svg.png
PSLbeat.svg.png
Attachment 2: ASpath.svg.png
ASpath.svg.png
  13565   Sun Jan 21 13:11:25 2018 johannesUpdateDAQAcromag checks

After some research: -the- reason for the reduced +/- 20,000 swing in raw values is a default setting for having support for legacy devices enabled when using the acromag proprietary i2o peer-to-peer protocol. So this is doubly unnecessary because a) we don't have any legacy devices at all and b) we're using pure modbus/TCP and no i2o. To change the setting I have to connect via the USB configuration utility. In addition, I want to understand the averaging feature of the acromag units better, which is also configured via USB, and lets one set a fixed amount of samples to be averaged before updating the read-register value. The documentation says that the 8 channels are multiplexed into a single ADC, and that new input data is available after 10 ms for each channel, suggesting a sampling rate of 100 Hz per channel and that the multiplexing happens faster, but is not super-clear about this, so I want to test it in the cryo lab first before unleashing it onto c1auxex2.

Furthermore, the standard timing options for updating epics records are 10s, 5s, 2s, 1s, 0.5s, 0,2s, and 0.1s. On the previous c1auxex, the monitoring channels were set to 0.1s, but that clashes with the 16 Hz global EPICS rate, resulting in partial double-sampling. One can manually provide the option 0.0625s for 16Hz update rate. I will test this and how it deals with the averaging in the cryolab too.

  13576   Wed Jan 24 18:12:31 2018 johannesUpdateDAQETMX auxiliary DAQ work

I replaced the two remaining D-Sub M/M cables that still had gender-changers with M/F cables today, completing the mechanical and wiring work on the ETMX rack. All backplane adapter boards were secured to a cross-strut of the crate using zip ties. This was necessary because the adapter boards don't fit the crate with their panels attached ( the ETMX eurocrate is the only one with slightly different dimensions from all the others), and the we can't mount them to the strut using the panels. This won't be an issue on any of the other crates.

   

   

In other news:

I disabled the legacy support in the three Acromag ADC units and set the input averaging to 10 samples via the USB configuration utility. The documentation is unfortunately a little sparse about what this actually means. The manual states that "fresh input data is available to the network every 10ms", so the sampling rate is for sure faster than 100Hz. Since the IOC updates its channels every .1 seconds I assume that an averaging value of 10 to reduce the input noise is safe. The maximum value the configuration tool permits is 200. I tried this using the CryoLab DAQ and set all input channels to 200 and used StripTool to look at the time series of a slow oscillation (.1Hz) with a large amplitude (16Vpp) and looked for missed data points, indicating too long wait times for channels updates. There was no such qualitative difference between 1 sample, 10 samples, and 200 samples, so even pushing the averaging value to max seemed okay. I went with the conservative value of 10 for the ETMX DAQ, but we can likely increase this if noise on the slow inputs becomes an issue.

The input scaling of the ADC channels has been corrected. I changed the conversion method in the EPICS records from manual using the ASLO and AOFF fields to using engineering units via EGUF and EGUL. This required a little attention. The Acromags scale the dynamic input range of +/- 10V to +/- 30,000 raw value, but the EPICS IOC interprets the data type as ranging from -32767 to +32768, so the EGUF and EGUL fields must be set to -10.923 and +10.923 to achieve proper scaling. I also changed the SCAN field on all ADC channels to 0.1 seconds. This has been done for all ADC and DAC channel records.

  13578   Wed Jan 24 19:17:06 2018 johannesUpdateDAQc1auxex2 startup behavior

I compiled the burt binaries on c1auxex2 which took a little fiddling with dependencies and paths but nothing too major. The complete local epics folder (/opt/epics/) which contains the base epics binaries, modbus and burt for 32-bit linux has been copied to the shared drive at /opt/rtapps/epics-3.15.5. They belong to the most recent stable release. This was so we can now automatically call burt after the IOC initialization on c1auxex2 to restore the backed-up channel values.

I also copied the database definition and modbus instruction files to /cvs/cds/caltech/target/c1auxex2, from where they are now being read upon IOC initialization. This is an excerpt of the service file:

#ExecStart=/usr/bin/procServ -f -L /home/controls/modbusIOC/modbusIOC.log -p /run/modbusioc.pid 8008 /opt/epics/modules/modbus/bin/linux-x86/modbusApp /cvs/cds/caltech/target/c1auxex2/ETMXaux2.cmd   <-- Contains logging to file, see note 1)
ExecStart=/usr/bin/procServ -f -p /run/modbusioc.pid 8008 /opt/epics/modules/modbus/bin/linux-x86/modbusApp /cvs/cds/caltech/target/c1auxex2/ETMXaux2.cmd <-- Initializes the EPICS IOC with Modbus support
ExecStop=/bin/kill -9 ` cat /run/modbusioc.pid` <-- Kills the detached process by its process ID
ExecStartPost=/bin/bash -c "/opt/epics/extensions/bin/linux-x86/burtwb -f /opt/rtcds/caltech/c1/burt/autoburt/latest/c1auxex.snap" <-- Restores general channel values
ExecStartPost=/bin/bash -c "/opt/epics/extensions/bin/linux-x86/burtwb -f /opt/rtcds/caltech/c1/medm/MISC/ifoalign/burt/ETMX.snap" <-- Restores PIT and YAW values from align MEDM screen
ExecStartPost=/bin/bash -c ". /home/controls/modbusIOC/ETMXaux2.sh" <-- Enables writing to PIT and YAW DAC channels, see note 2)

Note 1) I removed the logging to file for now because I noticed that if there are Acromag communication issues the logfile tends to grow in size VERY fast. In the cryo lab is had gotten to over 70GB just over the winter break. I don't think it's absolutely necessary to have it, and if diagnostics are needed we can easily uncomment it temporarily.

Note 2) I modified the static EPICS records of the four OSEM bias adjust channels so they won't start updating as soon as the IOC starts up (and before the channel defaults are restored by burt). This was done by setting the OMSL (output mode select) field from "closed_loop" to "supervisory". Sample record:

record(ao,"C1:SUS-ETMX_ULBiasAdj")
{
        field(DESC,"Bias Adjust for ETMX UL Coil Output")
        field(DTYP,"asynInt32")
        field(OUT, "@asynMask(C1AUXEX_XT1541A_DAC, 0, -16)MODBUS_DATA")
        field(SCAN,".1 second")
        field(OMSL,"supervisory")  <-- Used to be "closed_loop"
        field(DOL, "C1:SUS-ETMX_ULBiasSet  PP")
        field(PREC,"3")
        field(EGUF,"10.923")
        field(EGUL,"-10.923")
        field(EGU, "Volts")
        field(LINR,"LINEAR")
        field(DRVH,"10")
        field(DRVL,"-10")
        field(HOPR,"10")
        field(LOPR,"-10")
}

Now, on reboort/IOC re-initialization the physical DAC channels are performing a one-time readback of the last stored value in the Acromag's register, then idle until the last StartPost statement executes the script ETMXaux.sh, which changes their OMSL field back to "closed_loop". This causes them to start updating their output from the calc records defined in their DOL field (which have by then recovered their default values curtesy of burt). The result is a smooth transition from idling to the controlled state with no sudden or large offset changes. yes

  13580   Wed Jan 24 23:13:30 2018 johannesUpdateDAQc1auxex2 startup behavior
Quote:

The result is a smooth transition from idling to the controlled state with no sudden or large offset changes. yes

[Gautam, Johannes]

While checking how smooth the transition is we still noticed significant motion of ETMX by looking at the locked green laser and OpLevs. We found that this motion was not caused by interruption of the slow offset adjust, but rather the Watchdog being re-initialized to its OFF state, which cuts the fast channels OFF. On other optics this is observed too, but not as severe. The cause is a rather large offset on the LR coil coming from the fast DAQ, which was reported as 50mV by the slow readback channel (while other readback values are <10mV). It is present even when turning the output of the CDS model OFF, but vanishes when the watchdog is triggered. This helped us trace it to an offset of the DAC output itself: it is present at the output of the AI board but vanishes when the DAC is disconnected. The actual offset is ~40mV, as opposed to other channels on the same board, which ahve offsets in the range 3-7mV.

While we can compensate for this offset in software - it made us  wonder if the DAC channel is somehow busted and if that's what causing the 'wandering' of ETMX that we have been observing recently. There are two free DAC channels on the AI chassis that has the side coil and the green temperature control signals. We could re-route the LR signal through a different DAC channel to fix this.

gautam: 40mV offset at the AI board output gets multiplied by 3 in the dewhitening board, so there is a 120mV DC offset going to the coil (measured at dewhite board output with DMM). The offset itself isn't hurting us, but the fact that it is several times larger than other channels led us to wonder if it could be drifting around as well. From my SOS pitch balancing forays, in my head I have the number 30mrad as being the full range of the OSEM actuation - so if the offset swings by 120mV, that's ~150urad of motion, which is quite large, and is of the order of magnitude I'm used to seeing ETMX move around by.

  13590   Wed Jan 31 15:29:44 2018 johannesUpdateDAQPSL acromag server moved from megatron to c1auxex2

I moved the epics IOC server process for the single Acromag ADC that monitors the PSL signals from megatron to c1auxex2.

First, I disabled the legacy support on all channels as explained in elog 13565. Then I copied the files npro_config.cmd and NPRO.db from /opt/rtcds/caltech/c1/scripts/Acromag to /cvs/cds/caltech/target/c1psl2/ following the pattern of the old Motorola machines and the new c1auxex2. I had to make some edits for correct paths and expanded the epics records to the standard we're using for ETMX.

I then added a service to systemd on c1auxex2 that runs the epics IOC for the Acromag PSL channels: /etc/systemd/system/modbusPSL.service. No more tmux on megatron.

Running two IOCs on a signle machine at the same time did not produce any errors and seems fine so far.

  13647   Wed Feb 21 17:20:32 2018 johannesUpdateVACHornet gauge connected to DAQ.

I wired the six available BNC connectors on the front panel of the new XEND slow DAQ to physical Acromag channels. There were two unused ADC channels and eight DAC channels, of which I connected four. The following entries were added to /cvs/cds/caltech/target/c1auxex2/ETMXAUX2.db /caltech/target/c1auxex2/ETMXaux2.db

Connector Acromag Channel EPICS Name
In1 XT1221C #6 C1:Vac-CC1_HORNET_PRESSURE_VOLT
In2 XT1221C #7 C1:PEM-SEIS_XARM_TEMP_MON C1:PEM-SEIS_EX_TEMP_MON
Out1 XT1541B #4 C1:PEM-SEIS_XARM_TEMP_CTRL C1:PEM-SEIS_EX_TEMP_CTRL
Out2 XT1541B #5 Not Assigned
Out3 XT1541B #6 Not Assigned
Out4 XT1541B #7 Not Assigned

C1:Vac-CC1_HORNET_PRESSURE_VOLT is converted to the additional soft channel C1:Vac-CC1_HORNET_PRESSURE in units of torr using the conversion  10^{(\mathrm{Voltage}-10)} stated in the manual. A quick check showed that the resulting number and the displayed pressure on the vacuum gauge itself agree to ~1e-8 torr. Gautam added the new EPICS calc channel to the C0EDCU and restarted FB, now the data is being recorded.

Three of the output channels do not have a purpose yet, so their epics records were created but remain inactive for the time being.

Attachment 1: VacLog.png
VacLog.png
  13681   Tue Mar 13 20:03:16 2018 johannesConfigurationComputersc1auxex replacement

I assembled the rack-mount server that will long-term replace c1auxex, so we can return the borrowed unit to Larry.

SUPERMICRO SYS-5017A-EP Specs:

  • Intel Atom N2800 (2 cores, 1.8GHz, 1MB, 64-bit)
  • 4GB (2x2GB) DDR3 RAM
  • 128 GB SSD

IMG_20180313_105154890.jpg      IMG_20180313_133031002.jpg

I installed a standard Debian Jessie distribution, with option LXDE for minimal resource usage. Steps taken after fresh install

  1. Give controls sudo permission: usermod -aG sudo controls
  2. mkdir /cvs/cds
  3. apt-get install nfs-common
  4. Added line "chiara:/home/cds              /cvs/cds        nfs     rw,bg,nfsvers=3" to end of /etc/fstab
  5. Configured network adapter in /etc/network/interfaces
            iface eth0 inet static
            address 192.168.113.48
            netmask 255.255.255.0
            gateway 192.168.113.2
            dns-nameservers 192.168.113.104 131.215.125.1 131.215.139.100
            dns-search martian

    I first assigned the IP 192.168.113.59 of the original c1auxex, but for some reason my ssh connections kept failing mid-session. After I switched to a different IP the disruption no longer happened.
  6. Add lines "search martian" and "nameserver 192.168.113.104" to /etc/resolv.conf
  7. apt-get install openssh-server
    At this point the unit was ready for remote connections on the martian network, and I moved it to the XEND.
  8. Added lines to /home/controls/.bashrc to set paths and environment variables:
    export PATH=/cvs/cds/rtapps/epics-3.14.12.2_long/base/bin/linux-x86_64:/cvs/cds/rtapps/epics-3.14.12.2_long/extensions/bin/linux-x86_64:$PATH
    export HOST_ARCH=linux-x86_64
    export EPICS_HOST_ARCH=linux-x86_64
    export RPN_DEFNS=~/.defns.rpn
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/cvs/cds/rtapps/epics-3.14.12.2_long/base/lib/linux-x86_64:/cvs/cds/rtapps/epics-3.14.12.2_long/modules/modbus/lib/linux-x86_64/:/cvs/cds/rtapps/epics-3.14.12.2_long/modules/asyn/lib/linux-x86_64
  9. apt-get install libmotif-common libmotif4 libxp6 (required to run burtwb utility)

The server is ready to take over for c1auxex2 and does not need any local epics compiled, since it can run the 3.14.12.2_long binaries in /cvs/cds.

Attachment 1: IMG_20180313_105154890.jpg
IMG_20180313_105154890.jpg
Attachment 2: IMG_20180313_133031002.jpg
IMG_20180313_133031002.jpg
  13682   Wed Mar 14 23:58:30 2018 johannesConfigurationComputersc1auxex replacement

I replaced the borrowed server with the permanent one today. Before Removing the current server, Before, I performed several additional preparations:

  • Updated Chiara hostables to IP 192.168.113.48 for c1auxex
  • apt-get install procserv
  • copied ETMXaux2.* files in /cvs/cds/caltech/target/c1auxex2 to ETMXaux.* and changed references from /opt/rtcds/epics (which was a local directory on c1auxex2) to /cvs/cds/rtapps/epics-3.14.12.2_long in the copied files
  • Added instruction
    Environment="LD_LIBRARY_PATH=/cvs/cds/rtapps/epics-3.14.12.2_long/base/lib/linux-x86_64:/cvs/cds/rtapps/epics-3.14.12.2_long/modules/modbus/lib/linux-x86_64/:/cvs/cds/rtapps/epics-3.14.12.2_long/modules/asyn/lib/linux-x86_64"
    to /etc/systemd/system/modbusIOC.service  (required for burtwb dependencies)

Then I replaced the server:

  1. IFO was in LSC mode with both arms locked
  2. Backed up ETMX alignment using save feature in IFOalign screen
  3. Disengaged LSC mode
  4. Shut down ETMX watchdog
  5. Disconnected ETMX satellite box
  6. Shut down c1auxex2 and c1auxex
  7. Performed the server swap
  8. Booted c1auxex
  9. Made sure EPICS channels were back online and channel defaults were restored
  10. Reconnected satellite box
  11. Turned on watchdog
  12. Turned on OpLevs
  13. Engaged LSC mode -> both arms were instantly locked

I returned c1auxex2 to Larry, who needed it back asap because of some hardware failure

Steve: Acromag XT1221 ordered 3-15-18

  13687   Mon Mar 19 14:39:09 2018 johannesConfigurationComputersc1auxex replacement

[gautam, johannes]

The temperature control output channel for the XEND seismometer wasn't working properly. The EPICS channel existed, could be written to and read from, but no physical voltage was observed on the (confirmed properly) wired connector.

The Acromag DAC that outputs this channel was completely spare in the original scheme and does not serve any other channels at the moment. We found it to be unresponsive to ping from the host machine (reminder: the Acromags are on their own subnet with IPs 192.168.114.xxx connected to the secondary ethernet adapter of c1auxex), while all others returned the ping just fine. The modules have daisy-chained ethernet connections, and the one Acromag unit behind the unresponsive one in the chain was still responding to ping and its channels were working, so it couldn't have been a problem with the (ethernet) cabling.

Gautam and I power-cycled the chassis and server, which resolved the issue. The channel is now outputting the requested voltage on the Out1 BNC connector of the chassis (front). When I was setting up the whole system and did frequent rebooting and IP-redefinitions I have seen network issues arise between server and Acromags. In particular, when changing the network settings server-side, the Acromags needed to reboot occasionally. So this whole problem was probably due to the recent server-swap, as the chassis had not been power-cycled since.

 

During the debugging we also found that the c1psl2 channels were not working. This was because I had overlooked to update the epics environment variables for the modbus path defined in /cvs/cds/caltech/target/c1psl2/npro_config.cmd from the local installation /opt/epics/ (which doesn't exist on the new server anymore) to the network location /cvs/cds/rtapps/epics-3.14.12.2_long/. This has been fixed and the slow diagnostic PSL channels are recording again.

  13742   Mon Apr 9 23:28:49 2018 johannesConfigurationDAQc1psl channel list

I made a list of all the physical c1psl channels to get a better idea for how many acromags we need to replace it eventually. There  3123 unit is the one whose failure had prevented c1psl from booting, which is why it was unplugged (elog post 12852), and its channels have been inactive since. Are the 126MOPA channels used for the current mephisto? 126 tells me it's for an old lightwave laser, but I was checking a few and found that they have non-zero, changing values, so they may have been rewired.

It also hosts some virtual channels for the ISS with root C1:PSL-ISS_ defined in iss.db and dc.db, the PSL particle counter with root C1:PEM- defined in PCount.db  and a whole lot of PSL status channels defined in pslstatus.db. Transfering these virtual channels to a different machine is almost trivial, but the serial readout of the particle counter would have to find a new home.

Long story short - we need:

Function Type # Channels #Channels (no MOPA) # Units # Units (no MOPA)
ADC XT1221 34 21 5 3
DAC XT1541 17 14 3 2
BIO XT1111 19 10 2 1

 



3113 - ADC

C1:PSL-126MOPA_126PWR
C1:PSL-126MOPA_DTMP
C1:PSL-126MOPA_LTMP
C1:PSL-126MOPA_DMON
C1:PSL-126MOPA_LMON
C1:PSL-126MOPA_CURMON
C1:PSL-126MOPA_DTEC
C1:PSL-126MOPA_LTEC
C1:PSL-126MOPA_CURMON2
C1:PSL-126MOPA_HTEMP
C1:PSL-126MOPA_HTEMPSET
C1:PSL-FSS_RFPDDC
C1:PSL-FSS_LODET
C1:PSL-FSS_FAST
C1:PSL-FSS_PCDRIVE
C1:PSL-FSS_MODET
C1:PSL-FSS_VCODETPWR
C1:PSL-FSS_TIDALOUT
C1:PSL-PMC_RFPDDC
C1:PSL-PMC_LODET
C1:PSL-PMC_PZT
C1:PSL-PMC_MODET


3123 - ADC (failed)

C1:PSL-126MOPA_AMPMON
C1:PSL-126MOPA_126MON
C1:PSL-FSS_RCTRANSPD
C1:PSL-FSS_MINCOMEAS
C1:PSL-FSS_RMTEMP
C1:PSL-FSS_RCTEMP
C1:PSL-FSS_MIXERM
C1:PSL-FSS_SLOWM
C1:PSL-FSS_TIDALINPUT
C1:PSL-PMC_PMCTRANSPD
C1:PSL-PMC_PMCERR
C1:PSL-PPKTP_TEMP


4116 - DAC

C1:PSL-126MOPA_126CURADJ
C1:PSL-126MOPA_DCAMP
C1:PSL-126MOPA_DCAMP-
C1:PSL-FSS_INOFFSET
C1:PSL-FSS_MGAIN
C1:PSL-FSS_FASTGAIN
C1:PSL-FSS_PHCON
C1:PSL-FSS_RFADJ
C1:PSL-FSS_SLOWDC
C1:PSL-FSS_VCOMODLEVEL
C1:PSL-FSS_TIDAL
C1:PSL-FSS_TIDALSET
C1:PSL-PMC_GAIN
C1:PSL-PMC_INOFFSET
C1:PSL-PMC_PHCON
C1:PSL-PMC_RFADJ
C1:PSL-PMC_RAMP


XVME-210 - Binary Input

C1:PSL-126MOPA_FAULT
C1:PSL-126MOPA_INTERLOCK
C1:PSL-126MOPA_SHUTTER
C1:PSL-126MOPA_126LASE
C1:PSL-126MOPA_AMPON


XVME-220 - Binary Output

C1:PSL-126MOPA_126NE
C1:PSL-126MOPA_126STANDBY
C1:PSL-126MOPA_SHUTOPENEX
C1:PSL-126MOPA_STANDBY
C1:PSL-FSS_SW1
C1:PSL-FSS_SW2
C1:PSL-FSS_FASTSWEEP
C1:PSL-FSS_PHFLIP
C1:PSL-FSS_VCOTESTSW
C1:PSL-FSS_VCOWIDESW
C1:PSL-PMC_SW1
C1:PSL-PMC_SW2
C1:PSL-PMC_PHFLIP
C1:PSL-PMC_BLANK

  13764   Wed Apr 18 22:46:23 2018 johannesConfigurationGeneralAS port laser injection

Using Gautam's Finesse file and the cad files for the 40m optical setup I propagated the arm mode out of the AS port. For the location of the 3.04 mm waist I used the average distance to the ITMs, which is 11.321 m from the beam spot on the 2 inch mirror on the AS table close to the viewport. The 2inch lens focuses the IFO mode to a 82.6 μm waist at a distance of 81 cm, which is what we have to match the aux laser fiber output to.

I profiled the fiber output and obtained a waist of 289.4 μm at a distance of 93.3 cm from the front edge of the base of the fiber mount. Next step is to figure out the lens placement and how to merge the beam paths. We could use a simple mirror if we don't need AS110 and AS55, we could use a polarizing BS and work with s polarization, or we find a Faraday Isolator.


While doing a beam scan with the razor blade method I noticed that the aux laser has significant intensity noise. This is seen on the New Focus 1611 that is used for the beat signal between PSL and aux laser, as well as on the fiber output PD. There is a strong oscillation around 210 kHz. The oscillation frequency decreases when the output power is turned down, the noise eater has no effect. Koji suggested it could be light scattering back into the laser because I couldn't find a usable Faraday Isolator back when I installed the aux laser in the PSL enclosure. I'll have to investigate this a little further, look at the spectrum, etc. This intensity noise will appear as amplitude noise of the beat note, which worries me a little.

power_out_fluctuation_DC.png      power_out_fluctuation_AC_zoom.png

Attachment 1: ASpath.svg.png
ASpath.svg.png
  13781   Tue Apr 24 08:36:47 2018 johannesConfigurationGeneralAux Laser LD dying? (AS port laser injection)

In September 2017 I measured ~150mW output power, which was already kind of low. What are the chances of getting this one repaired? Steve, can you please check the serial number? It's probably too old like the other ones.

Quote:

I suspect that the LD of the aux laser is dying.
- The max power we obtain from this laser (700mW NPRO) is 33mW. Yes, 33mW. (See attachment 1)

 

  13810   Thu May 3 10:40:43 2018 johannesConfigurationGeneralAS port laser injection

Instead of trying to couple the fiber output into the interferometer, I'm doing the reverse and maximize the amount of interferometer light going into the fiber. I set up the mode-matching solution shown in attachment #1 and started tweaking the lens positions. Attachment #2 shows the setup on the AS table. After the initial placement I kept moving the lenses in the green arrow directions and got more and more light into the fiber.

When I stopped this work yesterday I measured 86% of the AS port light coming out the other fiber end, and I have not yet reached a turning point with moving the lenses, so it's possible I can tickle out a little more than that.

It occured to me though that I may have been a little hasty with the placement of the mirror that in attachment #2 redirects the beam which would ordinarily go to AS55. For my arm ringdown measurements this doesn't matter, I could actually place it even before the 50/50 beamsplitter that sends light onto AS110 and double the amount of light going into the IFO. What signals are needed for the Guoy phase measurement? Is AS 110 sufficient, or do we need AS55?

Attachment 1: mm_solution_AStable.png
mm_solution_AStable.png
Attachment 2: AStable_beampath.pdf
AStable_beampath.pdf
  13832   Fri May 11 11:47:33 2018 johannesSummaryPEMAcromag issues

The replacement Acromag we scooped from the West Bridge E-Shop does actually seem to work, although we thought it was broken - at first it was just outputting zeros, but after I did the calibration procedure, applying +10 V and -10 V, respectively, it was reporting voltage correctly, over the full range. I don't know why the factory settings would be messed up, but it had been out of the box before. I did this only with channel 7, so you need to calibrate channels 0-6 and confirm that they indeed also work properly.

  13839   Sun May 13 20:48:38 2018 johannesUpdateGeneralCDS crash

I think the root of the problem is that the /opt/rtapps/ and /cvs/cds/rtapps/ mounting locations point to the same directory on the nfs server. Gautam and I were cleaning up the /cvs/cds/caltech/target/ directory, placing the previous contents of /cvs/cds/caltech/target/c1auxex/, including database files and startup instructions in /cvs/cds/caltech/target/c1auxex_oldVME/, and then moved /cvs/cds/caltech/target/c1auxex2/, which has the channel database and initialization files for the Acromac DAQ, to /cvs/cds/caltech/target/c1auxex/.

This also required updating the systemd entries on c1auxex to point to the changed directory. While confirming that everything worked as before we noticed that upon startup the EPICS IOC complains about not being able to find the caRepeater binary. This was not new and has not limited DAQ functionality in the past, but we wanted to fix this, as it seemed to be some simple PATH issue. While the paths are all correctly defined in the user login shell, systemd runs on a lower level and doesn't know about them. One thing we tried was to let systemd execute /cvs/cds/rtapps/epics-3.14.12.2_long/etc/epics-user-env.sh initializing EPICS. It was strange that the content of that file was pointing to /opt/rtapps/epics-3.14.12.2_long/base, which is not mounted on the slow machines, so we changed the /opt/ it to /cvs/cds/, not realizing that the frontends read from the same directory (as Gautam said, /cvs/cds does not exist as a mount point on the frontend). It ended up not working this way, and apparently I forgot to change it back during clean up. But worse, never elogged it!

In the end, we managed to to give systemd the correct path definitions by explicitly calling them out in /cvs/cds/caltech/target/c1auxex/ETMXenv, to which a reference was added in the systemd service file. The caRepeater warning no longer appears.

  13881   Wed May 23 00:45:18 2018 johannesConfigurationGeneralAS port laser injection

I was planning to set up the additions to the AS table that are outlined in Attachment #1. Unfortunately the beam is too large for the 2mm clear aperture Faraday rotators that we have available at that position. I checked the 40m and QIL and found 5 Faraday isolators/rotators for 1064 nm total, but none have large enough aperture for the current setup. Some options for buying a larger aperture isolator are:

I wanted to leave the rest of the setup undisturbed at first, but I think a much easier solution would be to move the 2" focusing lens up by about 12", which moves the beam focus away from AS55 to where the Faraday will be placed, but we can re-focus it with another lens. I may have to change the mode-matching for the aux laser fiber slightly to accomodate this change, but if there are no other concerns I would like to start this work tomorrow (Wednesday).

Attachment 1: faraday_location.pdf
faraday_location.pdf
  13900   Thu May 31 02:04:55 2018 johannesUpdatePSLAUX laser state of mind

The AUX laser is down to 5.4 mW output power sad

What's worse, because we wanted those fast switching times by the AOM for ringdowns, I made the beam really small, which

  1. came with a severe tradeoff against conversion efficiency. I tried to squeeze the last out of it today, but there's only about 1.3 mW of diffracted light in the first order that reaches the fiber, with higher diffraction orders already visible.
  2. produced a very elliptical mode which was difficult to match into the fiber. Gautam and I measured 600 uW coming out of the fiber on the AS table. This per se is enough for the SRC spectroscopy demonstration, but with the current setup of the drive electronics there's no amplitude modulation of the deflected beam.

When going though the labs with Koji last week I discovered a stash of modulators in the Crackle lab. Among them there's an 80 MHz AOM with compact driver that had a modulation bandwidth of 30MHz. The fall time with this one should be around 100ns, and since the arm cavities have linewidths of ~10kHz their ringdown times are a few microseconds, so that would be sufficient. I suggest we swap this or a similar one in for the current one, make the beam larger, and redo the fiber modematching. That way we may get ~3mW onto the AS table.

I think I want to use AS110 for the ringdowns, so in the next couple days I'll look into its noise to get a better idea about what power we need for the arm ringdowns.

Attachment 1: IMG_20180530_220058190.jpg
IMG_20180530_220058190.jpg
  13911   Sun Jun 3 22:48:59 2018 johannesUpdatePSLaux laser replacement

I brought the NPRO from the Crackle experiment over to the 40m Lab and set it up on the PSL table to replace the slowly dying AUX laser. I also brought along a Faraday isolator, broadband EOM, and an ISOMET AOM with driver electronics from the optics storage in the Crackle Lab.

This laser is a much newer model, made in 2008, and still has all its mojo, but we should probably keep up the practice of turning it off when it's not going to be used for a while. I measured 320 mW leaving the laser, and 299mW of that going through the Faraday isolator, whose Brewster-angle polarizer I had to clean because they were a little dusty. While the laser output is going strong, the controller displays a power output of only 10 mW, which makes me think that the power monitoring PD is busted. This is a completely different failure mode from what we've seen with the other NPROs that we can hopefully get repaired at some point, particularly because the laser is newer, but for now it's installed on the PSL table. This likely means that the noise eater isn't working on this unit either, for different reasons, but at least we have plenty of optical power.

The setup is very similar to before, with the addition of a Faraday isolator and a broadband EOM, in case we decide to get more bandwidth in the PLL. I changed the Crystal Technologies 3200-113 200 MHz AOM for an ISOMET 80 MHz AOM with RF driver from the Crackle lab's optics storage and sized the AUX beam to a diameter of 200 micron. I couldn't locate an appropriate heat sink for the driver, which is still in factory condiction, but since the PSL AOM also runs on 80MHz I used that one instead. The two AOMs saturate at different RF powers, so care must be taken to not drive the AUX AOM too high. At 600 mV input to the driver the deflection into the first order was maximal at 73 % of the input power, with the second order beam and the first order on the other side cleary visible.

In order to speed things up I didn't spend too much time on mode-matching, but the advantage of the fiber setup is that we can always improve later if need be without affecting things downstream. I coupled the first order beam into the fiber to the AS table with 58% efficiency, and restored the beat with the PSL laser on the NewFocus 1611. The contrast there is only about 20%, netting a -20 dBm beat note. This is only a marginal improvement from before, so the PLL will work as usual, but if we get the visibility up a little in the future we won't need to amplify the PD signal for the PLL anymore.

Some more things I wanted to do but didn't get to today are

  • Measure intensity noise of aux laser
  • Measure rise and fall times of new AOM
  • Get PLL back up and running
  • Place 90/10 beamsplitter in AS path and couple IFO output into fiber (= couple fiber output into IFO)

I'll resume this work tomorrow. I turned the aux laser and the AOM driver input off. For the PSL beat the AOM drive is not needed, and the power in the optical fiber should not exceed 100 mW, so the offset voltage to the AOM RF driver has to remain below 300 mV.

  13912   Mon Jun 4 02:52:52 2018 johannesUpdatePSLaux laser replacement

> While the laser output is going strong, the controller displays a power output of only 10 mW, which makes me think that the power monitoring PD is busted.

NPRO internal power monitor often shows smaller value than the actual due to a broken PD or misalignment. I don't think we need to fix it.

STEVE: Aux Lightwave M126-1064-200, sn259 [July 2009] 1.76A, ADJ 9,  9mW on it's display should not mislead you. It's output  320mW

Quote:

I brought the NPRO from the Crackle experiment over to the 40m Lab and set it up on the PSL table to replace the slowly dying AUX laser. I also brought along a Faraday isolator, broadband EOM, and an ISOMET AOM with driver electronics from the optics storage in the Crackle Lab.

This laser is a much newer model, made in 2008, and still has all its mojo, but we should probably keep up the practice of turning it off when it's not going to be used for a while. I measured 320 mW leaving the laser, and 299mW of that going through the Faraday isolator, whose Brewster-angle polarizer I had to clean because they were a little dusty. While the laser output is going strong, the controller displays a power output of only 10 mW, which makes me think that the power monitoring PD is busted. This is a completely different failure mode from what we've seen with the other NPROs that we can hopefully get repaired at some point, particularly because the laser is newer, but for now it's installed on the PSL table. This likely means that the noise eater isn't working on this unit either, for different reasons, but at least we have plenty of optical power.

The setup is very similar to before, with the addition of a Faraday isolator and a broadband EOM, in case we decide to get more bandwidth in the PLL. I changed the Crystal Technologies 3200-113 200 MHz AOM for an ISOMET 80 MHz AOM with RF driver from the Crackle lab's optics storage and sized the AUX beam to a diameter of 200 micron. I couldn't locate an appropriate heat sink for the driver, which is still in factory condiction, but since the PSL AOM also runs on 80MHz I used that one instead. The two AOMs saturate at different RF powers, so care must be taken to not drive the AUX AOM too high. At 600 mV input to the driver the deflection into the first order was maximal at 73 % of the input power, with the second order beam and the first order on the other side cleary visible.

In order to speed things up I didn't spend too much time on mode-matching, but the advantage of the fiber setup is that we can always improve later if need be without affecting things downstream. I coupled the first order beam into the fiber to the AS table with 58% efficiency, and restored the beat with the PSL laser on the NewFocus 1611. The contrast there is only about 20%, netting a -20 dBm beat note. This is only a marginal improvement from before, so the PLL will work as usual, but if we get the visibility up a little in the future we won't need to amplify the PD signal for the PLL anymore.

Some more things I wanted to do but didn't get to today are

  • Measure intensity noise of aux laser
  • Measure rise and fall times of new AOM
  • Get PLL back up and running
  • Place 90/10 beamsplitter in AS path and couple IFO output into fiber (= couple fiber output into IFO)

I'll resume this work tomorrow. I turned the aux laser and the AOM driver input off. For the PSL beat the AOM drive is not needed, and the power in the optical fiber should not exceed 100 mW, so the offset voltage to the AOM RF driver has to remain below 300 mV.

 

  13932   Fri Jun 8 01:08:22 2018 johannesUpdatePSLFirst light of AUX at YEND

Among the things that we hadn't taken care of yesterday before beginning to look for transmission signals were the polarization of the AUX beam on the AS table and optimizing the PLL feedback. The AUX beam is s-polarized on the PSL table (choice due to availablility of mirrors), and I added a half waveplate in front of the fiber to match it's axes. I placed another half-waveplate at the fiber output and send the reflection port of a PBS cube onto a PDA1CS photodetector. By alternatingly turning the waveplates I minimized the reflected light, giving strongly p-polarized light on the AS table for best results when interfering with the IFO beam. I wiggled the fiber and found no strong dependency of the output polarization on fiber bending. Attachment 2 shows the current layout.

The beat signal between AUX and PSL table is at -20dBm, and I adjusted the PLL gain and PI-corner to get reliable locking behavior. I think it's a good idea to keep the AUX beam on the AS table blocked while it's not in use, and only unblock it when it is phaselocked to avoid a rogue beam with no fixed phase relation to the PSL in the IFO.I blocked the beam after completing this work today.

I used the signal chain that Keerthana, Koji, and I set up yesterday to look for mode flashed of the AUX light in the YARM using the RF beat with the PSL carrier in transmission. To align the AUX beam to the arm the following steps were performed:

  1. Using a spectrum analyzer to look at the RF power at the target frequency between frequency-shifted AUX beam and PSL carrier on AS110, align the beam using the mirror pair closest to the fiber coupler for maximum signal.
  2. Initiate a sweep of the PLL LO frequency sourced by the Marconi using GPIB scripts over about 1 FSR. A strong peak was visible at ~31.76 MHz offset frequency
  3. Tune and hold LO frequency (in this case at 48.2526 MHz) such that AUX beam resonates in the arm. Optimize alignment by maximizing RF signal on PD in transmission.

This was followed by a sweep over two full FSRs. Attachment #1 shows the trace recorded by the AG4395 using the max data hold setting during the sweep. Essentially the beat between AUX and PSL carrier traced out the arm's transmission curve. At minimum transmission there was still a ~82dB beat on the transmission PD visible.

The YEND QPD is currently blocked and sees no light.

Attachment 1: AG4395A_07-06-2018_205019.pdf
AG4395A_07-06-2018_205019.pdf
Attachment 2: PSL_AUX_SETUP.pdf
PSL_AUX_SETUP.pdf
Attachment 3: AS_AUX_SETUP.pdf
AS_AUX_SETUP.pdf
  13958   Wed Jun 13 23:23:44 2018 johannesUpdateCDSEX wiring confusion

It's true.

I went through the wiring of the c1auxex crate today to disentangle the pin assignments. The full detail can be found in attachment #1, #2 has less detail but is more eye candy. The red flagged channels are now marked for removal at the next opportunity. This will free up DAQ channels as follows:

TYPE Total Available now Available after
ADC 24 2 14
DAC 16 8 12
BIO sinking 16 7 7
BIO sourcing 8 8 8

This should be enough for temperature sensing, NPRO diagnostics, and even eventual remote PDH control with new servo boxes.

Attachment 1: c1auxex_channels.pdf
c1auxex_channels.pdf
Attachment 2: XEND_slow_wiring.pdf
XEND_slow_wiring.pdf
  13965   Thu Jun 14 15:31:18 2018 johannesUpdateCDSEX wiring confusion

Bad wording, sorry. Should have been channels in excess of ETMX controls. I'll add the others to the list as well.

Updated channel list and wiring diagram attached. Labels are 'F' for 'Front' and 'R' for - you guessed it - 'Rear', the number identifies the slot panel the breakout is attached to.

Attachment 1: XEND_slow_wiring.pdf
XEND_slow_wiring.pdf
Attachment 2: c1auxex_channels.pdf
c1auxex_channels.pdf
  13968   Thu Jun 14 22:45:05 2018 johannesUpdateGeneralAUX beam SRC alignment

[Jon, Gautam, Johannes]

Jon spent some time trying to align the AUX beam to the SRC today, I got to the game kind of late so maybe others can add more detail.

The AUX beam that is reflected by the SRM looks terribly misshapen - it is quite elongated in vertical direction. Unfortunately I didn't snap a picture of it - anybody? It seemed at first as if this could be clipping - but after confirming the alignment of the AUX beam with the PSL output beam with aligned SRM, a slow dither of the SRM just moved the ugly pattern on the AS camera with no change to its shape - so clipping is unlikely. I'm now thinking that this is just the output beam of the fiber coupler after propagating ~15 meters to the SRM and back - even though this aspheric lens triplet coupler is supposed to be super-duper. I found that if I loosen the fiber slightly and pull it back just a bit at least the spot on the AS camera becomes nice and round - so maybe the fiber just doesn't sit well in this collimator? Not sure why that would be. I checked the fiber tip with the microscope, and while there was some gunk present, the central region and the core were clear (still cleaned using the fiber cleaning kit, which got rid of the debris). Either way, before switching to a different collimator I think we should give the Guoy phase measurement a shot - after all there was plenty of RF signal present on both AS110 and the PDA10CF placed at the YEND.

Looking for rogue beams on the AS table, I started placing some beam dumps. There was one particularly strong source of stray beams - a lens that was labeled with KPX094AR.33_F100. It became apparent after alignment efforts to the IFO had moved the AUX beam signifcantly off-center on this lens. According to the label it should have an AR coating for 1064nm, however judging by the amount of reflected light, it was certainly NOT AR-coated for 1064nm. I replaced it with a bi-convex f=100mm lens with confirmed AR-behavior.

The AUX laser is currently shuttered.


Per our Wednesday meeting, some items to work on are

  • Align the zero-order AUX beam into a second collimator on the PSL table, so we can switch the fiber output and look for RF signals at the offset-phaselock frequency without the additional frequency shift from the AOM. This will simpligy the mode spectroscopy scheme significantly
  • Abandon the R10/T90 beamsplitters in favor of R90/T10 beamsplitters. We'll swap the large mirror in front of the AS camera with an R90/T10 BS, and follow it up with a second R90/T10 BS that sends the AUX beam to the IFO. This way we'll have identical power levels on AS110 and AS55, and still 90% of the current AUX light going into the IFO, but without strong secondary beams from R10/T90 optics.
  13978   Mon Jun 18 10:34:45 2018 johannesUpdateComputer Scripts / Programsrunning comsol job on optimus

I'm running a comsol job on optimus in a tmux session named cryocavs. Should be done in less than 24 hours, judging by past durations.

  13982   Mon Jun 18 15:59:17 2018 johannesUpdatePSLOptics on AS table
Quote:

Furthermore, I believe we are losing more than 10% of the light due to this BS. The ASDC (which is derived from AS55 PD) level is down at ~110cts as the Michelson is fringing, while it used to be ~200 cts. I will update with a power measurement shortly. But I think we should move ahead with the plan to combine the beam into the IFO's AS mode as discussed at the meeting last week.

Is the 10% specified for P-Pol or for UNP? I contacted CVI about beamsplitters, since their website doesn't list a BS1-1064-90-... option on the website. They say a R=90% beamsplitter would be a custom job. The closest stock item they got is BS1-1064-95-2025-45UNP specified at R=95% for UNPolarized beams. They were kind enough to sent me the measured transmission curves for a recent lot of these, which is attached was uploaded to the wiki [Elog Police K: NO PROPRIETARY DOCUMENTS ON THE ELOG, which is public. Put it on our wiki and put the link here]. The figure is not labeled, but according to the contact Red is S-Pol and Blue is P-Pol, which means that this one actually has R=~90% for P, pretty much what we want. We'll need to buy two of these to make the swap in the setup.

Back to your original point: There's only a BS1-1064-10-2025-45UNP on the website, so unless we got these as custom items, the R for P-Pol is probably NOT actually 10%, just somewhere between 0% and 20%

  13989   Wed Jun 20 00:57:04 2018 johannesUpdateGeneralAUX beam alignment issues

We did swap a lens as discussed in elog 13968, but they both had f=100mm specified, the difference being one was AR-coated for 1064 and bi-convex, while the other one was plano-convex and had a different coating. The reason for the large beam spot was something else: The fiber wasn't sitting in the coupler properly. When reconnecting the fiber after taking it out make sure to align the key on the fiber end with the notch in the coupler before tightening. After discovering this the following was done:

  • Fixed fiber mounting situation
  • Tested AUX alignment into fiber on PSL table, was still good
  • The AUX polarization was aligned to the wrong fiber axis. I fixed this. The coupler on the PSL table has it's noth oriented vertically since we're using s-polarized light. The AS-table coupler is rotated by 90 degrees, such that the notch points to the side. This way we technically don't need any halfwaveplates for rotation. However, there are still current HWPs installed.
  • Locked both arms and ran dither alignment until satisfactory
  • Misaligned ITMX and ETMX, and further set the ITMX pitch offset to 0.0
  • Started overlapping the expectedly misaligned beams by eye. For this I turned the power of the deflected beam down to 50mV bias voltage, which gives the PSL and AUX lasers similar card-brightness on the shared path
  • Misaligned SRM more because there was still the strong prompt reflection coming out the AS port.
  • Restored phaselock between AUX and PSL, with beat at 30MHz between 1st-order diffracted in fiber and PSL
  • Immediately saw STRONG 30MHz RF signal on AG4395. Disappeared when blocking AUX, and optimized alignment brought the signal up to -10dBm, as shown in attachment #1
  • Checked YEND PDA10CF and saw a -80dBm RF signal at 30 MHz (#2), compatible with earlier observations.

Before leaving I restored the XARM alignment. SRM remains misaligned, LSC off. Alignment shouldn't change drastically over night, so I suggest when picking this work up tomorrow to directly look for the beats after phaselocking AUX and PSL

Attachment 1: as110_rf_30MHz.pdf
as110_rf_30MHz.pdf
Attachment 2: yend_rf_30MHz.pdf
yend_rf_30MHz.pdf
  14013   Sun Jun 24 23:13:46 2018 johannesUpdateGeneralAUX beam alignment issues

At some point we want to change the AUX injection on the AS table to interfere less with the normal interferometer path, and avoid 10/90 beamsplitters which produce a fair amount of ghosting. The plan is to replace the 99/1 BS whose reflection goes to AS110 and AS55, while the transmission goes to the AS camera, with a 90/10 BS as shown in the attachment. This results in ~10% less light on the PDs compared to the pre-AUX era. Between this BS and the AS camera there will be a second 90/10 BS that sends the AUX light into the IFO, so we end up with marginally less AUX power into the IFO and the same PSL power on the AS cam. We're short optics, so this has to wait until two new beamsplitters arrive from CVI.

Attachment 1: AS_AUX_SETUP.pdf
AS_AUX_SETUP.pdf
  14170   Mon Aug 20 14:04:53 2018 johannesBureaucracyEquipment loanTwo C30642G PDs removed

EDIT: After discussing with Koji and checking the existing M2ISS PDs I put the two C30642G back and took two C30665GH (active diameter: 3mm) diodes. Only one of this type remains in storage.

I removed two C30642G photodiodes from the stash for the new M2ISS hardware and updated the wiki page accordingly.

  14172   Tue Aug 21 03:09:59 2018 johannesOmnistructureDAQPanels for Acromag DAQ chassis

I expanded the previous panels to 6U height for the new DAQ chassis we're buying for the upgrade. I figure it's best if we stick to the modular design, so I'm showing a panel for 8 BNC connectors as an example. The front panel has 12 slots, the back has 10 plus power connectors, switches, and the ethernet plug.

I moved the power switch to the rear because it's a waste of space to put it in the front, and it's not like we're power cycling this thing all the time. Note that the unit only requires +24V (for general operation, +20V also does the trick, as is the situation for ETMX) and +15V (excitation field for the binary I/O modules). While these could fit into a single CONEC power connector, it's probably for the better if we don't make a version that supplies a large positive voltage where negative is expected, so I put in two CONEC plugs for +/- 15 and +/- 24.

I want to order 5-6 of these as soon as possible, so if anyone wants anything changed or sees a problem, please do tell!

Attachment 1: auxdaq_40m_6U_front.pdf
auxdaq_40m_6U_front.pdf
Attachment 2: auxdaq_40m_6U_rear.pdf
auxdaq_40m_6U_rear.pdf
Attachment 3: auxdaq_40m_6U_BNC.pdf
auxdaq_40m_6U_BNC.pdf
  2624   Mon Feb 22 11:38:05 2010 joe, jenne and steveConfigurationVACvacuum is back to normal

Morning condition: vacuum rack power is still off, no MEDM screen reading.....meaning unknown vacuum pressure.We closed PSL shutter immediately.

Joe restored c1iscepis and Jenne powered up the vac-rack UPS. Now the rest of the vac-rack power were restored from starting at the top to bottom.

P1 was reading 15 mTorr.  We restarted pumps and  set vacuum valve positions. V1 opening required Rob's recipe of elog # 1863 to defeat interlock that

has a non communicating gauge: PTP1

CC1 pressure just reached 1e-6 Torr at VAC NORMAL configuration.

  4394   Thu Mar 10 01:28:47 2011 joe, jamie, rana, chrisSummaryCDSSimSuspension !

Today was a banner day for Simulated Plants.

Joe and Jamie have been working to get it all happening and this afternoon we started stuffing filters into the plant to make it act like the:

40mETMY.png

We put in the following features so far:

  1. Anti-Imaging filters (these are hacked to be approximate since the real ones are 7570 Hz LP filters and the SimAI only can have filters up to 8192 Hz).
  2. Dewhitening filters (copied from the SimDW in the SUS-ETMY screens)
  3. Coil Driver transimpedance (1 / 200 Ohms)
  4. Magnet-coil force constant (0.016 N/A)
  5. Conversion from Coil to DOF Basis
  6. All DOFs of the mechanical model are represented as simple harmonic oscillators with Q~100 and f ~ measured free swinging peaks.
  7. Signals/Noise can be injected either as force noise on the test mass or as displacement noise at the suspension point.
  8. Conversion from DOF to Shadow Sensor basis.
  9. Optical Levers (with whitening)
  10. Shadow Sensors have 2V/mm readout gain and whitening filters before being digitized by the SimADC.

We have also changed the switching logic for the SUS and SimETMs for the shadow sensor whitening. It used to be that either the hardware OR the software whitening was on. Now we have made it like all of the other whitening/antiwhitening in LIGO and the whitening/antiwhitening come on together. Joe and Jamie are going to propagate this to the other SUS. The hardware filter is a 30,100:3 (poles:zeros) whitening filter. The digital filter used to also be 30,100:3 with a DC gain = 1. I've changed the FM1 filter in the XXSEN filter banks into a 3:30 for the ETMY so that it now comes on and just compensates the hardware filter. This change should be propagated to all other SUS and the MEDM screens updated to show the new situation.

After this change, we decided to calibrate the {UL,UR,LL,LR,SD}SEN channels into units of microns. To do this we have made an FM6 filter called 'cts2um' that accounts for the OSEM gain and the ADC conversion factors. These channels are now in units of microns without applying any calibration in the DTT or Dataviewer. The plot below shows the OSEM shadow sensor time series with all damping loops ON and a very rough version of seismic noise being injected in all 6 DOFs (note that the y-axis is microns and the x-axis is seconds).

dvsim.png

Next, Jamie is adding the angular calibrations (so that SUSPIT and SUSYAW are in rads) and Chris is making vectift quality seismic noise injectors.

We also need to add coating thermal noise, suspension thermal noise, substrate thermal noise, ADC/DAC noise and a lot of MEDM screen indicators of what state we're in. I myself can't tell from the OSEM time series if its real or Sim.

redpill_bluepill.jpg

  12998   Thu May 18 15:20:29 2017 jigyasaSummarytelescope designTelescope Design for the Gig-E cameras

With the objective of designing a telescope system for the Gig-E, a system of two lenses is implemented. A rough schematic of the telescope system is attached. Variables in the system include the focal lengths of the two spherical lenses(f1, f2), distance between the lenses(t), distance between the test mass and the lens combination(u), distance between the other lens and the sensor(v). Also the size of the object to be desired ranges from 3’’ which is the size of the test mass to 1’’ which is approximately focusing on the beam spot implying that the required magnification ranges from 0.06089 to 0.1826 (since the sensor image circle size if ¼”)
The lenses are selected to be 2” in diameter so as to ensure sufficient collected power.

Going through the focal lengths available, namely 50, 100, 150, 200, 250 mm, and noting that the object distance would be within the ranges of 1500 to 2500 mm, plots of various accessible u and v for different values of t were obtained. This optimization was done to ensure the proper selection of the lenses. Additionally, a sensitivity analysis was performed and plots depicting the dependence of magnification on the precision limiting measurements of u (1 mm) and t (5 mm) were obtained. (These were scatter plots quantifying the deviation from the desired magnification ranges). The plots depict the error term induced on the magnification if there was an error in measuring the distance between the lenses as 5mm and if the precision in measuring the object to lens distance by 1mm.

The telescope design might be limited by spherical aberrations and coma, which might be resolved by either using aspherical lenses or by increasing the f-number (typically with an f number around 5 or 6). The use of aspherical lenses particularly parabolic lenses was considered, however this was found to be quite an expensive route. 

Analyzing the plots and taking into consideration the restrictions of the slotted lens tubes, the precision in measurement of the distances, a 150 mm- 250mm focal length solution is proposed. With a diameter of 2”, the f number is computed to be 2.95 and 4.92. With this combination and the object distances lying between 1500 to 2500 mm, the image distance to the sensor varies between 51 to 100mm. So a slotted lens tube controlling the distance between the lenses would be required.

I also considered a combination of focal lengths 250mm and 250mm, as then both of the lenses would at least have an f number of 4.92. The results for this combination are also attached. The image distance from the lens combination is about a 100 to a 140 mm. However, this would require much longer slotted length tubes thereby adding to the cost of the system. The number of accessible u-v points is the same as that for the 150-250 combination. 

I am still trying to search for a much more concrete way of quantifying aberrations.

Attachment 1: ray.png
ray.png
Attachment 2: Schematic.png
Schematic.png
Attachment 3: 150-250uv.png
150-250uv.png
Attachment 4: 150-250error.png
150-250error.png
Attachment 5: 250-250.png
250-250.png
Attachment 6: 250-250error.png
250-250error.png
  13000   Mon May 22 10:15:14 2017 jigyasaSummarytelescope designLens tubes and object distances

Since the f numbers of the lenses in the proposed design with biconvex lenses are a little less than 5 and the conjugate ratio(that is the ratio of object to image distance) is greater than 5, I explored the use of plano convex lenses, but with the same focal lengths, the accessible u-v range is restricted with the planoconvex rather than biconvex lenses.
On Friday, I had a discussion with Gautam and Steve about the hardware that is the cylindrical enclosures for the camera and the telescope and we examined two such aluminum cylindrical enclosures. One of them was the one being currently employed for the cameras. The dimensions were measured and the length was found to be 8’’ and an outer diameter of 26 cm within an error of 0.5 cm.
The other enclosure was longer with a length of 52 cm(±0.5 cm), outer diameter of 10”(±0.1”) and an inner diameter of 23.7cm(±0.1cm). Pictures of these enclosures are attached.
Both of these enclosures have internal optical rail to mount the camera and the telescope system. Depending on the weight of the telescope system(that includes the weight of the slotted lens tubes, the lenses), it might be more efficient to clamp the telescope system itself on the rails with the low weight camera mounted on the lens tube.
I also went around to get an idea of distance of the GigE from the test masses. This was just a step to verify if the object distances were really in the ranges being taken into consideration, that is between 1500 and 2500 mm. I also tried to cross check the measurements with the CAD drawing of the 40m. However, as I have been informed, the distances in the CAD version are not updated.

The distances from the optic to the CCD detector would range from around 75.1 cm for MC2, 94.01 cm for ITMX, 97.21 cm for ETMX, 117.19 cm for ITMY and 88.463 cm for ETMY. The illuminator for the ETMY was disconnected, so Gautam helped me access the manual lamp control to enable me to take measurements.
The values for ETMX, MC2 and ITMY are subject to an error of ±1’’. Due to a lot of obstructions, the values for ETMY and ITMX may be subject to a lot more error. Even so, these distances are clearly less than 2 meters, prompting me to run the simulations again and verify that the chosen combination is still useful.

As for the slotted lens tubes to mount the 2” lenses, the following options are available on the Thorlabs catalog. CVI and Edmunds do not seem to offer much of the stackable lens tubes.

SM2L30C is a lens tube onto which the optic can be mounted without the need of a spanner wrench. It also has a length of 3”. However, it has a rotatable slip shield which can be rotated open as and when the access to optic is required. However, there might be a slight compromise with rigidity here.

SM2L30 is a lens tube with internal thread depth of 3”, the optic can be mounted using spanner wrench and a retainer ring. The optic cannot be accessed from both ends of the tube here.
SM2M30 is a lens tube with no external threads, therefore lens tube couplers would be required to stack the tubes. The optic is accessible from both ends here though.

Considering the merits and demerits of all these available options, the use of SM2L30 might be considered as it provides a quick and efficient way of stacking multiple lens tubes. As for accessing the optic from both sides, using multiple tubes helps overcome the problem and still ensures that we are able to access a number of separation distances as per requirement.
Thorlabs also offers an internal C to external SM2 adapter so that the lens tube could be fixed onto the C mount of the camera. 

I would be examining the use of 1" diameter lenses for the eyepiece as suggested by Rana, as that might give us more flexibility. 

Attachment 1: Pictures1.pdf
Pictures1.pdf Pictures1.pdf Pictures1.pdf Pictures1.pdf
  13004   Mon May 22 15:01:41 2017 jigyasaUpdatetelescope designUpdated Telescope design with 1'' eye piece

I examined the use of a single lens system for the available range of focal lengths, for the required magnification and found that a focal length of at most 100 mm would be required to sufficiently cover the object distance range. This would greatly compromise with the f-number and hence lead to a lot more spherical aberrations.

Therefore, a two lens system would be more useful to implement. Using an eyepiece of 1” puts an additional constraint on the system such that the separation between the lenses must now at least equal or be greater than half the image distance from the first lens to ensure that no light from the light cone is lost. This is clarified in the schematic. The image from the first lens in absence of the second lens would form at point A, subtending an angle θ. In order to ensure that no part this light cone emerging from the first lens is lost, the second lens must be placed at a distance atleast v/2 from the first lens.

A combination of 125mm focal length 2” diameter objective with a 250 mm 1” eyepiece covers the required range of object distances (650mm to 1500 mm). Increasing the focal length of the eye piece increases the minimum object distance accessible to 700 mm. 

A glance at the accessible u, v points shows that all magnifications are not possible at a given object distance. To image the entire surface of the test mass, a distance of at least 1.25m is required from the objective, while a beam spot of 1'' diameter can be imaged easily at upto 1200 mm from the objective . This holds true even for the 150-250 mm biconvex 2" lens combination proposed earlier. 

If this sounds reasonable, we could proceed with ordering the lenses.

Attachment 1: 1incep.pdf
1incep.pdf
  13013   Thu May 25 16:42:41 2017 jigyasaUpdateComputer Scripts / ProgramsMaking pylon installation on shared directory

I have been working on interfacing with the GigE’s. I went through Joe Be’s paper and the previous elogs and verified that the code files are installed.

I then downloaded and extracted a copy of the Pylon software onto my home directory on Allegra. Gautam helped me find installation instructions on Johannes’ directory so that I could make the installation on the shared directory.

So far , according to instructions, these commands need to be executed so that the installation takes place and the rules for camera permissions are set up.

sudo tar –C /opt/rtcds/caltech/c1/scripts/GigE –xzf pylon SDK*.tar.gz

followed by ./setup-usb.sh

The Pylon viewer can then be accessed with /scripts/GigE/pylon5/bin/PylonViewerApp 

Should I go ahead with the installation in the shared directory?

ELOG V3.1.3-