ID |
Date |
Author |
Type |
Category |
Subject |
4922
|
Thu Jun 30 11:40:21 2011 |
Jamie | Update | IOO | Re: misc. MC work |
Quote: |
Jamie has started to revert the "ALTPOS" effect on the MC mirrors. So far, the screens and SLOW channels have been fixed, but the fast channels still say "ALTPOS" in the dataviewer instead of "MCL".
|
The framebuilder just needed to be restarted to pull in the fixed channel names. I restarted the framebuilder and now the channels (C1:SUS-MC2_MCL_*) are showing up properly. |
5005
|
Wed Jul 20 19:48:03 2011 |
Jamie | Update | SUS | Re: oplev gains today |
We have been modifying models that need to have their channels renamed to run activateDQ when Joe's post_build_script to is run.
The trick is to integrate things to get the post_build_script running after every model build (getting it hooked in to the make file somehow). We're working on it.
I've added the following epics channels to sus_single_control model using the epicsOutput part:
These channels are now all available. I'm not exactly sure how to ensure that they're being trended. I'll check that tomorrow. |
3614
|
Tue Sep 28 00:07:45 2010 |
kiwamu | Configuration | VAC | Re: slow vent has started |
(Koji, Yuta, Kiwamu)

Now the pressure at P1 is 740 torr, which is close to the atmospheric pressure of 760 torr.
We changed the air cylinder twice in this evening, and the last cylinder ran out at about 23:00 pm.
We left it as it is. Steve is going to make a final touch for it tomorrow morning. |
2529
|
Tue Jan 19 03:27:47 2010 |
kiwamu | Update | Electronics | Re: triple resonant circuit for EOM |
1. You are right, the gain for the single resonant circuit was about 9.3 in my measurement.
But the reason why the triple is better than the single resonant circuit comes from the transformer.
The impedance can be degraded by a loss of the transformer, because it got worse after applying the transformer in the past measurement.
Also I definitely confirmed that the circuit had the impedance of 7.2 kOhm at the resonance of 52.9MHz without the transformer.
So it shall give the gain of 12, but did not after applying the transformer.
2. Yes, I think we need some variable components just in case.
5. For the impedance matching, I will select a transformer so that 55MHz is matched. In contrast I will leave two lower resonances as they are.
This is because 11MHz and 29.5MHz usually tend to have higher impedance than 55MHz. In this case, even if the impedance is mismatched, the gain for these can be kept higher than 11.
I will post the detail for this mismatched case tomorrow.
Quote: |
The design looks very good. I have some questions.
1. As far as I remember, you've got the gain of slightly worse than 10 for a 55MHz single resonant case. Why your expectation of the gain (G=11) for the highest resonance better than this?
Supposing the loss exists only on the EOM, the other part of the LC network for the triple work as an inductor at the resonant frequency. This is just equivalent as the single resonant case. So the expected gain at 55MHz should coincides with what we already have. Probably, the resistance of 4 Ohm that is used here had too rough precision???
2. How can you adjust the resonances precisely?
Do we need any variable components for Cs and Ls, that may have worse quality than the fixed one, generally speaking.
I myself has no experience that I had to tune the commercial EOM because of a drift or whatever. I hope if you can adjust the resonance with a fixed component it should be fine.
3. Changing Cp. What does it mean?
Do you put additional cap for Cp?
4. The resonances for the lower two look very narrow. Is that fine?
This will show up in a better shape if we look at the transfer function for the gain. Is this right?
If we have BW>100kHz, it is sufficient.
5. Impedance matching for the lower two resonances.
Yep. You know this problem already.
|
|
5105
|
Wed Aug 3 11:34:59 2011 |
kiwamu | Update | VAC | Re: vent |
An important rule during the in-vac work :
Do not change the incident axis of the X and Y green beams.
Because of the air flows and unusual pressure in the chambers, the DC alignment of the suspensions become less reliable in terms of the beam pointing reference.
The green beams will be considered as references during the vent.
Quote: |
The vacuum system is coming up to atm. The vent was started with slow N2 flow.
|
|
3330
|
Fri Jul 30 09:51:58 2010 |
kiwamu | Update | Green Locking | Re: waist positon of Gaussian beam in PPKTP crystals |
Okay, I guess I understand what you want to know. I did the following steps.
1. calculated the conversion efficiency as a function of the waist size. I found w~50um was the optimum waist.
Note: the confocal relation Zr = pi * wo^2/(lamba/n) = L/2 gives us almost the same optimum waist.
elog #2735

2. Did mode matching to get w=50um
elog #2959
elog #3188


3. calculated the offset
elog #2850
4. Moved the ovens
Quote: |
I thought we cared about satisfying the confocal focusing parameter, that is to say we want to set Zr = 2L_crystal. If Zr changes inside the crystal, this is the number we care about..isn't it NOT the waist size, but the rayleigh range we care about? I am not entirely sure what youre response is saying you did...
- Calculate Zr = pi * wo^2/(lamba/n)
- Do mode matching to get this wo in free space
- Calculate the offset you need to move the oven by using n
- Move hte ovens
OR
- Calculate Zr = pi*wo^2/(lamba)
- Do mode matching to get this in free space
- Calculate the offset you need to move your ovens using n
- Move your ovens
I guess the waist size would also let me know - are you using 69 um or 53 um waist size?
|
|
4321
|
Fri Feb 18 00:13:55 2011 |
kiwamu | Update | CDS | Re:Daqd was rebuilt, now reverted. |
THANK YOU, JOE !!!   
Quote: |
As one of the trouble shooting steps for the daqd (i.e. framebuilder) I rebuilt the daqd executable.
|
|
4724
|
Mon May 16 10:05:02 2011 |
kiwamu | Update | Photos | Re:ETMY optical bench |
You are right. We should change or rotate the mirror mount.
Actually when Suresh and I were putting the mirror we rotated the mount by 90 deg such that the fat side of the mount is at left had side.
It was because the fat side had been clipping the oplev beam when the fat side is at right.
At that moment we were blocking the green beam to only see the faint IR beam with a sensor card, so we haven't checked the green beam.
Anyway the mount is apparently not good for the green beam.
Quote from #4723 |
I didn't notice it the other day when I was working on putting in the trans QPD, but do we need to switch the mirror mount for the first turning mirror of the IR trans beam, which the green transmits through to go into the cavity? It seems like we've set ourselves up for potential clipping.
|
|
5508
|
Wed Sep 21 23:25:51 2011 |
kiwamu | Update | SUS | Re:ITMY and SRM actuator response functions - fitting results |
Did you take the 180 deg shift into your account ?
Since your measurement was done when the loop was closed, there must be an additional 180 deg phase shift (in other words, minus sign).
Quote from #5507 |
In the end I just fitted the response magnitude. I was initially fitting the complex response function, but ran into problems which I think were cased by overall phase offsets between the data and test function. Can I canvass for opinion if fitting the magnitude is OK, or should I try again fitting the phase too?
|
|
5509
|
Wed Sep 21 23:44:45 2011 |
Paul | Update | SUS | Re:ITMY and SRM actuator response functions - fitting results |
Quote: |
Did you take the 180 deg shift into your account ?
Since your measurement was done when the loop was closed, there must be an additional 180 deg phase shift (in other words, minus sign).
Quote from #5507 |
In the end I just fitted the response magnitude. I was initially fitting the complex response function, but ran into problems which I think were cased by overall phase offsets between the data and test function. Can I canvass for opinion if fitting the magnitude is OK, or should I try again fitting the phase too?
|
|
I thought I had, but apparently not, and I'd made another error or two in the complex version of my fitting routine. I've fixed them now, thanks! I'll put up the new fitting results tomorrow morning. |
5537
|
Sat Sep 24 02:09:43 2011 |
kiwamu | Update | SUS | Re:Oplev filter optimization for 2 poles and 2 zeros |
Good work for the oplev noise simulations. Here are some comments/questions:
(A) The noise looks suppressed but the open-loop transfer function doesn't look so good, because it doesn't have sufficient phase margins at the UGFs (0.01 and 10 Hz).
I guess it is better to have a phase margin detector in your code so that the code automatically rejects a bad phase margin case.
Actually since the number of data points are finite, the rms detector in the simulation can not always find a sharp loop oscillation.
(B) The resultant poles and zeros seem canceling each other but the filter still has a structure. Is something wrong ?
Quote from #5332 |
Pole 1 frequency = 0.0497181 Hz
Pole 2 frequency = 2.01809 Hz
Zero 1 frequency = 0.0497181 Hz
Zero 2 frequency = 2.01809 Hz
|
|
5540
|
Sat Sep 24 17:45:56 2011 |
Paul | Update | SUS | Re:Oplev filter optimization for 2 poles and 2 zeros |
Quote: |
(B) The resultant poles and zeros seem canceling each other but the filter still has a structure. Is something wrong ?
Quote from #5332 |
Pole 1 frequency = 0.0497181 Hz
Pole 2 frequency = 2.01809 Hz
Zero 1 frequency = 0.0497181 Hz
Zero 2 frequency = 2.01809 Hz
|
|
Ah yes, well noticed. I think I have tracked this down to just a bug in printing of fitting results: It was just printing the pole results for the zeros too. The results for the same fit now read:
Finished with:
Pole 1 frequency = 0.0497181 Hz
Pole 2 frequency = 2.01809 Hz
Zero 1 frequency = 0.0972455 Hz
Zero 2 frequency = 6.50126 Hz
Overall gain = 71970.1
EDIT: sorry, I forgot that when you write a reply, the author is still by default the person you are replying to unless you change it!
|
5820
|
Sat Nov 5 04:30:21 2011 |
kiwamu | Update | Green Locking | Re:Passive summing box modifications |
I think you also should check the PZT's capacitance of the 700mW LightWave because 2.36 nF is the one for the 1W Innolight laser.
Quote from #5807 |
To combat this, I propose we simply change the resistor in the modulation path from 1M to 10k. This leaves the feedback path TF unchanged, and changes the mod path into a sort of bandpass filter for the modulation frequency. The fact that the phase is near zero at fmod means we don't have to come up with some way to phase shift the signal for demodulation.
|
|
2533
|
Tue Jan 19 23:26:07 2010 |
kiwamu | Update | Electronics | Re:Re: triple resonant circuit for EOM |
Quote: |
5. For the impedance matching, I will select a transformer so that 55MHz is matched. In contrast I will leave two lower resonances as they are.
This is because 11MHz and 29.5MHz usually tend to have higher impedance than 55MHz. In this case, even if the impedance is mismatched, the gain for these can be kept higher than 11.
I will post the detail for this mismatched case tomorrow.
|
Here the technique of the impedance matching for the triple resonant circuit are explained.
In our case, the transformer should be chosen so that the impedance of the resonance at 55MHz is matched.
We are going to use the transformer to step up the voltage applied onto the EOM.
To obtain the maximum step-up-gain, it is better to think about the behavior of the transformer.
When using the transformer there are two different cases practically. And each case requires different optimization technique. This is the key point.
By considering these two cases, we can finally select the most appropriate transformer and obtain the maximum gain.
( how to maximize the gain ?)
Let us consider about the transformer. The gain of the circuit by using the transformer is represented by
(1)
Where ZL is the impedance of the load (i.e. impedance of the circuit without the transformer ) and n is the turn ratio.
It is apparent that G is the function of two parameters, ZL and n. This leads to two different solutions for maximizing the gain practically.

- case.1 : The turn ratio n is fixed.
In this case, the tunable parameter is the impedance ZL. The gain as a function of ZL is shown in the left figure above.
In order to maximize the gain, Z must be as high as possible. The gain G get close to 2n when the impedance ZL goes to infinity.
There also is another important thing; If the impedance ZL is bigger than the matched impedance (i.e. ZL = 50 * n^2 ), the gain can get higher than n.
- case.2 : The impedance ZL is fixed.
In contrast to case1, once the impedance ZL is fixed, the tunable parameter is n. The gain as a function of n is shown in the right figure above.
In this case the impedance matched condition is the best solution, where ZL=50*n^2. ( indicated as red arrow in the figure )
The gain can not go higher than n somehow. This is clearly different from case1.
( Application to the triple resonant circuit )
Here we can define the goal as "all three resonances have gain of more than n, while n is set to be as high as possible"
According to consideration of case1, if each resonance has an impedance of greater than 50*n^2 (matched condition) it looks fine, but not enough in fact.
For example if we choose n=2, it corresponds to the matched impedance of 50*n^2 = 200 Ohm. Typically every three resonance has several kOhm which is clearly bigger than the matched impedance successfully.
However no matter how big impedance we try to make, the gains can not be greater than G=2n=4 for all the three resonance. This is ridiculous.
What we have to do is to choose n so that it matches the impedance of the resonance which has the smallest impedance.
In our case, usually the resonance at 55MHz tends to have the smallest impedance in those three. According to this if we choose n correctly, the other two is mismatched.
However they can still have the gain of more than n, because their impedance is bigger than the matching impedance. This can be easily understand by recalling the case1.
(expected optimum gain of designed circuit)
By using the equation (1), the expected gain of the triple resonant circuit including the losses is calculated. The parameters can be found in last entry.

The turn ratio is set as n=11, which matches the impedance of the resonance at 55MHz. Therefore 55MHz has the gain of 11.
The gain at 11MHz is bigger than n=11, this corresponds to the case1. Thus the impedance at 11MHz can go close to gain of 22, if we can make the impedance much big.
|
2609
|
Tue Feb 16 16:24:30 2010 |
kiwamu | Update | Green Locking | Re:Re:take some optics away from the ETM end table |
I put the TRY_PD back to the end table and aligned it. Now it seems to be working well.
Quote: |
The PD Kiwamu removed from the Y table was TRY, which we still need.
My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.
I'm going to ask Kiwamu if he can kindly put it back.
|
I am going to put the PD back to the Y end table in this afternoon.
|
|
3460
|
Mon Aug 23 22:11:52 2010 |
kiwamu | Update | Treasure | Re:Seriously? |
Woops, I am sorry about that. I've just cleaned them up.
Quote: |
Bad CDS team. Bad.
|
|
3323
|
Thu Jul 29 17:12:48 2010 |
josephb, kiwamu | Update | CDS | Re:Working out ADC/DAC/BO wiring |
We have installed 4 BO boards, 3 DAC boards and 1 ADC board for new C1SUS.
They are on the 1Y5 rack.
 |
5838
|
Mon Nov 7 22:20:18 2011 |
kiwamu | Update | Green Locking | Re:YARM length fluctuation |
A nice plot !
Can you put another y-axis on the right hand side of the same plot in terms of the cavity displacements ?
And can you also measure a more important spectrum, namely the suppressed error signal ?
Quote from #5837
|
I measured the power spectrum of channel C1:GCY_SLOW_SERVO1_IN1, which is the PZT driving voltage.
|
|
4080
|
Mon Dec 20 23:32:58 2010 |
kiwamu | Update | IOO | Re:checking out & closing the vacuum chambers |
|
2740
|
Wed Mar 31 11:52:32 2010 |
kiwamu | Summary | Green Locking | Re:conversion efficiency of PPKTP |
Good point. There is a trick to avoid a divergence.
Actually the radius of the cylindrical wave is set to the spot size at the surface of the crystal instead of an actual beam waist. This is the idea Dmass told me before.
So that the radius is expressed by w=w0(1+(L/2ZR)2)1/2, where w0 is beam waist, L is the length of the crystal and ZR is the rayleigh range.
In this case the radius can't go smaller than w0/2 and the solution can not diverge to infinity.
Quote: |
Question:
Why does the small spot size for the case (A) have small efficiency as the others? I thought the efficiency goes diverged to infinity as the radius of the cylinder gets smaller.
|
|
4090
|
Wed Dec 22 21:38:47 2010 |
kiwamu | Configuration | VAC | Re:slow pumpdown at 12 hours |
I stopped the pumping at 9:30 pm. Now we are at 29 torr.
Quote: from #4089 |
How to stop pumping:
1, close RV1 manual valve with torque wheel
2, close V3
3, turn off roughing pumps RP1 & RP3
4, disconnect metal hose connection to butterfly valve
|
|
4038
|
Thu Dec 9 22:04:40 2010 |
kiwamu | Update | SUS | Re:strange ETMX suspension |
[Koji, Osamu and Kiwamu]
We checked the ETMX suspension and found the UR OSEM was close to the magnet.
So we rotated the UR OSEM so that it won't touch the magnet any more.
We will check the resonant frequencies again by taking the spectra.
--
In fact the ETMX stacked when we applied a big angular offset to Yaw direction.
This was because that the magnet was actually touching the UR OSEM.
The earthquake stops were fine, they weren't touching the test mass.
Also we looked at the wire and the standoffs, they seemed fine.
Quote: #4036 |
We are going to inspect the suspension today. |
|
2606
|
Tue Feb 16 11:12:51 2010 |
kiwamu | Update | Green Locking | Re:take some optics away from the ETM end table |
Quote: |
Quote: |
In the last two days Steve and I took some optics away from the both ETM end table.
This is because we need an enough space to set up the green locking stuff into the end table, and also need to know how much space is available.
Optics we took away are : Alberto's RF stuff, fiber stuff and some optics obviously not in used.
The picture taken after the removing is attached. Attachment1:ETMX, Attachment2:ETMY
And the pictures taken before the removing are on the wiki, so you can check how they are changed.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables
|
The PD Kiwamu removed from the Y table was TRY, which we still need.
My bad if he took that. By mistake I told him that was the one I installed on the table for the length measurement and we didn't need it anymore.
I'm going to ask Kiwamu if he can kindly put it back.
|
I am going to put the PD back to the Y end table in this afternoon. |
3457
|
Mon Aug 23 18:18:22 2010 |
kiwamu | Configuration | SUS | Re:watchdogs off |
Now watchdogs are back.
The suspensions are well damped. |
2447
|
Tue Dec 22 18:42:40 2009 |
Sanjit, Koji | Configuration | Adaptive Filtering | Readded DAQ channels to active list |
Sometimes back we modified /cvs/cds/caltech/chans/daq/C1ASS.ini to save some of the channels. The file was reverted to default after the recent changes in ASS.
We again uncommented and made acquire=1 to save the following three channels using daqconfig:
C1:ASS-TOP_ERR_MCL_IN1_2048
C1:ASS-TOP_PEM_15_IN1_2048
C1:ASS-TOP_PEM_18_IN1_2048
The script automatically created a back up in /cvs/cds/caltech/chans/daq/archive
|
889
|
Tue Aug 26 19:07:37 2008 |
Yoichi | HowTo | Computers | Reading data from Agilent 4395A analyzer through GPIB from *Linux* machine |
I succeeded in reading data from Agilent 4395A analyzer, who's floppy is crappy, through GPIB from a Linux machine using
agilent 82357B USB-GPIB interface.
I installed the linux GPIB driver to one of the lab. laptops (the silver DELL one currently sitting on the 4395A analyzer).
I wrote an initialization script for the USB-GPIB interface and a small python script for reading data from the analyzer.
[Usage]
1. Connect the USB-GPIB interface to the laptop and the analyzer.
2. Run /usr/local/bin/initGPIB command (it takes about 10sec to complete).
3. Run /usr/local/bin/getgpibdata.py > data.txt to save data from the analyzer to a text file.
The data format is explained in the comments of getgpibdata.py
This method is way faster than the unreliable floppy. The data is transfered in a few sec.
I'm now writing a wiki page on this
http://lhocds.ligo-wa.caltech.edu:8000/40m/GPIB
I will install the same thing into the other DELL laptop soon.
Let me know if you have trouble with this. |
9597
|
Tue Feb 4 17:40:19 2014 |
manasa | Update | General | Ready for pump down?? |
Quote: |
* PRM suspension has not been behaving well. PRM is being kicked around every 5-10 seconds when the PRC is aligned (as seen on REFL camera). We are not sure where this is coming from. The first time we saw this happening was when we were trying to lock PRC at low power even before we took the heavy doors off. So we are pretty sure this is not caused by the foil cover on the OSEMs. We tried turning ON/OFF the oplev servo, turning ON/OFF the damping loops and also checked the connections in the feedthrough and satellite box for the PRM. The OSEM sensor values for the suspension also seem to match the ones on the wiki.
|
This is solved.
The ASC for PRC for left turned ON. Turning it OFF solved the problem.
If there is no feedback regarding the POP alignment or anything to check with modified PRC length, we will close tomorrow morning. |
9598
|
Tue Feb 4 23:01:24 2014 |
Jenne | Update | General | Ready for pump down?? |
This sounds great! The only suggestion that I have is for checking POP. If you have the beam on the camera, you can hold a card in front of each mirror, and find out where the edge of the beam is. Introduce the card from the side, and watch for the point where you just start to see the beam on the camera be obstructed. Repeat for the other side, and you have an idea of the centering of the beam.
I think this is most important for the in-vac mirrors, since the beam is large-ish, and we have to hit both steering mirrors at ~45 degrees. |
9601
|
Wed Feb 5 15:26:57 2014 |
manasa | Update | General | Ready for pump down?? |
Quote: |
This sounds great! The only suggestion that I have is for checking POP. If you have the beam on the camera, you can hold a card in front of each mirror, and find out where the edge of the beam is. Introduce the card from the side, and watch for the point where you just start to see the beam on the camera be obstructed. Repeat for the other side, and you have an idea of the centering of the beam.
I think this is most important for the in-vac mirrors, since the beam is large-ish, and we have to hit both steering mirrors at ~45 degrees.
|
[EricQ, Manasa]
This check was done and we had to move one of the steering mirrors in pitch. Else, everything was just fine.
In-vacuum pictures of PR2 and PR3 new positions were taken. MC spot positions measured to be < 1mm and oplevs were centered. |
14390
|
Tue Jan 8 19:13:39 2019 |
Jon | Update | Upgrade | Ready for pumpdown tomorrow |
Everything is set for a second pumpdown tomorrow. We'll plan to start pumping after the 1pm meeting. Since the main volume is already at 12 torr, the roughing phase won't take nearly as long this time.
I've added new channels for the TP1 analog readings (current and speed) and for the two N2 tank pressure readings. Chub finished installing the new regulator and has run the transducer signal cable to the vacuum rack. In the morning he will terminate the cable and make the final connection to the Acromag.
Gautam and I updated the framebuilder config file, adding the newly-added channels to the list of those to be logged. We also set up a git repo containing all of the Python interlock/interfacing code: https://git.ligo.org/40m/vacpython. The idea is to use the issue tracker to systematically document any changes to the interlock code. |
11488
|
Mon Aug 10 22:18:19 2015 |
Ignacio | Update | IOO | Ready to do some online mode cleaner subtraction |
I'm attaching a SISO IIR Wiener filter here for reference purposes that will go online either tonight or tomorrow evening. This is a first test to convince myself that I can get this to work, MISO IIR filters are close to being ready and will soon be employed.
This Wiener filter uses the STS-X channel as a witness and MCL as target. The bode plot for the filter is shown below,

The performance of the FIR and IIR Wiener filters and the ammount of subtraction achive for MCL is shown below,

Output from quack to be loaded with foton: filter.zip
K bye. |
Attachment 1: stsx.png
|
|
Attachment 2: performance.png
|
|
Attachment 3: filter.zip
|
8969
|
Tue Aug 6 07:52:58 2013 |
manasa | Update | General | Ready to pump down |
I did an alignment check of the IFO before we start pumping down.
Arms were locked. PRM and SRM were aligned. Green was aligned to the arms for reference during the pump down.
Steve! It's a GO!
MC spot positions:

OSEM:

Oplevs were all centered yesterday and haven't drifted much. So I left them as is.

QPDs (IPPOS aligned from yesterday.

|
6079
|
Wed Dec 7 00:48:58 2011 |
kiwamu | Update | RF System | Realigned incindent pointing to MC |
Actually it was already in a good place.
I just realigned the zig-zag mirrors on the PLS table to bring the entire beam axis a little bit upward.
The WFS servo still seems fine. The input pzt mirrors are still within their range.
|
Next step: Kiwamu needs to find his happy mode cleaner place, and we'll realign the PSL beam to the MC. The PSL-MC axes were mismatched pretty badly according to Suresh anyway, so this had to be done no matter what.
|
|
5539
|
Sat Sep 24 17:12:54 2011 |
Koji | Update | LSC | Realignment of REFL / Some 3f PRMI locking / Recycling Gain |
[Koji Suresh]
Activity on Friday evening
- The REFL path has been thoroughly aligned
As I did not like the REFL spot misaligned on the REFL CCD, we went to the AP table.
Many optics had the spots not on the middle of the optic, including the PBS whose post was not fixed on the post holder.
We aligned the optical paths, the RF PDs, and the CCD. The alignment of the PD required the use of the IR viewer.
One should not trust the DC output as a reference of the PD alignment as it is not enough sensitive to the clipping.
We aligned the optical paths again after the reasonable alignment of PRM is established with the interferometer.
"Next time when you see REFL spot is not at the center of the camera, think what is moved!"
- The REFL165 PD is disconnected from the power supply
I found that the REFL165 PD is producing 7.5V output at the DC monitor no matter how the beam is blocked.
As I could not recover this issue by swapping the power connector at the LSC rack, I disconnected the cable
at the RFL165 PD side. I need to go through the PD power supply circuit next week.
- PRMI alignment policy of the night
Kiwamu has aligned Y-arm some time ago (Thursday evening?). I decided not to touch ITMY.
So the Michelson is aligned by ITMX, PRC is aligned by PRM.
- Michelson locking
The short Michelson was locked with AS55Q and the MICH filter. We could use the gain of +/-20 for locking,
and could increase it up to ~+/-250. At the max gain, the all three integrators and the two resonant gains
could be activated. The sign depends on which fringe you want at the AS port (bright or dark).
In this condition, the output of the POXDC channel (which is actually the POY DC out -- c.f. This entry)
is used to determine the internal power. It was ~70cnt.
- PRMI locking
Then the PRMI was locked. There was some confusion of the gains because of the limitters at the servo filters
(which yielded the locking with 1bit outputs no matter how much the gains were....)
After all, I decided to use REFL33I for the PRCL for the test. The PRCL gain was -0.3~-1.0 for the carrier lock, but
was highly dependent on the alignment. i.e. if accidentally hit the high power recycling gain, it oscillated easily
and the lock was lost. Probably this was the first 3f locking at the 40m in the current optical config, if
Kiwamu did not do that secretly. The SB lock was also obtained by flipping the sign of the PRCL servo.
The difficulty we had was the instability when the recycling gain became big. We were monitoring the POXDC
(i.e.DCout of the POY PD). When this exceeds 5000, many glitches appears in the LSC signals and disturbs the lock.
This was not the fringes from neither the arms nor the SRC.
The observed POY DC with the carrier resonant PRMI was 5000~8000vcnt (momentary). |
5545
|
Mon Sep 26 15:15:45 2011 |
Anamaria | Update | LSC | Realignment of REFL / Some 3f PRMI locking / Recycling Gain |
A few comments on REFL table alignment and REFL165.
Last time we realigned the table was after the PZT work by Koji/Kiwamu; we made sure that the beam was going through optics satisfactorily and that we were reading reasonable numbers. I did use primarily a viewer to align onto PD, after which we used the voltage reading to center better around that spot. As desired, I could not see the beam once it was centered on the PD. I never touched the PBS unfortunately, so I never noticed it was not fixed. Sad.
I am very surprised to hear the reading from REFL165, since I was reading around 400mV from it a few days before. Something strange happened in the mean time. I hope not when I was plugging and unplugging at the power rack for the POY work. But I would not have needed to touch REFL165. Those cables should get some strain relief at the rack, by the way.
I thought about it, and I must admit that after we centered camera on REFL (paired with an alignment), we did not check the beam path later, even after we saw that the REFL beam had moved. We only did a quick by-viewer check that the beams were not off of the PDs.
Quote: |
[Koji Suresh]
- The REFL path has been thoroughly aligned
Many optics had the spots not on the middle of the optic, including the PBS whose post was not fixed on the post holder.
We aligned the optical paths, the RF PDs, and the CCD. The alignment of the PD required the use of the IR viewer.
One should not trust the DC output as a reference of the PD alignment as it is not enough sensitive to the clipping.
We aligned the optical paths again after the reasonable alignment of PRM is established with the interferometer.
"Next time when you see REFL spot is not at the center of the camera, think what is moved!"
- The REFL165 PD is disconnected from the power supply
I found that the REFL165 PD is producing 7.5V output at the DC monitor no matter how the beam is blocked.
As I could not recover this issue by swapping the power connector at the LSC rack, I disconnected the cable
at the RFL165 PD side. I need to go through the PD power supply circuit next week.
|
|
12169
|
Fri Jun 10 18:16:59 2016 |
varun | Update | PSL | Realignment of pre mode cleaner |
The mode cleaner was misaligned probably due to the earthquake (the drop in the MC transmitted value slightly after utc 7:38:52 as seen in the second plot). The plots show PMC transmitted and MC sum signals from 10th june 07:10:08 UTC over a duration of 17 hrs. The PMC was realigned at about 4-4:15 pm today by rana. This can be seen in the first plot. |
Attachment 1: pmctrans_mcsum_signals.png
|
|
17137
|
Thu Sep 8 16:03:25 2022 |
Yehonathan | Update | LSC | Realignment, arm locking, gains adjustments |
{Anchal, Yehonathan}
We came this morning and the IMC was misaligned. The IMC was realigned and locked. This of course changed the input beam and sent us down to a long alignment journey.
We first use TTs to find beam on BHD DCPD/Camera since it is only single bounce on all optics.
Then, PR2/3 were used to find POP beam while keeping the BHD beam.
Unfortunately, that was not enough. TTs and PRs have some degeneracy which caused us to lose the REFL beam.
Realizing this we went to AS table to find the REFL beam. We found a ghost beam that decieved us for a while. Realizing it was a ghost beam, we moved TT2 in pitch, while keeping the POP DCPD high with PRs, until we saw a new beam on the viewing card.
We kept aligning TT1/2, PR2/3 to maximize the REFL DCPD while keeping the POP DCPD high. We tried to look at the REFL camera but soon realized that the REFL beam is too weak for the camera to see.
At that point we already had some flashing in the arms (we centered the OpLevs in the beginning).
Arms were aligned and locked. We had some issue with the X-ARM not catching lock. We increased the gain and it locked almost immediately. To fix the arms gains correctly we took OLTFs (Attachment) and adjusted the XARM gain to 0.027 to make the UGF at 200Hz.
Both arms locked with 200 Hz UGF from:
From GPS: 1346713049
To GPS: 1346713300
From GPS: 1346713380
To GPS: 1346714166
HEPA turned off:
From GPS: 1346714298
To GPS: 1346714716
|
10367
|
Tue Aug 12 02:09:39 2014 |
ericq | Update | General | Reasonable alignment restored |
I took over the IFO, after Jenne's locking efforts, which included manual alignment, since the ASS was doing bad things.
For whatever reason, the Yarm ASS TT gains needed to be flipped back to go in the right direction. I've restored the old BURT snap file, and the ASS seems to work for now.
Furthermore, I added some FMs to the Yarm ASS to be able to ramp down gains, to be done as new offsets are ramped in, so that a smooth offset transition is possible. The new version of the script works reasonably, but could be smoother still... Once I iron this out, I'll do the same change to the Xarm, and update the buttons.
In any case, I was able to run ASS on both arms; single arm lock maxed out at around 0.85, maybe because we're only getting 0.78 from the PMC and 16k from the MC? I then aligned and locked the PRM, then reentered the oplevs on all of the PRMI optics. Oddly, the ETMs were at single uRads on their oplevs.
With this arm alignment, I was able to get the green TRX to ~0.55, and thus the beatnote to around -25dBm, which is still lower than we'd like. I didn't touch the Y green alignment, though it is pretty bad, at transmission of below 0.2 when "locked" on the 00 mode.
When I try to lock things, the initial ALS CARM and DARM locking seems to go fine, actuating on the ETMs for both DoFs, but ETMX is getting kicked during the resonance search every time. Maybe improving green alignment / increasing beatnote amplitudes will hopefully help some.
I'm leaving the interferometer with the PRM aligned, so that all optics (except SRM) are near the center of their oplev range. I'm curious as to what their variance will be over the next day; this can inform whether we need to improve the ETMY oplev's angular range or not. |
10369
|
Tue Aug 12 14:29:01 2014 |
ericq | Update | General | Reasonable alignment restored |
I'm leaving the interferometer with the PRM aligned, so that all optics (except SRM) are near the center of their oplev range. I'm curious as to what their variance will be over the next day; this can inform whether we need to improve the ETMY oplev's angular range or not.
|
Here's an 12 hour minute-trend of all of the oplevs. The worst offenders are ITMY pitch and yaw, and ITMX pitch.
Additionally, ETMY's yaw range is +-30urad, and here we see it wandering by 10 urad in a half day. We probably need more range.

|
10744
|
Mon Dec 1 20:12:52 2014 |
ericq | Update | Modern Control | Rebirth of CESAR / ESCOBAR |
I've uploaded a note at T1400735 about a new implementation of CESAR ESCOBAR ideas I've been working on. Please send me any and all feedback, comments, criticisms!
Using the things I talk about in there, I was able to have a time domain simulation of a 40m arm cavity transition through three error signals, without hardcoding the gains, offsets, or thresholds for using the signals. Some results look like this:

I'm going to be trying this out on the real IFO soon... |
2068
|
Thu Oct 8 11:37:59 2009 |
josephb | Update | Computers | Reboot of dcuepics helped, c1susvme1 having problems |
Power cycling c1dcuepics seems to have fixed the EPICs channel problems, and c1lsc, c1asc, and c1iovme are talking again.
I burt restored c1iscepics and c1Iosepics from the snapshot at 6 am this morning.
However, c1susvme1 never came back after the last power cycle of its crate that it shared with c1susvme2. I connected a monitor and keyboard per the reboot instructions. I hit ctrl-x, and it proceeded to boot, however, it displays that there's a media error, PXE-E61, suggests testing the cable, and only offers an option to reboot. From a cursory inspection of the front, the cables seem to look okay. Also, this machine had eventually come back after the first power cycle and I'm pretty sure no cables were moved in between.
|
742
|
Sat Jul 26 15:09:57 2008 |
Aidan | Update | Computers | Reboot of op440m |
I was reviewing the PSL Overview screen this afternoon and op440m completely froze when I center-clicked on the REF CAVITY TRANSMISSION indicator. It was unresponsive to any keyboard or mouse control. The moon button had no effect to shut the machine down.
Called Alberto in and we logged into op440m from rosalba. From there we logged in as 'root' and run a shutdown script '/usr/sbin/shutdown -i S -g 1'. The medm screens started disappearing from the op440m display and we were eventually asked to enter System Maintenance Mode. From here we selected RUN LEVEL 5: "state 5: Shut the machine down so that it is safe to remove the power". Following this the machine turned itself off.
We powered it back on, logged back in as controls and restarted the medm screens. Everything seems to be running fine now.
Aidan. |
13935
|
Fri Jun 8 20:15:08 2018 |
gautam | Update | CDS | Reboot script |
Unfortunately, this has happened (and seems like it will happen) enough times that I set up a script for rebooting the machine in a controlled way, hopefully it will negate the need to repeatedly go into the VEA and hard-reboot the machines. Script lives at /opt/rtcds/caltech/c1/scripts/cds/rebootC1LSC.sh. SVN committed. It worked well for me today. All applicable CDS indicator lights are now green again. Be aware that c1oaf will probably need to be restarted manually in order to make the DC light green. Also, this script won't help you if you try to unload a model on c1lsc and the FE crashes. It relies on c1lsc being ssh-able. The basic logic is:
- Ask for confirmation.
- Shutdown all vertex optic watchdogs, PSL shutter.
- ssh into c1sus and c1ioo, shutdown all models on these machines, soft reboot them.
- ssh into c1lsc, soft reboot the machine. No attempt is made to unload the models.
- Wait 2 minutes for all machines to come back online.
- Restart models on all 3 vertex FEs (IOPs first, then rest).
- Prompt user for confirmation to re-enable watchdog status and open PSL shutter.
|
Attachment 1: 31.png
|
|
15071
|
Wed Dec 4 09:11:42 2019 |
Yehonathan | Update | CDS | Reboot script |
After the CDSs crashed we run the rebootC1LSC.sh script.
The script is a bit annoying in that it requires entering the CDSs' passwords multiple times over the time it runs which is long.
The resulting CDS screen is a bit different than what was reported before (attached). Also, not all watchdogs were restored.
We restore the remaining watchdogs and do XARM locking. Everything seems to be fine. |
Attachment 1: medmScreen11.ps
|
|
15072
|
Wed Dec 4 12:13:10 2019 |
gautam | Update | CDS | Reboot script |
It was way more annoying without a script and took longer than the 4 minutes it does now.
You can fix the requirement to enter password by changing the sshd settings on the FEs like I did for pianosa.
After running the script, you should verify that there are no red flags in the output to console. Yesterday, some of the settings the script was supposed to reset weren't correctly reset, possibly due to python/EPICS problems on donatella, and this cost me an hour of searching last night because the locking wasn't working. Anyway, best practise is to not crash the FEs.
Quote: |
The script is a bit annoying in that it requires entering the CDSs' passwords multiple times over the time it runs which is long.
|
|
1967
|
Fri Sep 4 16:09:26 2009 |
josephb | Summary | VAC | Rebooted RGA computer and reset RGA settings |
Steve noticed the RGA was not working today. It was powered on but no other lights were lit.
Turns out the c0rga machine had not been rebooted when the file system on linux1 was moved to the raid array, and thus no longer had a valid mount to /cvs/cds/. Thus, the scripts that were run as a cron could not be called.
We rebooted c0rga, and then ran ./RGAset.py to reset all the RGA settings, which had been reset when the RGA had lost power (and thus was the reason for only the power light being lit).
Everything seems to be working now. I'll be adding c0rga to the list of computers to reboot in the wiki. |
9562
|
Tue Jan 21 17:26:59 2014 |
Jenne | Summary | VAC | Rebooted RGA computer and reset RGA settings |
[Jenne, Steve]
Steve noticed that the RGA was not logging data and that not all the correct connection lights were on, and he wasn't able to run the "RGAset.py" script (in ...../scripts/RGA/) that sets up the proper parameters.
I looked, and the computer was not mounting the file system. I did a remote shutdown, then Steve went in and pushed the power button to turn the machine back on. After it booted up, it was able to talk to the file system, so I started ..../scripts/RGA/RGAset.py . The first 2 times I ran the script, it reported errors, but the 3rd time, it reported no communication errors. So, now that the computer can again talk to the file system, it should be able to run the cronjob, which is set to take data at 4am every day. Steve will check in the morning to confirm that the data is there. (The last data that's logged is 22Dec2013, 4am, which is right around when Koji reported and then fixed the file system).
|
14171
|
Mon Aug 20 15:16:39 2018 |
Jon | Update | CDS | Rebooted c1lsc, slow machines |
When I came in this morning no light was reaching the MC. One fast machine was dead, c1lsc, and a number of the slow machines: c1susaux, c1iool0, c1auxex, c1auxey, c1iscaux. Gautam walked me through reseting the slow machines manually and the fast machines via the reboot script. The computers are all back online and the MC is again able to lock. |
3931
|
Tue Nov 16 10:47:45 2010 |
Aidan | Update | Green Locking | Rebooted c1psl - added new GRNBEAT_FREQ channel |
I restored C1:PSL-126MOPA_126MON to its original settings (EGUF = -410, EGUL = 410) and added a new calc channel called C1:LSC-EX_GRNBEAT_FREQ that is derived from C1:PSL-126MOPA_126MON. The calibration in the new channel converts the input to MHz.
grecord(calc, "C1:LSC-EX_GRNBEAT_FREQ")
{
field(DESC,"EX-PSL Green Beat Note Frequency")
field(SCAN, ".1 second")
field(INPA,"C1:PSL-126MOPA_126MON")
field(PREC,"4")
field(CALC,"0.4878*A")
}
I rebooted c1psl and burtrestored. |
7495
|
Sun Oct 7 12:11:00 2012 |
Aidan | Update | Computers | Rebooted cymac0 |
I rebooted cymac0 a couple of times. When I first got here it was just frozen. I rebooted it and then ran a model (x1ios). The machine froze the second time I ran ./killx1ios. I've rebooted it again. |