40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 121 of 339  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  3040   Wed Jun 2 22:25:39 2010 KevinUpdatePSLLow Power 2W Beam Profile

Koji is worried about thermal lensing introducing errors to the measurement of the 2W beam profile so I measured the profile at a lower power.

I used the same setup and methods used to measure the profile at 2W (see entry). This measurement was taken with an injection current of 1.202 A and a laser crystal temperature of 25.05° C. This corresponds to approximately 600 mW (see power measurement).

The data was fit to  w = sqrt(w0^2+lambda^2*(x-x0)^2/(pi*w0)^2) with the following results

For the horizontal beam profile:

reduced chi^2 = 2.7

x0 = (-203 ± 3) mm

w0 = (151.3 ± 1.0) µm

For the vertical beam profile:

reduced chi^2 = 6.8

x0 = (-223 ± 6) mm

w0 = (167.5 ± 2.2) µm

In the following plots, the blue curve is the fit to the vertical beam radius, the purple curve is the fit to the horizontal beam radius, * denotes a data point from the vertical data, and + denotes a data point from the horizontal data.

The differences between the beam radii for the low power and high power measurements are

Δw0_horizontal = (38.3 ± 1.2) µm

Δw0_vertical = (43.5 ± 2.4) µm

Thus, the two measurements are not consistent. To determine if the thermal lensing is in the laser itself or due to reflection from the W2 and mirror, we should measure the beam profile again at 2W with a razor blade just before the W2 and a photodiode to measure the intensity of the reflection off of the front surface. If this measurement is consistent with the measurement made with the beam scan, this would suggest that the thermal lensing is in the laser itself and that there are no effects due to reflection from the W2 and mirror. If the measurement is not consistent, we should do the same measurement at low power to compare with the measurement described in this entry.


Attachment 1: profile_low.png
profile_low.png
  11611   Thu Sep 17 13:06:05 2015 ericqSummaryLSCLow input impedance on CM board

As it turns out, our version of the common mode board does not have high input impedence. I think this is what is messing with the lowpass. 

I added photos of the PCB to our 40m DCC page about this board: D1500308, wherein you can see that we have Revision B. 

On the aLIGO wiki's CommonModeServo page, one finds that high input impedence was added in Revision E. At LIGO-D040180, one finds this was implemented via an additional dual AD829 instrumentation amplifier stage before the input amplification stage that exists on our board.

Also, I find that the boosts installed are the default 40:4k, 1k:20k, 1k:20k, 500:10k pole zero pairs. Given our 30-40kHz UGF for CARM thus far, maybe we would like to lower some of these boost corner frequencies, to actually be able to use them; so far we only use the first two.

  14129   Fri Aug 3 15:53:25 2018 gautamUpdateSUSLow noise bias path idea

Summary:

The idea we are going with to push the coil driver noise contribution down is to simply increase the series resistance between the coil driver board output and the OSEM coil. But there are two paths, one for fast actuation and one that provides a DC current for global alignment. I think the simplest way to reduce the noise contribution of the latter, while preserving reasonable actuation range, is to implement a precision DC high-voltage source. A candidate that I pulled off an LT application note is shown in Attachment #1.

Requirements:

  • The series resistance in the bias path should be 10 k\Omega, such that the noise from this stage is dominated by the Johnson noise of said resistor, and hence, the current noise contribution is negligible compared to the series resistance in the fast actuation path (4.5 k\Omega).
  • Since we only really need this for the test masses, what actuation range do we want?
    • Currently, ETMY has a series resistance of 400\Omega and has a pitch DC bias voltage of -4 V. 
    • This corresponds to 10 mA of DC current.
    • To drive this current through 10 k\Omega, we need 100 V. 
    • I'm assuming we can manually correct for yaw misalignments such that 10mA of DC current will be sufficient for any sort of corrective alignment.
    • So +/- 120 V DC should be sufficient.
  • The current noise of this stage should be negligible at 100 Hz. 
    • The noise of the transistors and the HV supply should be suppressed by the feedback loop and so shouldn't be a significant contribution (I'll model to confirm).
    • The input noise of the LT1055 is ~20nV/rtHz at 100 Hz, while the Johnson noise of 10 k\Omega is ~13nV/rtHz so maybe the low-passing needs to be tuned, but I think if it comes to it, we can implement a passive RC network at the output to achieve additional filtering.
  • To implement this circuit, we need +/- 125V DC. 
    • At EX and EY, we have a KEPCO HV supply meant to be used for the Green Steering PZTs. 
    • I'm not sure if these can do bipolar outputs, if not, for temporary testing, we can transport the unit at EY to EX.

If all this seems reasonable, I'd like to prototype this circuit and test it with ETMX, which already has the high series resistance for the fast path. So I will ask Steve to order the OpAmp and transistors.

Attachment 1: LT1055_precOpAmp.pdf
LT1055_precOpAmp.pdf
  14130   Fri Aug 3 16:27:40 2018 ranaUpdateSUSLow noise bias path idea

Bah! Too complex.

  11226   Mon Apr 20 16:18:29 2015 JenneUpdateElectronicsLow noise pre-amps: returned

The Rai box was in the Cryo lab, and the Busby box was in the TCS lab.  Neither had been signed out.  Lame.  Anyhow, thanks to Evan and Zach's memories of having seen them recently, they have been returned to the 40m where they belong.  (Also, I grabbed a spare Marconi while I was over there, for the phase noise measurement).

  11228   Mon Apr 20 21:26:46 2015 ranaUpdateElectronicsLow noise pre-amps: returned

+1 to both Evan and Zach for prompt info and +2 to you for getting more stuff than you started looking for. -2 karma to whomever had swiped them and hoarded without signing. You should put a 40m sticker on both of them. Make sure to check / use fresh batteries. The Busby box is BJT based and works on low impedance sources, the Rai box works on anything, but (I am guessing) has less CMRR.

Quote:

The Rai box was in the Cryo lab, and the Busby box was in the TCS lab.  Neither had been signed out.  Lame.  Anyhow, thanks to Evan and Zach's memories of having seen them recently, they have been returned to the 40m where they belong.  (Also, I grabbed a spare Marconi while I was over there, for the phase noise measurement).

 

  11225   Sun Apr 19 15:03:26 2015 JenneUpdateElectronicsLow noise pre-amps?

Does anyone know where the Busby or Rai low noise pre-amp boxes are? 

I think I need one in order to measure the noise of the Marconi.  Right now, I am trying to measure the amplitude noise, but I'm not seeing anything on the SR785 above the analyzer's noise level.

  4456   Tue Mar 29 15:01:58 2011 Larisa ThorneUpdateElectronicsLow pass filter for X arm laser temperature control

 This is the continuation of http://nodus.ligo.caltech.edu:8080/40m/4402

 

The first picture is of the actual component, where the resistor is 1M and capacitor is 10uF. 

But before the component can be put into place, its transfer function had to be checked to make sure it was doing what we calculated it would do. The results of these are in the graphs generated: frequency vs. gain, and frequency vs. phase.

 

 

 

According to these graphs, we are not achieving the targeted cutoff frequency: need to recalculate and compensate for the extra 100k resistance being encountered.

Attachment 1: DSC_2889.JPG
DSC_2889.JPG
Attachment 2: LPFgraph.pdf
LPFgraph.pdf LPFgraph.pdf LPFgraph.pdf LPFgraph.pdf
  4457   Tue Mar 29 15:50:21 2011 KojiUpdateElectronicsLow pass filter for X arm laser temperature control

For bode plot:

USE LOG-LOG plot for the amplitude

USE LOG-LINEAR plot for the phase

 

Search "Bode Plot" on web

  4531   Fri Apr 15 13:40:00 2011 Larisa ThorneUpdateElectronicsLow pass filter for X arm laser temperature control, second try

Plotting the data points yielded by the spec analyzer of my first LPF yielded a result that was not expected: the desired cutoff frequency wasn't achieved because of some extra 100k resistance that wasn't taken into consideration. (see  here ). I have redrawn the Bode graphs for this configuration so that it is easier to see that it is wrong (first attachment)

 

After some calculation adjustments, it was found that the capacitor value could remain at 10uF, but the resistance needed to be changed to 100k to maintain a gain of 0.5 and critical frequency at 0.1Hz. Second attachment is the Bode graph that results from this configuration.

 

Note: Bode graphs are both in Log-Linear scales (Wikipedia said so)

 

Attachment 1: Bode2.jpeg
Bode2.jpeg
Attachment 2: Bode100k.jpg
Bode100k.jpg
  14068   Fri Jul 13 18:01:13 2018 gautamUpdateGeneralLow power MC

After getting the go ahead from Steve, I removed the physical beam block on the PSL table, sent the beam into the IFO, and re-aligned the MC to lock at low power. I've also revived my low power autolocker (running on megatron), seems to work okay though the gains may not be optimal, but it seems to do the job for now. Nominal transmission when well aligned at low power is ~1200cts. I briefly checked Y arm alignment with the green, seems okay, but didn't try locking the Y arm yet. All doors are still on, and I'm closing the PSL shutter again while Keerthana and Sandrine are working near the AS table.

  1346   Mon Mar 2 21:16:32 2009 YoichiUpdateLockingLow-gain High-gain PD switching may not be working well
Osamu, Yoichi

This afternoon, I run the locking script while doing calculations for the upgrade.
The IFO lost lock even at lower arm powers (around 6) if it was operated for a while (~ 5min).
It seemed as if there were some intermittent glitches (seismic? laser?) causing the lock losses.
We also saw once the TRX and TRY signals saturated at around arm power = 11 when there was a large fluctuation in the arm power.
Osamu suggested that it looked like the high-gain to low-gain PD switching was not working.

I won't come tonight as I may have caught a cold, but if someone comes tonight, it is worth checking the PD switching.
  1350   Tue Mar 3 19:26:44 2009 YoichiUpdateLockingLow-gain High-gain PD switching may not be working well
I checked the switching of the QPDX from high gain to low gain.
Switching happens as expected, but the low gain QPDX output was very low compared to QPDY.
Also the digital gain for the high gain TRX was not matched with the low gain one. So when the switching happens, there is a large jump in the TRX.

I also found that the offset values for the low gain QPDX were totally wrong. I adjusted it.
Then I removed a beam splitter in front of the QPDX to increase the power falling on it.
But still the low gain QPDX output is four times lower than the low gain QPDY.

I'm still working on it. So don't expect the switching to work correctly at this moment.
I'm planning to be back after the dinner.


Quote:
Osamu, Yoichi

This afternoon, I run the locking script while doing calculations for the upgrade.
The IFO lost lock even at lower arm powers (around 6) if it was operated for a while (~ 5min).
It seemed as if there were some intermittent glitches (seismic? laser?) causing the lock losses.
We also saw once the TRX and TRY signals saturated at around arm power = 11 when there was a large fluctuation in the arm power.
Osamu suggested that it looked like the high-gain to low-gain PD switching was not working.

I won't come tonight as I may have caught a cold, but if someone comes tonight, it is worth checking the PD switching.
  1351   Tue Mar 3 23:59:26 2009 YoichiUpdateLockingLow-gain High-gain PD switching may not be working well

Quote:
I checked the switching of the QPDX from high gain to low gain.
Switching happens as expected, but the low gain QPDX output was very low compared to QPDY.
Also the digital gain for the high gain TRX was not matched with the low gain one. So when the switching happens, there is a large jump in the TRX.

I also found that the offset values for the low gain QPDX were totally wrong. I adjusted it.
Then I removed a beam splitter in front of the QPDX to increase the power falling on it.
But still the low gain QPDX output is four times lower than the low gain QPDY.

I'm still working on it. So don't expect the switching to work correctly at this moment.
I'm planning to be back after the dinner.



This sounds like the QPD whitening gain sliders may be stuck. The slider twiddling script should be run, or the sliders should be twiddled by hand.
  1352   Wed Mar 4 03:37:51 2009 YoichiUpdateLockingLow-gain High-gain PD switching may not be working well

Quote:

This sounds like the QPD whitening gain sliders may be stuck. The slider twiddling script should be run, or the sliders should be twiddled by hand.


Yes, it was indeed the whitening gain slider problem.
I moved them and the QPDX gain went up suddenly. I reinstalled the BS in front of the QPDX and adjusted the offsets, gains accordingly.
Now the high-gain to low-gain switching is fine.
  13424   Fri Nov 10 13:46:26 2017 SteveUpdatePEMM3.1 local earthquake

BOOM SHAKA-LAKA

Attachment 1: 3.1M_local_EQ.png
3.1M_local_EQ.png
  15580   Sat Sep 19 01:49:52 2020 KojiUpdateGeneralM4.5 EQ in LA

M4.5 EQ in LA 2020-09-19 06:38:46 (UTC) / -1d 23:38:46 (PDT) https://earthquake.usgs.gov/earthquakes/eventpage/ci38695658/executive

I only checked the watchdogs. All watchdogs were tripped. ITMX and ETMY seemed stuck (or have the OSEM magnet issue). They were left tripped. The watchdogs for the other SUSs were reloaded.

  15581   Sat Sep 19 11:27:04 2020 ranaUpdateGeneralM4.5 EQ in LA

the seismometers obviously saturated during the EQ, but the accelerometers captured some of it. It looks like there's different saturation levels on different sensors.

Also, it seems the mounting of the MC2 accelerometers is not so good. There's some ~10-20 Hz resonance its mount that's showing up. Either its the MC2 chamber legs or the accelerometers are clamped poorly to the MC2 baseplate.

Sun Sep 20 00:02:36 2020 edit: fixed indexing error in plots

* also assuming that the sensors are correctly calibrated in the front end to 1 count = 1 um/s^2 (this is what's used in the summ pages)

Attachment 1: Sep18-EQ.pdf
Sep18-EQ.pdf
  15583   Sat Sep 19 18:08:34 2020 ranaUpdateGeneralM4.5 EQ in LA

the EQ was ~14 km south of Caltech and 17 km deep

Quote:

the seismometers obviously saturated during the EQ, but the accelerometers captured some of it. It looks like there's different saturation levels on different sensors.

Also, it seems the mounting of the MC2 accelerometers is not so good. There's some ~10-20 Hz resonance its mount that's showing up. Either its the MC2 chamber legs or the accelerometers are clamped poorly to the MC2 baseplate.

I'm amazed at how much higher the noise is on the MC2 accelerometer. Is that really how much amplification of the ground motion we're getting? If so, its as if the MC has no vibration isolation from the ground in that band. We should put one set on the ground and make the more direct comparison of the spectra. Also, perhaps do some seismic FF using this sensor - I'm not sure how successful we've been in this band.

Attaching the coherence plot from ldvw.ligo.caltech.edu (apparently it has access to the 40m data, so we can use that as an alternative to dtt or python for remote analysis):

Coherence (GWpy) result, image #: 288304

It would be interesting to see if we can use the ML based FF technology from this summer's SURF project by Nadia to increase the coherence by including some slow IMC alignment channels.

  14755   Fri Jul 12 07:37:48 2019 gautamUpdateSUSM4.9 EQ in Ridgecrest

All suspension watchdogs were tripped ~90mins ago. I restored the damping. IMC is locked.

ITMX was stuck. I set it free. But notice that the UL Sensor RMS is higher than the other 4? I thought ITMY UL was problematic, but maybe ITMX has also failed, or maybe it's coincidence? Something for IFOtest to figure out I guess. I don't think there is a cable switch between ITMX/ITMY as when I move the ITMX actuators, the ITMX sensors respond and I can also see the optic moving on the camera.

Took me a while to figure out what's going on because we don't have the seis BLRMS - i moved the usual projector striptool traces to the TV screen for better diagnostic ability.

Update 16 July 1515: Even though the RMS is computed from the slow readback channels, for diagnosis, I looked at the spectra of the fast PD monitoring channels (i.e. *_SENSOR_*) for ITMX - looks like the increased UL RMS is coming from enhanced BR-mode coupling and not of any issues with the whitening switching (which seems to work as advertised, see Attachment #3, where the LL traces are meant to be representative of LL, LR, SD and UR channels).

Attachment 1: 56.png
56.png
Attachment 2: ITMXunstick.png
ITMXunstick.png
Attachment 3: ITMX_UL.pdf
ITMX_UL.pdf
  13739   Mon Apr 9 08:39:39 2018 SteveUpdatePEMM5.3 eq Souther CA

Earth quake M5.3    2018-04-05 19:29:16UTC          Santa Cruz Island, CA

 

Attachment 1: M5.3_Santa_Cruz_Is.CA.png
M5.3_Santa_Cruz_Is.CA.png
Attachment 2: after_M5.3.png
after_M5.3.png
Attachment 3: M5.3vac.png
M5.3vac.png
  13302   Fri Sep 8 07:54:04 2017 SteveUpdatePEMM8.1 eq

Nothing tripped. No obvious damage.

Attachment 1: M8.1.png
M8.1.png
  11572   Fri Sep 4 04:12:05 2015 ericqUpdateComputer Scripts / ProgramsMATLAB down on all workstations

There seems to be something funny going on with MATLAB's license authentication on the control room workstations. Earlier today, I was able to start MATLAB on pianosa, but now attempting to run /cvs/cds/caltech/apps/linux64/matlab/bin/matlab -desktop results in the message: 

License checkout failed.
License Manager Error -15
MATLAB is unable to connect to the license server. 
Check that the license manager has been started, and that the MATLAB client machine can communicate
with the license server.

Troubleshoot this issue by visiting: 
http://www.mathworks.com/support/lme/R2013a/15

Diagnostic Information:
Feature: MATLAB 
License path: /home/controls/.matlab/R2013a_licenses:/cvs/cds/caltech/apps/linux64/matlab/licenses/license.dat:/cv
s/cds/caltech/apps/linux64/matlab/licenses/network.lic 
Licensing error: -15,570. System Error: 115

  320   Fri Feb 15 22:16:04 2008 AndreyUpdateComputersMATLAB is not working: "Licence checkout failed"

For some unknown to me reason,

Matlab stopped working about 20 minutes ago on all computers in the control room (both UNIX control machines and Windows).

It says: "License checkout failed. License Manager Error -15. MATLAB is unable to connect to the license server."

I do not know how to revive Matlab.

At the same time, I consider that I made a significant progress in building my theoretical/computational model in the last 2 days. I was able to compute the time-evolution of accelerometer signals through stacks and pendulums using Matlab command "lsim", and I am now able to calculate RMS of spectrum of differential arm length in different frequency intervals. It seemed to me that everything is ready in my program to make the three-dimensional theoretical/computational plot (RMS as a function of Q-factors of ETMX and ITMX), but unfortunately Matlab stopped working. It seemed to me that all that was remaining was to run a loop with all possible values of Q-factors. Let's hope that Matlab will be working after the weekend.

Andrey.
  15207   Tue Feb 11 19:11:35 2020 shrutiUpdateComputer Scripts / ProgramsMATLAB on donatella

Tried to open MATLAB on Donatella and found the error:


MATLAB is selecting SOFTWARE OPENGL rendering.

 

License checkout failed.
License Manager Error -9
This error may occur when: 
-The hostid of this computer does not match the hostid in the license file. 
-A Designated Computer installation is in use by another user. 
If no other user is currently running MATLAB, you may need to activate.

Troubleshoot this issue by visiting: 
http://www.mathworks.com/support/lme/R2015b/9

Diagnostic Information:
Feature: MATLAB 
License path: /home/controls/.matlab/R2015b_licenses/license_donatella_865865_R2015b.lic:/cvs/cds/caltech/apps/lin
ux64/matlab15b/licenses/license.dat:/cvs/cds/caltech/apps/linux64/matlab15b/licenses/license_chiara_
865865_R2015b.lic:/cvs/cds/caltech/apps/linux64/matlab15b/licenses/license_pianosa_865865_R2015b.lic 
Licensing error: -9,57.


So I used  my caltech credentials to get an activation key for the computer. I could not find the option for a campus license so I used the individual single machine license.

Now it can be run by going to the location:

/cvs/cds/caltech/apps/matlab17b/bin

and running

./matlab

On opening MATLAB, there were a whole bunch of other errors including a low-level graphics error when we tried to plot something.

  6294   Sat Feb 18 12:23:09 2012 DenUpdateIOOMC

When I came to the 40m this afternoon, the MC was unlocked. Here is the trend of MC_F for last 2 hours

mc_trend.png

C1:PSL-PMC_PMCTRANSPD = 0.800

Should I just disable the auto locker or try to realign it?

  8343   Mon Mar 25 23:17:11 2013 ranaSummaryIOOMC

I measured the dark noise and regular intensity noise in MC trans tonight to get some estimate for the free running spectrum that the Chas ISS must overcome. PDF is attached.

XML file is /users/rana/dtt/MC-trans_130325.xml

The RIN normalization was done by using the mean of the SUM time series. The dark noise was measured by misaligning MC2 and making the same measurement with the bright normalization.

Attachment 1: MC-trans.pdf
MC-trans.pdf
  9211   Sun Oct 6 23:50:14 2013 ranaConfigurationSUSMC filters adjusted
  1. Found the low pass filters OFF in a couple of the MC SUS damping loops. This allows injection of OSEM noise all the way up to ~100 Hz. I deleted unused ones and turned on the 'Cheby' for all SUS DOFs: cheby1("LowPass",2,0.1,3)cheby1("LowPass",6,1,12)gain(1.13501)
  2. Tuned the Bounce/Roll filters to catch the bounce and roll modes for all 3 MC SUS (based on the Mech Res Wiki page). These are now engaged on ALL MC SUS DOFs. They have been deleted from the ASCPIT/YAW filter banks and moved into the WFS screen into the MC1,2,3 filter banks there to be more in line with our knowledge of multi loop instability from notches in individual loops:ellip("BandStop",4,1,40,15.9,17.2)ellip("BandStop",4,1,40,23.5,24.7)gain(1.25893)
  9697   Thu Mar 6 09:47:11 2014 SteveUpdateIOOMC trend of 20 days

Quote:

The IMC has not been behaving well since this morning and totally not happy when Q was finishing his measurements. The WFS servo had large offsets in pitch. Looking back at the trend and using ezcaservo to restore the suspensions did not help.

I realigned the IMC and brought TRANS SUM to ~18000 and MCREFL to < 0.5. The spot positions are not very good; nearly 2 mm off in pitch on MC1 and MC3. But after the alignment of MC, the WFS servo offsets were below +/-20.

The MC has been locked stably with WFS servo ON for the last few hours.

P.S. I did not touch the WFS pointing or reset the WFS offsets.

 

Attachment 1: IOO_20days.png
IOO_20days.png
  10225   Thu Jul 17 01:24:35 2014 ranaUpdateIOOMC / EOM Stability Mystery Solved!

MC loop is near unstable. Common gain reduced. Needs more loop tuning.

We've often seen that the MC gets into a state where it keeps losing lock and the EOM drive shows a large RMS. We've usually been looking at the noise spectrum to diagnose this.

Tonight we finally just measured the OLG. The attached plot shows the loop gain measured with the 4395 on the MC servo board

Although the phase margin is a healthy 45 degrees, its close to instability at 1 MHz. For this plot, I reduced the gain by 3 dB and now the margin is ~7 dB. So usually its pretty close to unstable and at least its always making a noise peak.

That whole TF above a few hundred kHz is weird. We should tune out whatever makes it so flat and also remove the resonance that makes the 1 MHz peak; maybe its from some post mixer low pass?

Anyone interested in helping in the investigation ought to measure the TF of the MC demod board, the MC servo board, and the FSS box.

Silver lining: if we fix this loop shape, we might be able to have a much more stable IMC and IFO.

Attachment 1: MC_OLG.pdf
MC_OLG.pdf
  5167   Wed Aug 10 11:22:55 2011 SureshUpdateIOOMC A2L alignment

[Kiwamu, Suresh]

We attempted to minimise the A2L coupling in the MC mirrors (centering the beam spot on the actuation node on each optic).  While it was easy to minimise the coupling in the pitch for all the three optics and yaw of MC2, the yaw alignment of MC1 and MC3 proved to be difficult.  For one the adjustment required was quite large, so much so that PSL alignment into the MC is often lost during this adujstment.  We had to align the PSL coupling several times in order to proceed.   And the MC settles into a new position when the MC-PSL servo loop was disturbed by random denizens in the lab.  Requiring us to start over again.

Kiwamu wrote a script to measure the MC(optic)(Pitch/yaw) -> Lockin(#1 to #6) matrix.  Inverting this matrix gave us the linear combination of the offsets to put on the MC# PIT/YAW  inorder to minimise a specific Lockin output.  However the cross couplings were not completely eliminated.  This made it very hard to predict what a given set of offsets were going to do to the Lockin outputs.

Net result:  the spots are centered in vertical direction (pitch) but not in the horizontal (yaw)

Day time tasks have started so I am quitting now.

  9205   Sun Oct 6 17:05:49 2013 ranaSummaryIOOMC ASC problems

MC unlocked over the weekend and also got severely mis-aligned. It all started around midnight on Saturday.

At first I thought that this was due to the MCS CPU meter being railed at 60 us, so I deleted a bunch of filters in MC1,2,3 that are unused and left over from Den's quantization noise investigations. This reduced the CPU load somewhat, but didn't make any real improvements. Turning on the ASC filter banks in the MC SUS still mis-aligned the MC.

With the MC WFS and MC ASS turned off, there is still some digital junk coming in and misaligning things. Plot attached.

Similar stuff coming in on ITMX, but not ITMY.

Tried restarting various FEs, but there was no effect. Also tried rebooting c1lsc, c1ioo, & c1sus. Finally did 'shutdown -r now' on all 5 computers on the CDS overview screen and simultaneously (almost) pressed the reset button on the RFM switch above the old c1pem crate. Everything came back OK except for c1oaf (I had to manually button his BURT button) and now the ASC inputs on all the SUS are zero when they should be and MC is well locked and aligned.

Rob and I used to do this trick when he thought that a cosmic ray had corrupted a bit in the RFM network.

Attachment 1: mcasc.pdf
mcasc.pdf
  7289   Mon Aug 27 18:59:24 2012 jamieUpdateIOOMC ASC screen was confusing - Jenne is not stupid

Quote:

We have figured out that some of these measurements, those with the WFS off, were also not allowing the dither lines through, so no dither, so no actual measurement.

Jamie is fixing up the model so we can force the WFS to stay off, but allow the dither lines to go through.  He'll elog things later.

In the c1ioo model there were filter modules at the output of the WFS output matrix, right before going to the MC SUS ASCs but right after the dither line inputs, that were not exposed in the C1IOO_WFS_OVERVIEW screen (bad!).  I switched the order of these modules and the dither sums, so these output filters are now before the dither inputs.  This will allow us to turn off all the WFS feedback while still allowing the dither lines.

I updated the medm screens as well (see attached images).

Attachment 1: Screenshot-1.png
Screenshot-1.png
Attachment 2: Screenshot-2.png
Screenshot-2.png
  357   Tue Mar 4 20:14:02 2008 ranaConfigurationIOOMC Alignment
The MC alignment was pretty far off. We were getting TEM01 mode locks only.
Rather than inspect what happened I just aligned the MC suspensions to get
the transmission higher. Now Matt should be able to lock the X arm and collect
adaptive filter data.
  1166   Tue Dec 2 17:56:56 2008 Alberto, RanaConfigurationPSLMC Alignment
In the attempt to maximize the Mode Cleaner transmission and minimize the reflection from the steering mirrors of the MC periscope, we could not get more ~2 V at the MC Trans PD and ~ 0.5 V at MC REFL_DC. As it turned out from the SUS Drift Monitor, the reason was that the MC optics had been somehow displaced from the optimal position.

After restoring the reference position values for the mirrors and tweaking again the periscope, we got ~3V at the MC TransPD and 0.5V at the reflection.
The beam was then probably clipped at the REFL PD so that we had to adjust the alignment of one of the BS in the transmitted beam path on the AS table.
We also zeroed the WFS PDs, but not before reducing the power from the MZ, for their QPDs not to saturate.

After relocking, the transmission was 3V and the reflection ~0.3V.

The beam isnow centered on the Trans PD and REFL PD and the Mode Cleaner locked. More details on the procedure will follow.
  1169   Wed Dec 3 11:58:10 2008 AlbertoUpdatePSLMC Alignment
Rana, Alberto,

more details on the MC alignment we did yesterday.


Last week Rana re-aligned the Mach Zender (MZ) on the PSL table to reduce the power at the dark port (see elog entry #1151). After that, the beam was aligned to the MZ but not properly aligned to the Mode Cleaner (MC) anymore. As a result the MC could not lock or did it on unwanted transverse modes. To fix that we decided to change the alignment of the MC input periscope on the PSL table.


The ultimate goal of the operation was to align the MC transmitted beam to the IFO and to maximize the power.
Such a condition depends on:
a) a good cavity alignment and
b) input beam matching to the cavity TEM00 mode.


Since the MZ alignment had only affected the input beam, we assumed the cavity alignment was still good, or at least it had not changed, and we focused on the input beam.

The IOO computer, by the MC autolocker script, is able to change the cavity alignment and the length to match the input beam and lock the cavity. Although both the length servo (LSC) and the alignment servo (WFS) have a limited effective operating range. So for the script to work properly and at best, input beam and cavity matching have to be not far from that range.

The MC periscope has two mirrors which control the pitch and yaw input angles. By changing either yaw or pitch of both mirrors together (“two-knob" technique) one can change the input angle without moving the injection point on the cavity input mirror (MC1). So this is the procedure that we followed:

  • 1) turned of the autolocker running the MC-down script
    2) brought the reflected beam spot back on the MC-reflection camera and on the reflection photodiode (REFL-PD)
    3) turned on the LSC servo
    4) tweaked the periscope's mirrors until the cavity got locked on a TEM00 mode
    5) tweaked the periscope aiming at ~0.3V from the REFL-PD and ~3V on the transmission photodiode (TRANS-PD).


Following the steps above we got ~0.5 V on the REFL-PD and ~2V on the TRANS-PD but no better than that.

Looking at the Drift Monitor MEDM screen, we found that the cavity was not in the reference optimal position, as we initially assumed, thus limiting the matching of the beam to the MC.

We restored the optics reference position and repeated the alignment procedure as above. This time we got ~3V on the TRANS-PD and ~0.5 on the REFL-PD. We thought that the reason for still such a relatively high reflection was that the beam was not well centered on the REFL-PD (high order modes pick-up?).

On the AS table we centered the REFL-PD by aligning a beam splitter in the optical path followed by the light to reach the photodiode.

We also centered the beam on the reflection Wave Front Sensors (WFS). To do that we halved the power on the MZ to reduce the sidebands power and prevent the WFS QPD from saturating. We then aligned the beam splitters on the QPD by balancing the power among the quadrants. Finally we restored the power on the MZ.

As a last thing, we also centered the transmitted beam on the TRANS-QPD.


The MC is now aligned and happily locked with 3V at the TRANS-PD and 0.3V at REFL-PD.
  1774   Wed Jul 22 10:49:40 2009 AlbertoUpdatePSLMC Alignment Trend

Trying to track the MC positions back for a few days, it seems that the data hasn't been recorded properly for a while. Something happened yesterday after my boot fest and then the record got restored. Attached here are the readbacks showing the event for MC1.

Is anything wrong with the data record?

Attachment 1: 2009-07-21_MC-align-trend.pdf
2009-07-21_MC-align-trend.pdf
Attachment 2: 2009-07-22_mc-align-trend.pdf
2009-07-22_mc-align-trend.pdf
  12691   Thu Dec 29 21:48:32 2016 ranaUpdateIOOMC AutoLocker hung because c1iool0 asleep again

MC unlocked, Autolocker waiting for c1iool0 EPICS channels to respond. c1iool0 was responding to ping, but not to telnet. Keyed the crate and its coming back now.

There's many mentions of c1iool0 in the recent past, so it seems like its demise must be imminent. Good thing we have an Acromag team on top of things!

Also, the beam on WFS2 is too high and the autolocker is tickling the Input switch on the servo board too much: this is redundant / conflicting with the MC2 tickler.

  12818   Fri Feb 10 13:04:32 2017 ranaUpdateIOOMC AutoLocker hung because c1iool0 asleep again

c1iool0 was down again. Rather than key the crate, this time I just pushed the reset button on the front and it came back.

As move towards the wonderfulness of AcroMag, we also have to buy a computer  to handle all of these IOCs. Let's install the new c1iool0 over by the SUS computer.

  3345   Sun Aug 1 21:04:45 2010 ranaSummaryComputer Scripts / ProgramsMC Autolocker fixed

Someone had left a typo in the MC autolocker script recently while trying to set the lock threshold to 0.09. As a result, the autlocker wouldn't run.

I repaired it, made a few readability improvements, and checked in the new version to the SVN. If you make script changes, check them in. If you think its too minor of a change for a SVN checkin, don't do it at all.

  11773   Tue Nov 17 15:49:23 2015 KojiConfigurationIOOMC Autolocker modified

/opt/rtcds/caltech/c1/scripts/MC/AutoLockMC.csh  was modified last night.

1. Autolocker sometimes forget to turn off the MC2Tickle. I added the following lines to make sure to turn it off.

    echo autolockMCmain: MC locked, nothing for me to do >> ${lfnam}
    echo just in case turn off MC2 tickle >> ${lfnam}
    ${SCRIPTS}/MC/MC2tickleOFF

2. During the lock acquisition, Autolocker frequently stuck on a weak mode. So the following lines were added
so that the Autolocker toggles the servo switch while waiting for the lock.

    echo autolockMCmain: Mon=$mclockstatus, Waiting for MC to lock .. >> ${lfnam}
    # Turn off MC Servo Input button
    ezcawrite C1:IOO-MC_SW1 1
    date >> ${lfnam}
    sleep 0.5;
    # Turn on MC Servo Input button
    ezcawrite C1:IOO-MC_SW1 0
    sleep 0.5;

  10116   Tue Jul 1 13:57:33 2014 ericqUpdateComputer Scripts / ProgramsMC Autolocker on Megatron

 Just a quick update on the status of the auto locker:

The auto locker now runs and respawns automatically on megatron, through ubuntu's "upstart" init system, instead of cron. 

  • The autolocker script itself is:/opt/rtcds/caltech/c1/scripts/MC/AutoLockMC.csh
  • The startup script called by the upstart system is: /opt/rtcds/caltech/c1/scripts/MC/AutoLockMC.init
  • The upstart configuration is: /etc/init/MCautolocker.conf
  • The auto locker is started by executing this command on megatron: sudo initctl start MCautolocker

This was pretty simple to set up, once I figured out how to provide the necessary environment variables in AutoLockMC.init 

  7264   Thu Aug 23 22:41:04 2012 KojiUpdateIOOMC Autolocker update

[Koji Rana]

MC Autolocker was updated. (i.e. mcup and mcdown were updated)

mcup:

  • Turn on the MCL input and output switches
  • Change the MCL gain from 0 to -300 with nominal ramp time of 5sec
  • Turn on FM2, FM5, MF7 after a sleep of 5sec. Note: FM1 FM8 FM9 are always on.
  • Set the offset of 42 counts
  • Turn on the offset

# Turn on MCL servo loop
echo mcup: Turning on MCL servo loop...
date
ezcaswitch C1:SUS-MC2_MCL INPUT OUTPUT ON
ezcawrite C1:SUS-MC2_MCL_GAIN -300
sleep 5
ezcaswitch C1:SUS-MC2_MCL FM2 FM5 FM7 ON
# Offset to take off the ADC offset of MC_F
ezcawrite C1:SUS-MC2_MCL_OFFSET 42
ezcaswitch C1:SUS-MC2_MCL OFFSET ON


This offset of 42 count is applied in order to compensate the ADC offset of MC_F channel.
The MCL servo squishes the MC_F signal. i.e. The DC component of MC_F goes to zero.
However, if the ADC of MC_F has an offset, the actual analog MC_F signal, which is fed to FSS BOX,
still keep some offset. This analog offset causes deviation from the operating point of the FSS (i.e. 5V).

mcdown:

  • Basically the revese process of mcup.
  • This script keeps FM1 FM8 FM9 turned on.

# Turn off MCL servo loop
echo mcdown: Turning off MCL servo loop...
date
ezcawrite C1:SUS-MC2_MCL_GAIN 0
ezcaswitch C1:SUS-MC2_MCL INPUT OUTPUT OFFSET FMALL OFF FM1 FM8 FM9 ON
# Remove Offset to take off the ADC offset of MC_F
ezcawrite C1:SUS-MC2_MCL_OFFSET 0

  10940   Mon Jan 26 17:43:52 2015 ericqConfigurationIOOMC Autolocker update

The MC autolocker hasn't been so snappy recently, and has been especially fussy today. Previously, the mcup script was triggered immediately once the transmission was above a certain threshold. However, this could waste time if it was just an errant flash. Hence, I've added a 0.5 second delay and a second threshold check before mcup is triggered. 

After breaking the lock 5ish times, it does seem to come back quicker.

  10039   Sat Jun 14 18:43:15 2014 ranaUpdateIOOMC Autolocker upgrades

 Somehow the caget/caput commands are really slow. I'm not sure if this is new behavior or not, but after changing values, it takes ~1-2 seconds to move on to the next command.

On op340m, once I ran autolockMCmain40m in the foreground, I could see that there were a lot of error messages that weren't being caught in the log file. On Solaris, the TDS and EZCA binaries work well, but the caget/pu stuff is missing a lot of the new flags and the new CDSUTILS python scripts are not there. So I decided to stop running on there and move over to running the MC autolocker on megatron. I also changes the mcup and mcdown scripts to BASH from CSH. There are still some PERL commands in there from Rob/Matt/Sam, so I also added the proper commands so that the pick up the scripts/general/perlmodules/ directory.

Yes, yes, I know. You would all feel warm in your tummy if we did everything in python because its the best language ever, but how about we lock the interferometer first and then we can rewrite all the last decades worth of scripts?

Looked at the trend from the last time the MCWFS were one (2 weeks ago!) and aligned the MC suspension back to that point. After that the WFS come on fine and MC looks good. I fixed the nameserver/DNS/fstab stuff on megatron, asia, and belladonna.

I've left AutoLockMC.csh (too painful to convert to BASH) running on megatron via an open terminal on pianosa. If it looks OK for the weekend, Q should move the crontab line from op340m over to megatron and then update the Wiki appropriately.

CDSUTILS is also gone from the path on all the workstations, so we need Jamie to tell us by ELOG how to set it up, or else we have to use ezcaread / ezcawrite forever.

  577   Thu Jun 26 18:29:44 2008 JenneUpdate MC Back online
Jenne, Rob, Yoichi

I was playing with the Mode Cleaner earlier today, working on measuring the effect of the new filter (see next post for loop gain measurements etc.), and bumped something which made it so the Mode Cleaner would not lock.

After much poking around by Rob and Yoichi, we found that the TNC-to-2 pin LEMO from Out1 of the MC Servo Board to Ch1 of the Pentek Generic board to the right of the MC Servo Board was bad. If we touched the cable, the MC would lock, but as soon as we let go, the MC would fall out of lock. The LEMO end of the cable was not heat shrink wrapped, so the 2 wires could have been touching. I replaced the cable, and the MC locked immediately after plugging it in, so I think that has fixed the problem.
  496   Sun May 25 19:33:16 2008 ranaUpdateIOOMC Bad after Re-alignment
The MC pointing was off and the transmitted power was down after John and Andrey brought it back after the bootfest.

I tried getting it back on Friday but was unsuccessful. Today, after the Phoenix Landing, I got it back to someplace
reasonable, but it still seems to be far off. I will check with Rob before we recenter and of the QPDs.

I had to move all of the MC SUS and also align the beam using the IOO periscope. The attached PDF shows some trends
over the last 80 days. You can see that the drop in MC TRANS is about the same as the drop in PMC TRANS.
Attachment 1: e.pdf
e.pdf
Attachment 2: pmc.png
pmc.png
  1345   Mon Mar 2 16:27:40 2009 AlbertoConfigurationElectronicsMC Drum Mode SR560 Preamplifier Replaced

Today I checked out the SR560 around the lab. I confirmed that the one with the label "channel A noisy" is effectively mulfuctioning.

It was coonected to the lock-in amplifier set up for the drum mode peak readout.

I repleaced that with a working one.

  1814   Thu Jul 30 21:26:16 2009 ranaUpdateIOOMC Drumhead mode
I used COMSOL 3.5a to do a FEA of one of the MC flat mirrors. Should be close to the same for all the mirrors.

The model is very simple- it includes just the cylindrical shape (no magnets, curvature, or coating or bevels).
This is good enough, since we don't really know all of the material properties at the 1% level.

The attached plot shows the MC drumhead mode. The color scale shows the displacement along the optic axis.
The model predicts 28.855 kHz and the measured value was 28.2 kHz.

I used COMSOL in the multiphysics mode which includes the Structural Mechanics and Heat Transfer modules at the
same time. For the material I used the built in properties of Corning 7940 (fused silica). In reality we have
7980 (I don't know all of the material differences). In any case, this model includes the temperature dependence
of the Young's modulus, so it should be possible to use this to predict the absorption numbers.

The model file (mc2.mph) has been added to our COMSOL SVN directory.
Attachment 1: mc2drum.png
mc2drum.png
  1322   Wed Feb 18 21:10:21 2009 ranaUpdateIOOMC Drumhead mode lost again
In early December, Caryn and I noticed that the MC Drumhead mode was visible at the Qmon point of
the MC demod board using a spectrum analyzer and no external excitation of the MC mirrors. We then
started tracking the MC Drumhead modes.

Today I found that it is gone again. It also wasn't there when I looked for it in 2007. Mad

I looked at the MC error point spectrum and it seemed reasonable. Changing the gains in the MZ, ISS, PMC, & FSS
had no good effect on the noise spectrum.

The voltage noise above 10 kHz in the MC error point is increasing like ~f. I think that this means that
the leftover is the noise from the FSS. Below 10 kHz it is the noise of the VCO (10 mHz/rHz).

One possibility is that the high frequency noise changes with the mood of the NPRO. There should be no
frequency noise induced by the decay of the PA diode power. We can do an NPRO SLOW scan to see if there
is some kind of mode hop noise happening.
ELOG V3.1.3-