40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 43 of 339  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  737   Thu Jul 24 21:53:00 2008 ranaSummaryTreasureHigh School Tour group and the PMC
There was a tour today of 40 high school kids. I warned them that the lasers could burn out their
eyes
, that the vacuum could suck them through the viewports like tubes of spaghetti and that the
high voltage amps would fry their hair off.

One of them was taking a picture of the SOS in the flow bench and another one was whispering what
a dumb idea it was to leave a sensitive clean optic out where people might breathe on it. I told
one them to cover his mouth. The other one asked what was the glass block behind the SOS.

It was a spare PMC! s/n 00-2677 with a 279 nF capacitance PZT. I guess that this is the one that
Go brought from MIT and then left here. So we don't have to take the one away from Bridge in the
35 W laser lab.

We can swap this one in in the morning while the FSS people work on the reference cavity
alignment. Please email me if you object to this operation.
  763   Wed Jul 30 01:08:50 2008 ranaSummarySUSSUS Drift Screen
This is a snap of the SUS Drift screen with all of the optics biases set back to their nominal
values except for the MC which Rob aligned and I didn't feel like mis-aligning. The reference
on the screen is from 3/25 when Andrey felt that Rob had a good IFO alignment.

Anything more than a few thousand is significant and more than 10k means something is wrong:



I wailed on the PRM for awhile and was able to loosen it up a little. The LL & LR sensors now
show some life one the dataviewer. The UL & UR are still railed ~1.6 V so that means that the
optic is pitched back. With aggressive pitch wailing I can see the PRM's ULR/UR sensors go
rail to rail so that means that the magnets are still on - although they may be half busted.
If they're OK we should be able to just re-sling this guy.


Did the same on SRM. The OSEM values have shifted on these, but not disastorously. The SIDE,
however, is completely unresponsive. The little signal I see when driving is is probably just
capacitive pickup in the cables. Have to vent to fix this one.


ITMX Has good life in all but the LR & UR channels. They respond, but the signal is very weak.
Seems like these magnets have not fallen off but that they are not between the LED/PD anymore.


ITMY seems ok. Check the spectra to be sure.


BS seems ok as well. Swings freely and no kinks in the swinging sensor waveforms. Check the spectra.
Attachment 1: infection-2.png
infection-2.png
  764   Wed Jul 30 12:03:44 2008 MashaSummaryAuxiliary lockingweekly summary
I've been learning about mode matching/beam propagation, so I can work on getting more
light into the fiber and increase the phase noise signal. I am also looking into phase
lock loops and noise in the fiber stabilization system to understand the noise sources
and figure out what our goals are in fiber stabilization.

In the lab, I've reproduced the Mach Zehnder interferometer that I had at the 40m, now
with a 50m fiber in one arm. I have done some preliminary fiber noise measurements
and revised estimations of noise sources (see attached plots). Once the digital
acquisition system is back up, I will be able to better manipulate the signals to cancel
laser amplitude noise and amplitude noise from variation in the amount of coupling into
the fiber. Some improvements in progress are more stable mounts for the fiber couplings,
faraday isolator, and better mode matching with the fiber.

Also working on my progress report.
Attachment 1: mz_fiber_noise0730.png
mz_fiber_noise0730.png
Attachment 2: setup0730.JPG
setup0730.JPG
Attachment 3: MZnoise_sources0727.png
MZnoise_sources0727.png
  768   Wed Jul 30 13:14:03 2008 KojiSummaryIOOHistory of the MC abs length
I was notified by Rob and Rana that there were many measurements of the MC abs length (i.e. modulation 
frequencies for the IFO.) between 2002 and now.

So, I dig the new and old e-logs and collected the measured values of the MC length, as shown below. 

I checked the presence of the vent for two big steps in the MC length. Each actually has a vent. 
The elog said that the tilt of the table was changed at the OMC installation in 2006 Oct.
It is told that the MC mirrors were moved a lot during the vent in 2007 Nov.

Note:
o The current modulation freq setting is the highest ever.
o Rob commented that the Marconi may drift in a long time.
o Apparently we need another measurement as we had the big earthquake.

My curiosity is now satified so far.

Local Time	3xFSR[MHz]	5xFSR[MHz]	MC round trip[m]	Measured by
----------------------------------------------------------------------------
2002/09/12	33.195400 	165.977000 	27.09343		Osamu
2002/10/16	33.194871 	165.974355 	27.09387		Osamu
2003/10/10	33.194929 	165.974645 	27.09382		Osamu
2004/12/14	33.194609 	165.973045 	27.09408		Osamu
2005/02/11	33.195123 	165.975615 	27.09366		Osamu
2005/02/14	33.195152 	165.975760 	27.09364		Osamu
2006/08/08	33.194700 	165.973500 	27.09401		Sam
2006/09/07	33.194490 	165.972450 	27.09418		Sam/Rana
2006/09/08	33.194550 	165.972750 	27.09413		Sam/Rana
----2006/10 VENT OMC installation	
2006/10/26	33.192985 	165.964925 	27.09541		Kirk/Sam
2006/10/27	33.192955 	165.964775 	27.09543		Kirk/Sam
2007/01/17	33.192833 	165.964165 	27.09553		Tobin/Kirk
2007/08/29	33.192120 	165.960600 	27.09611		Keita/Andrey/Rana
----2007/11 VENT Cleaning of the MC mirrors
2007/11/06	33.195439 	165.977195 	27.09340		Rob/Tobin
2008/07/29	33.196629 	165.983145 	27.09243		Rob/Yoichi
Attachment 1: MC_length.png
MC_length.png
  769   Wed Jul 30 13:52:41 2008 EricSummaryCamerasWeekly Summary
I tracked the tendency for ezcaPut to fail and sometimes seg-fault in the camera code to a conflict between the camera API and ezca, either on the 
network level or the thread level.  Since neither are sophisticated enough to provide controls over how they handle these two things, I instead 
separated the call to ezcaPut out into a small, separate script (a stripped down ezcawrite), which the camera code calls at the system level.  This is a 
bit hacky of a solution, but its the only thing that seems to work.

I've developed a transformation based on Euler angles that should be able to take the 4 OSEMs in a picture of the end mirror and use their relative 
positions to determine the angle of the camera to the optic.  This would allow the position data determined by the fitting software to be converted 
from pixels to meaningful lengths, and should aid any servo-ing done on the beams position.  I've yet to actually test if the equations work, though.

The servo code needs to have slew rate limiters and maximums/minimums to protect the mirrors written in to it before it can be tested again, but I 
have no idea what reasonable values for these limits are.

Joe and I recently scanned the PMC by driving C1:PSL-PMC_RAMP with the trianglewave script over a range of -3.5 to -1.25 (around 50 to 150 volts 
to the PZT) and read out C1:PSL-ISS_INMONPD to measure the transmission intensity.  This included slightly under 2 FSRs.  For slow scans (covering 
the range in 150 to 300 s), the peaks were very messy (even with the laser power at 1/6 its normal value), and it was difficult to place where the 
actual peak center occurred.  For faster sans (covering the range in 30 seconds or so), the peaks were very clean and nearly symmetric, but were 
not placed logically (the same peak showed up at two very different values for the PZT voltage in two separate runs).  I don't have time to put 
together graphs of the scans at the moment; I'll have that up sometime this afternoon.
  770   Wed Jul 30 15:12:08 2008 ranaSummaryIOOHistory of the MC abs length
> I was notified by Rob and Rana that there were many measurements of the MC abs length (i.e. modulation
> frequencies for the IFO.) between 2002 and now.

I will just add that I think that the Marconi/IFR has always been off by ~150-200 Hz
in that the frequency measured by the GPS locked frequency counter is different from
what's reported by the Marconi's front panel. We should, in the future, clearly indicate
which display is being used.
  791   Mon Aug 4 13:43:02 2008 YoichiSummaryPSLFSS loop calibration
As a part of the effort to repair the FSS loop bandwidth, I tried to calibrate the FSS loop.

First, I scanned the MOPA frequency by injecting a triangular wave into the ramp-in of the FSS box, which goes to the PZT of the NPRO.
The first attachment shows the transmitted light curve (pink one) along with the PDH signal (light blue).
The sweep was very slow (0.1Hz for 2Vp-p). From this measurement, the FWHM was 6.8e-3V. Then fpol = FWHM/2=3.4e-3V, where fpol is the cavity pole frequency.
So the PZT's DC response is 294*fpol/V. If we use the canonical fpol=38kHz, it is 11.172MHz/V.

Then I tried to measure the cavity pole. First I tried the cavity ring down measurement, by blocking the beam abruptly. Unfortunately, my hand was not fast enough.
The ring down shape was not an exponential decay.
I then locked the reference cavity only using the PZT with very narrow bandwidth (UGF=2kHz). I injected signal into the external modulation input of the 80MHz VCO
for the AOM. The second attachment shows the transfer function from this input to the IN2 (mixer output monitor port) of the FSS servo box.
To plot this, I corrected the measurement for the open loop TF (i.e. multiplying the measured TF with (1+G)), and other filters in the path (8MHz LPF after the ext. mod.
input of the 80MHz VCO, and an RCL network after the mixter). The gain looks like a cavity pole, but the phase decreases very rapidly.
If you look at the third attachment showing a wider band transfer function, there are notches at 1.8MHz and above. I couldn't find this kind of filter in the schematic.
Maybe this is the RFPD's bandpass filter. I will check this later. From these plots, it is difficult to tell the cavity pole frequency. From the -3dB point, fpol is around 83kHz,
but from the phase=-45deg point, fpol is around 40kHz.

Finally, I calibrated the cavity's optical gain by locking the Ref. Cavity with only PZT, and injecting a signal into the loop.
The signal was injected from Test-In2 of the FSS servo box and the transfer function from the PZT output signal (TP10) to IN1 (mixer output) was measured.
The transfer function was corrected for a 10Hz LPF after TP10.
The attachment4 shows a nice flat response up to 30kHz. Above 30kHz, the measurement is too noisy. The optical gain at DC is about 22dB from the PZT drive to the error signal (IN1).
Using fpol=38kHz, it means 887kHz/V calibration factor for the signal at IN1. There is a mixer output monitor DAQ channel in the FSS but it seems to be not working at the
moment. I will look into this later. There is a gain of 10dB between IN1 and the mixer monitor channel.
By looking at the phase response of the attachement4, there is a cavity pole like behavior around 30kHz. If we assume the PZT response is flat up to this frequency, it is
roughly consistent with fpol=38kHz.

I was not able to take a sensible spectrum of IN1 using the network analyzer. When the FSS servo was engaged, the signal was too small.
I will try to use an AF spectrum analyzer later to get a calibrated spectrum.
Attachment 1: P7310048.JPG
P7310048.JPG
Attachment 2: cavity-response.pdf
cavity-response.pdf
Attachment 3: cavity-response2.pdf
cavity-response2.pdf
Attachment 4: cavity-gain.pdf
cavity-gain.pdf
  804   Wed Aug 6 13:57:44 2008 MashaSummaryAuxiliary lockingweekly summary
Finished second progress report.

Working on improving the sensitivity of the Mach Zehnder to more accurately measure the fiber noise. Making more stable mounts that have fewer degrees of freedom/springs and are more solid should get rid of their vibrational modes and help with the noise. I found a good mount for the Faraday Isolator, and John and Aidan helped me to make the solid aluminum blocks to mount the fiber couplers. I'll also replace the laser feet with a similar solid mount. I will also get a plastic box to block out acoustic noise/air currents/etc. Am starting to couple into the fiber again; now I am using polarization maintaining fiber.

I am starting to plan the fiber noise cancellation setup, and thinking about the noise sources and their effects.
  819   Sun Aug 10 16:57:02 2008 ranaSummaryPhotosPhotos from Vent 8/4 - 8/8
http://www.ligo.caltech.edu/~rana/40m/VentAug08/

I've added the D40 pictures from last week to this web page. I have done some cropping and
rotating to make things look better.

On page 3, there are some over head shots of the Michelson area so that one can use screw holes
to judge what the spacing between the suspensions is and also possibly the cavity lengths. Lets
also remember to measure the ITM-BS distance accurately using a tape measure or ruler while we
have the thing open.
  835   Thu Aug 14 15:51:35 2008 josephbSummaryCamerasFOUND! The Missing Standoff!
We used a zoom lens on the GC750 to take this picture of the standoff while inside a plastic rubber-glove bag. The standoff with bag is currently scotch-taped to the periodic table of the elements.
Attachment 1: standoff.png
standoff.png
  837   Thu Aug 14 19:35:54 2008 JenneSummaryIOOPRM in the chamber, ready to pump!
Rob, Yoichi, Jenne, Steve

Summary: Everything is back in the chamber, we just need to put on the big doors, and start pumping in the morning.

After letting the PRM's standoff epoxy cure overnight, it was time to put the optic back in the BS Chamber. Rob put the optic cage back in the chamber, as close to the guide points that Rana had placed as possible. A handy technique was discovered for pushing the cage into place: put a long screw into the table, leaving an inch or so above the table, then use that as a push-off point so that you can push the base of the cage with your thumb. According to Rob, this is probably just about as effective as using a pusher-screw.

The guides were helpful in getting the PRM back to its original position, but one of them was placed in such a way that it could move when pushed against. The clamp that was used as a guide point was placed with one of the screws half on the edge of a hole, so that when the cage was pushed against the guide point, that screw could wiggle around, causing the clamp to rotate thus no longer being a definite guide point.

Just after putting the PRM in place, Rob found the standoff that had gone missing. (see elog #835)

Once the PRM was back in place, we put the OSEMs back, and reinstalled the satellite boxes that had been removed (PRM's, which Ben has fixed - an op-amp was blown, and BS's, which we used over in the clean room with the spare OSEMs). We found a problem with the LR PRM OSEM reading on Dataviewer. It was saturating when the OSEM was just sitting on the table, with nothing between the LED and the sensor. We measured the output from the satellite box with the octopus cables, and measured 2.3 volts, which is too much for the DAQ. It seems fine when we install it in the cage, and the magnet is blocking part of the light. We should investigate the gain of the satellite box when convenient. This is not something that needs to be done prior to pump-down. Also, when we put an allen wrench to block the light while checking which OSEM was which, we noticed that the Dataviewer reading would go down to -2V, then come back to 0V when the light was completely blocked. This may be some incorrect compensation for some whitening. Again, we should look into this, but it is not terribly time-sensitive.

Once the OSEMs were centered, we tried to turn on the damping for the PRM. This was successful, so we are confident that we have put all of the OSEMs back in their correct places.

We found that we were easily able to get the PRM's oplev back on the QPD, so we ~centered the oplev, and then centered all of the PRM's OSEMs. This assumes that the oplev was in a good place, but I think we've determined that this is the case.

We did the same thing for the SRM and the BS, to check the OSEM values before we close up for good. We found that some of the SRM OSEMs were reading low (magnet too far in), and that all of the BS OSEMs were low, perhaps as if the table were tilted a tiny bit after removing and replacing the weight of the PRM. We recentered all of the OSEMs for both of these optics.

We checked that all of the pigtails for the PRM OSEMs were anchored to the PRM cage using some copper wire as tie-downs.

We checked that all of the earthquake stops were within 1mm or so of each of the 3 optics in the BS chamber. The SRM's earthquake stops were fairly far out. One of the bottom ones was far enough that when Yoichi turned it the wrong way (accidentally), it fell out. He put it back in, and adjusted all of the earthquake stops appropriately. This 1mm distance comes from Seji, and the specs for the optics' cages.

We did a look-through of the chamber, and took out all of the tools, and other things that were not bolted down to the table.

We have left the damping of the PRM off for the night.

To do: put the doors back on, and start the pump down.
  838   Thu Aug 14 21:52:51 2008 KojiSummaryGeneralAbs. Len. Meas. ~ summary of my Summer
I have made the summary of the absolute length measurement.
It is attached here. The file is a bit big (~8.6MB).
Attachment 1: mode_spacing_measurement_080816_v2.pdf
mode_spacing_measurement_080816_v2.pdf
  845   Mon Aug 18 09:19:55 2008 steveSummaryVAC11 days at atm
It took 11 days to fix earth quake triggered sus problems of ITMX, SRM and PRM
Only ITMX north and BSC north vac doors were removed.

The PRM sus had to be removed form the vac envelope for "hip replacement"-new wire stand off was
epoxied in place.
Note: the PRM has no guide rod on the other side

ITMX, SRM and BS osems were optimized in place.
No crosscoupling optimization was performed.
Beam block was removed from ITMXC, it was too close to the main beam.

POX pick off mirror and mount will be replaced next vent.

Vac viewports were inspected from the inside.
Attachment 1: ventprm.jpg
ventprm.jpg
  858   Wed Aug 20 11:42:49 2008 JohnSummaryComputerspdftk
I've installed pdftk on all the control room machines.

http://www.pdfhacks.com/pdftk/
  859   Wed Aug 20 11:50:10 2008 JohnSummaryComputersStripTools on op540m

To restart the striptools on op540m:

cd /cvs/cds/caltech/scripts/general/

./startstrip.csh
  861   Wed Aug 20 12:39:11 2008 EricSummaryCamerasWeekly Summary
I attempted to model the noise produced by the mirror defects in the ETMX images, in order to better assure that the fit to the beam Gaussian in these images is actually accurate. My first attempt involved treating the defects as random Gaussians which were scaled by the power of the beam's Gaussian. This didn't work at all (it didn't really look like the noise on the ETMX), and resulted in very different behavior from the fitting software (it fit to one of the noise peaks, instead of the beam Gaussian). I'll try some other models another time.

I made a copy of the ezcaservo source code and added options to it that allow the addition of minimum value, maximum value, and slew rate limits. This should allow the camera code to servo on ITMX without accidently driving the mirror too far or too fast. In order to get the code to recompile, I had to strip out part of the servo that changed the step value based on the amount of time that had elapsed (it relied on some GDS libraries and header files). Since the amount of time that passes is reasonably constant (about 2-3 steps per second) and the required accuracy for this particular purpose isn't extremely high, I didn't think it would matter very much.

I put together two MATLAB functions that attempt to convert pixel position in an image to actual position in real space. The first function takes four points that have known locations in real space (with respect to some origin which the camera is pointing at) and compares them to where those 4 points fall in the image. From the distortion of the four points, it calculates the three rotational angles of the the camera, as well as a scaling factor that converts pixels to real spatial dimensions. The second function takes these 4 parameters and 'unrotates' the image, yielding the positions of other features in the image (though they must be on the same flat plane) in real space. The purpose of this is to allow the cameras to provide positions in terms of physically meaningful units. It should also decouple the x and y axes so that the two dimensions can be servo'd on independently. Some results are attached; the 'original' image is the image as it came out of the camera (units in pixels), while the 'modified' image is the result of running the two functions in succession. The four points were the corners of the 'restricted access' sign and of the TV screen, while the origin was taken as the center of the sign or the TV. The accuracy of the transformation is reasonably good, but seems to depend considerably on assuring that the origin chosen in real space matches the origin in the image. To make these the same, they will be calculated by taking the intersections of the 2 lines defined by 2 sets diagonal points in each image. The first function will remain in MATLAB, since it only needs to be run once each time the camera is moved. The second function must be ported to C since the transformation must be done in realtime during the servo.

Joe and I attempted another scan of the PMC this morning. We turned the laser power down by a factor of ~50 (reflection off of the unlocked PMC went from ~118 to ~2.2) and blocked one beam in the MZ. We scanned from 40 V to 185 V ( -1 to -4.25 on the PZT ramp channel) with periods of 60 seconds and 10 seconds. In both cases, thermal effects were still clearly visible. We turned the laser power down by another factor of 2 (~1 on the PMC reflection channel), and did a long scan of 300 seconds and a short scan of 10 seconds. The 10 second scan produced what may be clean peaks, although there was clear digitization noise, while the peaks in the 300 second scan showed thermal effects. I've yet to actually analyze the data closely, however.
Attachment 1: OriginalSignImage.png
OriginalSignImage.png
Attachment 2: ModifiedSignImage.png
ModifiedSignImage.png
Attachment 3: OriginalTVImage.png
OriginalTVImage.png
Attachment 4: ModifiedTVImage.png
ModifiedTVImage.png
  870   Fri Aug 22 13:58:39 2008 SharonSummary Trend of the Wiener TF
In order to understand if we really need an adaptive filter, I used old data of MC_L and the accelerometers and seismometer to see if the Wiener (ideal) TF between MC_L and the others really changes all the time.
Two tests I made:
  • Compare the TF after different segments of time, starting from the same point. Meaning, measuring the TF after 5,10,15,20... minutes, looking when and if the TF stablizes (stops changing).
  • Compare the TF between same-length segments, from different times. Meaning, comparing for example 2 segments of 10 minutes taken from different times.

Results:
  • As you can see in the attached PDF, the changes start being minor after 200,000 data points, which correspont to 200,000/256 s, which is approximately 13 minutes.
    If you look at the PDF file, it is arranged from shorter times to longer in the order of: 3, 6, 13, 26 and 39 minutes.

  • As expected, the TF between different segmants of the same length is not completely the same. Again, you can look at the attached PDF.
    Sorry the titles are the same. Each 2 consecutive pages represent the same length of segment in different times. The order of segment's lengths is: 3, 13, 26 and 39 minutes

How do I explain what's going on?

Since the Wiener filter finds the correlation matrix between the data and the noise signals, it will maintain some kind of familiar shape when we don't add a significant amount of unusual data. I am assuming that if I had looked at longer time periods, we could see a more significant change in the TF in time. When looking at different times, the average noise is likely to be different which can explain the change in the correlation matrix and the TF.

To sum up

I think we should give adaptive filtering a go.
Attachment 1: Same_start_time1.pdf
Same_start_time1.pdf Same_start_time1.pdf Same_start_time1.pdf Same_start_time1.pdf Same_start_time1.pdf
Attachment 2: same_length.pdf
same_length.pdf same_length.pdf same_length.pdf same_length.pdf same_length.pdf same_length.pdf same_length.pdf same_length.pdf
  881   Mon Aug 25 15:50:18 2008 ranaSummaryPEMRanger SS-1
The manual for the Ranger SS-1 seismometer can be found on line here:
ftp://ftp.kmi.com/pub/software_manuals/300190/300190nc.pdf

and now in our 40m PEM Wiki page:
Ranger_SS-1

To calibrate it, we use the formula from the manual:
                 R_x
G_L = G_0 * ------------   =  149 +/- 3 V/(m/s)
             R_x  +  R_c

where
G_0 = 340 V/(m/s)    (generator constant)
R_x = 4300 Ohms      (external damping resistor in Pomona box)
R_c = 5500 Ohms      (internal coil resistance)

Then we have a gain of 200 in the SR560 so that gets us to ~30000 V/(m/s).

And then there's a DAQ conversion factor of the usual 2^16 cts / 4 V.

so the calibration constant is

G = 488 counts / (micron/sec)

in the ~1-50 Hz band
  886   Tue Aug 26 12:00:45 2008 JenneSummaryPEMTransfer function of Ranger seismometer
This finishes up the calibration that Rana started in elog # 881.

The calibration of the Ranger seismometer should also include:
2 zeros at 0 Hz
2 poles at 1.02 Hz

This comes from finding the transfer function between the mass's motion and the motion of the ground.
    ..
m * x  = (x_G - x) * k  + d(x_G - x) * b
                          dt

where
  • m = mass
  • x = displacement of the mass
  • x_G = displacement of the ground
  • k = spring constant
  • b = damping constant

This gives
x               w0^2  +  i*w*w0/Q
----    =    -----------------------
x_G           w0^2 + i*w*w0/Q - w^2

where
  • w0 = sqrt(k/m) = natural frequency of spring + mass
  • w = frequency of ground motion
  • Q = q-factor of spring + mass system = 1/2 for critically damped system

The readout of the system is proportional to
d  (x - x_G)          (    w0^2  +  i*w*w0/Q          )    .                    w^2               .
dt                 =  (  -----------------------  - 1 ) * x_G   =      ----------------------- * x_G
                      (   w0^2 + i*w*w0/Q - w^2       )                w0^2 + i*w*w0/Q - w^2
Since we read out the signal that is proportional to velocity, this is precisely the transfer function we're looking for. With w0 = 1.02 Hz and Q = 1/2 for the critically damped system, we have 2 zeros at 0 and 2 poles at 1.02.
  891   Wed Aug 27 12:09:10 2008 EricSummaryCamerasWeekly Summary
I added a configuration file parser to the Snap code. This allows all command line parameters (like exposure time, etc.) to be saved in a file and loaded automatically. It also provides a method of loading parameters to transform a point from its location on the image to its location in actual space (loading these parameters on the command line would substantially clutter it). The code is now fully set-up to test servo-ing one of the mirrors again, and I will test this as soon as the PMC board stops being broken and I can lock the X-arm.

I also took an image of the OSEMs on ETMX in order to apply the rotation transform code in order to determine the parameters to pass to Snap. The results were alpha = 2.9505, beta = 0.0800, gamma = -2.4282, c = 0.4790. These results are reasonable but far from perfect. One of the biggest causes of error was in locating the OSEMs: it is difficult to determine where in the spot of light the OSEM actually is, and in one case, the center was hidden behind another piece of equipment. Nevertheless, the parameters are good enough to use in a test of the ability to servo, though it would probably be worth trying to improve them before using them for other purposes. The original and rotated images are attached.

I've begun working on calculations to figure out how much power loss can occur due to a given cavity misalignment or change in a mirror's radius of curvature from heating. The goal is to determine how well a camera can indirectly detect these power losses, since a misalignment produces a change in beam position and a change in radius of curvature produces a change in beam waist, both of which can be measured by the camera.

Joe and I hunted down the requisite equipment to amplify the photodiode at the output of the PMC, allowing us to turn the laser power down even more during a scan of the PMC, hopefully avoiding thermal effects. This measurement can be done once the PMC works again.
Attachment 1: originalETMX.png
originalETMX.png
Attachment 2: rotatedETMX.png
rotatedETMX.png
  894   Thu Aug 28 19:02:25 2008 rana, josephb, robSummaryComputersbig boot
This afternoon Joe did something with an .ini file (look for his detailed elog entry) and the computers went bad.
RFM network screen not active - filter modules not working.

We went around and booted every machine as has been done before. The correct order for a memory corruption
fixing big boot is the following:

    [1] RESET the RFM switches near the FB racks.
    [2] Power cycle c1dcuepics.
    [3] Power cycle all other crates with real time CPUs:
    c1iscey, daqctrl, daqawg, c1susvme1, c1susvme2, c1sosvme, c1iovme, c1lsc, c1asc, & c1iscex
    [4] Start up all FEs as described in Wiki.
    [5] Burt restore everyone (losepics, iscepics, assepics, omcepics?)
  898   Fri Aug 29 11:05:11 2008 josephbSummaryComputersc1asc was down this morning
I had to manually reboot c1asc this morning, as for some unknown reason its status was red, and the fiber lights on the board were status:red, sig det:amber, own data: nothing. Shut the crate down, turned it back on, heard a beep, then followed wiki reboot instructions. Seems to be working now.
  900   Fri Aug 29 12:43:44 2008 josephbSummaryComputersc1susvme1 down
Around noon today, c1susvme was having problems. The C0DAQ_RFMNETWORK light was red. The status light was off, the sig det light was amber and the own data light was green. I could also ssh in, but could not not run startup. I switched off the watchdogs for c1susvme2 (the watchdogs for c1susvme1 had already been tripped), and manually power cycled the crate.

However, when c1susvme1 when it came back up it had not mounted the usual cvs/cds/ directories. c1susvme2 did however. c1susvme1 has been on the new network for awhile, while c1susvme2 was switch over today. So apparently switching networks doesn't help this particular problem.

I did a remote reboot of c1susvme1, and it came up with the correct files mounted. Both machines ran their approriate startup.cmd files and are currently green.
  909   Tue Sep 2 07:58:34 2008 ranaSummaryPSLFSS & PMC LO trends for 2 years
The attached plot is a 2 year minute trend of the EPICS readback of the PMC & FSS LO Monitors (FSS_LODET & PMC_LODET).
Clearly the FSS LO has been dying for at least 2 years. The step up from 10 months
ago is probably when Rob removed a 3dB attenuator from in front of the box.
Attachment 1: psl-lo-trend.png
psl-lo-trend.png
  914   Wed Sep 3 12:26:49 2008 EricSummaryCamerasWeekly Summary
Finished up simulating the end mirror error in order to test the whether the fitting code still provides reasonable answers despite the noise caused by the defects on the end mirror. The model I used to simulate the defects is far from perfect, but its good enough given the time I have remaining, and I have no reason to believe the differences between it and the real noise would cause any radical changes in how the fit operates. A comparison between a modeled image and a real image is attached. Average error (difference between the estimated value and the real value) for each of the parameters is

For the fit:
Max Intensity: 2767.4 (Max intensities ranged from 8000 to 11000)
X-Position: 0.9401 pixels
X Beam Waist: 1.3406 pixels (beam waists ranged from 35 to 45)
Y-Position: 0.9997 pixels
Y Beam Waist: 1.3059 pixels (beam waists ranged from 35 to 45)
Intensity Offset: 12.7705 (Offsets ranged from 1000 to 4000)

For the center of mass calculation (with a threshold that cut off everything above 13000)
X-Position: 0.0087 pixels
Y-Position: 0.0286 pixels

Thus, the fit is generally trustworthy for all parameters except for maximum intensity, for which it is very inaccurate. Additionally, this shows that the center of mass calculation actually does a much better job than the fit when this much noise is in the image. For the end mirrors, the fit is really only useful for finding beam waist, and even this is not extremely accurate (~3% error). All the parameters for the modeling is on the svn in /trunk/docs/emintun/MatLabFiles/EndMirrorErrorSimulation.txt.

Finished working on the calculations that convert a beam misalignment as measured as a change in the beam position on the two mirrors to a power loss in the cavity. Joe calculated the minimum measurable change in beam position to be around a tenth of a pixel, which corresponds to half a micron when the beam is directly incident on the camera. This gives the ability to measure fractional power losses as low as 2*10^-10 for the 40m main arm cavities. To me, this seems unusually low, though it scales with beam position squared, so if anything else limited the ability to measure changes in the beam position, it would have a large effect on the sensitivity to power losses. Additionally, it scales inversely with length, so shorter cavities provide less sensitivity.

This morning Joe and I tested the ability for the camera code to servo the ITMX in order to change the beam's position on the ETMX. Two major things have been changed since the last time we tried this. First, the calculated beam center that gets output to the EPICS channels now first goes through a transform that converts it from pixels into physical units, and should account for the oblique angle of the camera. The output to the EPICS channels should now be in the form of 'mm from the center of the optic', although this is not very precise at the moment. The second thing that was changed was that the servo was run with a modified servo script that included options to set a minimum, maximum, and slew rate in order to protect the mirrors from being swung around too much. The servo was generally successful: for a given x-position, it was capable of changing the yaw of ITMX so that the position seen on the camera moved to this new location. The biggest problem is that the x and y dimensions do not appear to be decoupled (the transform converting it to physical units should have done this), so that modifying the yaw of the mirror changed both the x and y positions (the y about half as much) as output by the camera. This could cause a problem when trying to servo in both dimensions at once, since one servo could end up opposing the other. I don't know the cause of this problem yet, since the transform that is currently in use appears to be correctly orienting the image.
Attachment 1: SimulatedErrorComparison.png
SimulatedErrorComparison.png
  939   Wed Sep 10 13:28:25 2008 YoichiSummaryElectronicsIOO rack lost -24V (recovered)
Alberto, Yoichi

This morning, the MC suddenly started to be unwilling to lock.
I found a large offset in the MC servo board.
It turned out that -24V was not supplied to the Eurocard crate of the IOO rack.
We found two loose cables (violet, that means -24V) around the cross connects with fuses.
We connected them back, and the -24V was back.
The MC locks fine now, and Alberto can continue his arm length experiment.
  961   Thu Sep 18 01:14:23 2008 robSummaryComputersEPICS BAD

Somehow the EPICS system got hosed tonight. We're pretty much dead in the water till we can get it sorted.

The alignment scripts were not working: the SUS_[opt]_[dof]_COMM CA clients were having consistent network failures.
I figured it might be related to the network work going on recently--I tried rebooting the c1susaux (the EPICS VME
processor in 1Y5 which controls all the vertex angle biases and watchdogs). This machine didn't come back after
multiple attempts at keying the crate and pressing the reset button. All the other cards in the crate are displaying
red FAIL lights. The MEDM screens which show channels from this processor are white. It appears that the default
watchdog switch position is OFF, so the suspensions are not receiving any control signals. I've left the damping loops
off for now. I'm not sure what's going on, as there's no way to plug in a monitor and see why the processor is not coming up.

A bit later, the c1psl also stopped communicating with MEDM, so all the screens with PSL controls are also white. I didn't try
rebooting that one, so all the switches are still in their nominal state.
  970   Fri Sep 19 01:55:41 2008 ranaSummarySUSSUS Drift Screen Updated
I wrote 2 matlab scripts to update the SUS DRIFT screen:
- setsval.m   uses mDV to get the minute trend from some specified start time
              and duration in the past. It then writes that 'good' value to the
              .SVAL field of the SUSPOS, SUSPIT, and SUSYAW records for all the
              optics

- setHILO.m   reads the .SVAL field and then sets the alarm levels and severity
              for the same records given a "sigma" as an argument. i.e. 1 sigma = HIGH,
              2 sigma = HIHI.

Attached is the new screen. WE can now use this to judge when the optics have moved alot.

If someone will edit the BURT .req file to have these subfields
(.HIHI .HIGH .LOW .LOLO .HHSV .HSV .LSV .LLSV) then they will come back after a reboot as well.

Below I'm also attaching the matlab code for people at the observatories who don't have
access to the SVN here.
Attachment 1: infection-3.png
infection-3.png
Attachment 2: setsvals.m
function varargout = setsvals(varargin)
% SETSVALS
% sets the SVAL records for the SUS

debug = 0;


if nargin < 2
  error('Needs 2 arguments.')
elseif nargin > 2
... 56 more lines ...
Attachment 3: setHILO.m
function setHILO(varargin)
%  SETHILO 
%  Ex.  setHILO(1000);
%      this sets the SUS alarm levels to be 1000 counts
%      from the nominal

% 1 for debugging
debug_flag = 0;

if nargin == 1
... 62 more lines ...
  989   Thu Sep 25 02:35:21 2008 ranaSummaryPSLFAST is moving alot
It looks like the FAST signal has started moving a lot - this is partly what inspired us to tune the SLOW loop.

Some of the spiking events happen when people go on the table or the MC loses lock. But at other times it just
spikes for no apparent reason. You can also see from the first plot (9 day 10-minute trend) that there is no
great change in DTEC so we shouldn't be worried about clogging in the NPRO head.

The second plot is a 1 day minute-trend.
Attachment 1: Untitled.png
Untitled.png
Attachment 2: Untitled.png
Untitled.png
  990   Thu Sep 25 03:12:13 2008 ranaSummaryComputersconlog and linux1
It would be nice to have conlog from outside. Right now its on linux1 and so its unavailable. To
test it for speed we ran the command line conlog on linux1, linux2, and nodus.

It was slightly faster on nodus than linux1, implying that its not a network speed issue. It was
phenomenally slower on linux2.

I used the command '/sbin/lspci -vvv' to check what network cards are installed where. As it turns
out, linux2 has a GigE card, but linux1, our NFS server, has only a 100 Mbit card:
01:08.0 Ethernet controller: Intel Corporation 82562EZ 10/100 Ethernet Controller (rev 01)
        Subsystem: Intel Corporation Unknown device 304a
        Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping- SERR+ FastB2B-
        Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR-
        Latency: 32 (2000ns min, 14000ns max), Cache Line Size: 64 bytes
        Interrupt: pin A routed to IRQ 209
        Region 0: Memory at ff8ff000 (32-bit, non-prefetchable) [size=4K]
        Region 1: I/O ports at bc00 [size=64]
        Capabilities: [dc] Power Management version 2
                Flags: PMEClk- DSI+ D1+ D2+ AuxCurrent=0mA PME(D0+,D1+,D2+,D3hot+,D3cold+)
                Status: D0 PME-Enable- DSel=0 DScale=2 PME-

We (Joe) need to buy a GigE card for linux1 and to also set up conlog and conlogger to run on Nodus.
  1003   Mon Sep 29 01:19:40 2008 ranaSummaryPSLLaser chiller running a little hot
I looked at it some last night and my suspicion was the ISS. Whenever the ISS switch came on the FAST got a kick.

We should try to disable the MC locking and ISS and see if the FSS/PMC/MZ are stable this way. If so this may be
a problem with the ISS / Current Shunt.
  1005   Mon Sep 29 13:23:40 2008 robSummaryPSLLaser chiller running a little hot

Quote:
I looked at it some last night and my suspicion was the ISS. Whenever the ISS switch came on the FAST got a kick.

We should try to disable the MC locking and ISS and see if the FSS/PMC/MZ are stable this way. If so this may be
a problem with the ISS / Current Shunt.


My entry about the laser chiller got deleted. The PSL appears to be running with the ISS gain at -5dB, so that's good, but the
chiller is still showing 21+ degrees. It should be at twenty, so there's something causing it to run out of
headroom. We'll know more once Yoichi has inspected the ISS.

In the deleted entry I noted that the VCO (AOM driver), which is quite warm, has been moved much closer to the MOPA.
This may be putting some additional load on the chiller (doubtful given the amount of airflow with the HEPAs on,
but it's something to consider).
  1020   Thu Oct 2 16:44:28 2008 steveSummaryoplevsoptical levers
The idea is to push the UGF to 10 Hz of the TM oplev servos with quiet HeNe laser.
We measured good intensity noise of JDS 1103P in May 2007 and converted most of the TM oplevs to it.
The ITMs still have the noisy 670nm , 1 mW, diode lasers to begin with.
In order to get 1 mW power returning to the qpds I measured the power going to TMs
and returning on qpds ...so we can select the appropriate laser power for the conversion.

40m optical lever lasers:

HeNe laser JDS 1103P, 633nm, linear polarization 500:1,

ETMX: qpd 0.12 mw (4%) reflected of 3 mW,
ETMY: qpd 0.1o (3.8%) " 2.6
BS: qpd 0.02 ( 2.5%) " 0.8
PRM: qpd 0.01 (1.3%) " 0.75
SRM: qpd 0.08 (10%) " 0.8

Coherent 670 nm Diode Lasers VLM-tm, 0.95 mW, linear polarization 100:1,

ITMX: qpd 0.1 mW (11%) reflected back from TM of 0.9 mW
ITMY: qpd 0.04 (7%) " " 0.6

It seems that JDS HeNe laser 633 nm, linear polarization 500:1, 10 mW will do the job
  1021   Thu Oct 2 18:56:19 2008 ranaSummarySUSResistivity of Suspension Wire
Bob and Steve measured the resistance of the suspension wire today:
OD     = 0.0036" =  0.091 mm
Length = 46"     = 1168.4 mm
Resistance     =   33.3 Ohms

resistivity = R * pi * (OD/2)^2
              ----------------- = 1.85e-7 Ohm-meters
                  Length 


This was a batch of California Fine Wire from 2001 (same as used at LHO and LLO).

By comparison the standard tabulated resistivity for steels is (http://hypertextbook.com/facts/2006/UmranUgur.shtml):
                  resistivity (Ohm-meter x 10^-7)
-------------     ----------------
304 Stainless       7.2
316 Stainless       7.4
Cast Steel          1.6

This is all to see whether or not the 60 Hz fields produce forces on the suspension wires via coupling with the Earth's DC field.

TBD
  1064   Tue Oct 21 17:52:30 2008 ranaSummaryPSLFSS Photo: early October
This is a photo of the FSS board before Yoichi did his surgery - it was taken with the D40 in macro mode, sitting on the big Gorilla pod.
Attachment 1: fss.jpg
fss.jpg
  1113   Tue Nov 4 01:03:01 2008 ranaSummaryPEMperiodic thump noise in MC1_ACC
There seems to be a periodic thump seen by the MC1 Accelerometers as well as the surrounding optics.

The first 5 hour minute-trend plot shows the periodic thumping as well as the one large saturating event which ruins the
Wiener noise subtraction.

The second plot is a 30 minute second-trend zoom in.
Attachment 1: Untitled.png
Untitled.png
Attachment 2: Untitled2.png
Untitled2.png
  1142   Mon Nov 17 20:47:19 2008 CarynSummaryGeneralDrove MC at 28kHz to excite drum modes
Rana, Alberto and I observed drum mode frequencies at 23.221kHz(MC1), 28.039kHz(MC2), 28.222kHz(MC3) while driving the mode cleaner. We observed no peaks when we didn't drive the mode cleaner. We used the SR785 to send a ~80mV noise signal in the 28-28.2kHz band to the mode cleaner mirrors via 1Y4-MC1,2,3-POSIN. Then we looked at 1Y2-Mode Cleaner-Qmon on the SR785 and saw peaks.
  1157   Fri Nov 21 21:28:32 2008 ranaSummaryComputersc0daqawg restart
A few minutes after restarting fb0 for the Guralp channels, the DAQAWG lights went red on the DAQ screens.
Why?? I chose revival procedure #3 for c0daqawg from the Wiki and it came back in a couple minutes.
  1167   Tue Dec 2 19:18:10 2008 ranaSummaryPEMRanger SS-1
In entry http://dziban.ligo.caltech.edu:40/40m/881 and a follow up from Jenne I put in the Ranger calibration.
Since then, we've reduced the SR560 gain from 200 to 100 so the calibration factor is now:

1e-9 (m/s)/count and then 2 poles at 0 Hz, and a Q~1 zero pair at 1 Hz.
in DTT:
G = 1e-9
p = 0, 0
z = 0.7 0.7
  1180   Fri Dec 5 14:13:41 2008 ranaSummaryIOOMC trend for the last 4 days
The MC has stayed locked for ~3 days! I just broke it to reset the MZ.
Attachment 1: g.png
g.png
  1185   Mon Dec 8 00:10:42 2008 carynSummaryGeneralcalibrating the jenne laser
I apologize in advance for the long list of numbers in the attachment. I can't seem to make them hide for some reason.

So, since Jenne's laser will probably be used for the Stoch mon calibration, Alberto and I took some measurements to calibrate Jenne's laser.
We focused the beam onto the New Focus RF 1GHz photodetector that we stole from rana's lab (powered with NewFocus power 0901). Measured the DC output of the photodetector with scope. Aligned the beam so DC went up (also tried modulating laser at 33MHz and aligning so 33MHz peak went up). Hooked up the 4395a Spectrum/Network Analyzer to the laser and to the AC out of the photodetector (after calibrating Network analyzer with the cables) so that the frequency response of the laser*photodetector could be measured.
(Note: for a while, we were using a splitter, but for the measurements here, I got rid of the splitter and just sent the RFout through the cables to channel A for the calibration, sent RFout to the laser and photodetector to channel A for the measurement)

Measured the frequency response. At first, we got this weird thing with a dip around 290MHz (see jcal_dip_2_norm.png below).
After much fiddling, it appeared that the dip was from the laser itself. And if you pull up just right on the corner of this little metal flap on the laser (see picture), then the dip in the frequency response seems to go away and the frequency response is pretty flat(see jcal_flat_3_norm below). If you press down on the flap, the dip returns. This at least happened a couple of times.
Note that despite dividing the magnitude by the DC, the frequency responses don't all line up. I'm not sure why. In some cases the DC was drifting a bit(I presume the laser was coming out of alignment or decided to align itself better) and maybe with avgfactor=16, and measuring mean DC on the scope, it made the DC meas not match up the the frequ resp meas...
I've attached the data for the measurements made (I'm so sorry for all the #'s. I can't figure out how to hide them)
name/lasercurrent/DC/analyzer SourcePower/analyzer avgfactor
jcal7_1/I=31.7mA/DC=-4.41/SourcePower=0dBm/avgfactor=16
jcal7_2/I=31.7mA/DC=-1.56/SourcePower=0dBm/avgfactor=none
jcal8_1/I=31.7mA/DC=-4.58/SourcePower=0dBm/avgfactor=16
jcal8_2/I=31.7mA/DC=-2.02/SourcePower=0dBm/avgfactor=16
jcal8_3/I=31.7mA/DC=-3.37/SourcePower=0dBm/avgfactor=16
Note also that the data from the 4395a seems to have column1-frequency, column2-real part, column3-imaginary part...I think. So, to calculate the magnitude, I just took (column2)^2+(column3)^2.


To get sort of an upper-bound on the DC, I measured how DCmax varied with laser current, where DCmax is the DC for the best alignment I could get. After setting the current, the laser was modulated at 33MHz and the beam was aligned such that the 33MHz peak in the photodetector output was as tall as I could manage. Then DC was measured. See IvsDCmax.png. Note the DC is negative. I don't know why.

Also, the TV's don't look normal, the alarm's going off and I don't think the mode cleaner's locked.
Attachment 1: IvsDCmax.png
IvsDCmax.png
Attachment 2: data.tar.gz
Attachment 3: jcal_dip_2_norm_log.png
jcal_dip_2_norm_log.png
Attachment 4: jcal_flat_3_norm_log.png
jcal_flat_3_norm_log.png
  1186   Mon Dec 8 11:41:27 2008 YoichiSummaryVACThe rough pump for the TP2 replaced
Bob, Yoichi

The foreline pressure of the TP2 (the foreline pump for the main mag-lev turbo (TP1)) was at 2.8torr this morning
when Bob came in.
Looked like the foreline pump (Varian SH-110) was leaking.
Bob started the backup rough pump in parallel with the "leaking" one to keep the foreline pressure low.
We then closed the valve 4 (between TP2 and TP1) and stopped the TP2 and the SH-110.
We replaced SH-110 with another one, but still the foreline pressure was high.
So we replaced it with yet another one. We also changed the quick coupling fasteners on the SH-110 and wiped the O-rings.
This time, it worked fine and the foreline pressure dropped to around 38 mTorr.

Since there is no valve between the TP2 and the SH-110, we could not keep the TP2 running while we were replacing the
problematic SH-110. This means the TP1 was running without a foreline pump during the work. We tried to minimize the
down time of the TP2. The temperature of the TP1 was 33.6C before we stopped the TP2 and it went up to 37.3C during the
work. It is now coming down to the original temperature.

Since we don't know if the problem was caused by bad SH-110s or leaking quick couplings, Bob is checking these apparently
"leaking" SH-110s.
  1189   Tue Dec 9 10:48:17 2008 CarynSummaryGeneralcalibrating the jenne laser: impedance mismatch?

We sent RFout of network analyzer to a splitter, with one side going back to the network analyzer and the other to the laser modulation input. We observed a rippled transfer function through the splitter. The ripple is probably due to reflection due to an impedance mismatch in the laser.
Attachment 1: reflection.png
reflection.png
  1209   Wed Dec 31 22:59:40 2008 YoichiSummaryEnvironmentParticle counts going crazy
Yes it is a new year's eve, and a lot of crazy people are on Colorado to secure seats for the parade tomorrow.
They are burning woods to warm themselves. So smoky smell is floating around in the campus
and naturally the particle count is going up.

Actually at first I thought some building is on fire and called the security. Then they found
that it is the people on Colorado.

Now C1:PEM-count_half is 28400 and it is still climbing up.
  1211   Thu Jan 1 01:07:03 2009 YoichiSummaryEnvironmentParticle counts going crazy
I increased the fan speed of the PSL HEPA filter to the maximum.


Quote:
Yes it is a new year's eve, and a lot of crazy people are on Colorado to secure seats for the parade tomorrow.
They are burning woods to warm themselves. So smoky smell is floating around in the campus
and naturally the particle count is going up.

Actually at first I thought some building is on fire and called the security. Then they found
that it is the people on Colorado.

Now C1:PEM-count_half is 28400 and it is still climbing up.
  1212   Thu Jan 1 01:15:45 2009 YoichiSummaryVACN2 line leak ?
I've been replacing the N2 bottles recently.
I noticed that the consumption is too high. I had to replace them every two days.
Normally the interval is three or more days.
I suspect there is some leak in the line.

Strangely, it is always the left hand bottle which goes empty. The right hand bottle has been
there for more than a week at about 1000 psi.

We should check it when Steve is back.
  1213   Fri Jan 2 17:20:44 2009 ranaSummaryComputer Scripts / Programs40m GWINC
I have made a '40m' directory in the iscmodeling CVS tree which allows one to run a 40m version of GWINC.

As does the previous one, it takes the default advLIGO config file and modifies some of the struct parameters
to make it appropriate for the 40m.

To make it run, I have added susp1.m to the GWINC directory. This calculates suspension thermal noise using
the Gonzalez-Saulson method that was later extended to
mirrors by Y. Levin. This is also the code used in the LIGO Noise Budget at the sites.

The previous code was giving a much larger value for thermal noise (probably because I didn't understand how
to use it right). It was based on a SURF report from '99.

Since we will have a mixture of MOSs and SOSs in the arms, I have just used SOSs in the model. So the suspension
thermal noise is overestimated by ~sqrt(2) (and realistically its uncertain by a much larger factor).

Since the new code now uses GWINC, the mirror and coating thermal noise are now more correct and use the
coherent therm-optic noise picture.

The 2 page PDF file shows the noise for 0 deg and 90 deg tuning of the SRC.

Although it looks like, from this plot, that we could measure coating thermal noise at the 40m, in reality we would have
to fix all of the technical noise sources first. Just the coil driver noise is probably at the level of 3 x 10^-17 m/rHz
at 100 Hz.
Attachment 1: bench40.pdf
bench40.pdf bench40.pdf
  1235   Fri Jan 16 18:33:54 2009 YoichiSummaryComputersc1lsc rebooted to fix 16Hz glitches
Kakeru, Yoichi

There were 16Hz harmonics in the PD3 and PD4 channels even when there is no light falling on it.
Actually, even when the connection to the ADC was removed, the 16Hz noise was still there.

Rob suggested that this might be digital problem, because data is sent to the daq computer very 1/16 of a second.

We restarted c1lsc and the problem went away.
  1280   Fri Feb 6 14:49:31 2009 steveSummarySAFETYlaser inventory
40M Laser Inventory at Feb 05, 2009
 

1, Lightwave PA#102 @ 77,910 hrs 1064nm of 2.8W @ 27.65A
                   NPRO#206 @ 2.4A                    at PSL enclosure............"Big Boy" is waiting for to be retired but not now.

2, Lightwave  NPRO 1064nm of 700mW  #415   at AP table.......cavity length measurements of Alberto

3, CrystaLaser  IRCL-100-1064S, 1064nmS of 100mW  ,sn#IR81132 at east arm cabinet

4, CrystaLaser 1064nm of 180mW # -1274 flq at scattering setup.........flashlight quality

5, RF-PD tester 1064nm of 1.2mW @20mA at SP table

6, Lumix 800-1100nm of 500mW at east arm cabinet

7, JDS-Uniphase 633nmP of 4mW oplev sus laser at 5 places,
    plus four spares in east arm cabinet
 
 
The same information is posted at the 40M WIKI also
 
 
 
  1297   Thu Feb 12 14:39:07 2009 ranaSummaryGeneralSilicon Beam Dump test
Yesterday evening, Ken Mailand and I tested the reflectivity of a piece of polished Silicon. Since Silicon has such a high thermalconductivity (compared to stainless and fused silica) and can take much more heat than black glass and should have a very good BRDF and should absorb most of the 1064 nm light if we hit it at Brewster's angle, we want to try it out in the first version high power, low scatterbeam dump. This dump will be a 'V' style dump like what Steve has tested nearly a year ago, but the incoming beam will first hit this piece of Silicon.

The pictures of the setup and the Silicon with the beam hitting it are here.

Brewster's angle for p-pol at 1064 nm is 74.2 deg (n = 3.53 @ 1064 nm). We set up a cube polarizer on the output of the ~1064 nm CrystaLaser. 144 mW got to the Si; the reflected beam was ~1.9-2.0 mW after tuning the angle for minimum power. Via eyeball and protractor it seems that we're at ~74 deg. So the reflectivity is < 1.5-2%. This is good enough; the reflected power will be < 1 W in all cases for eLIGO and that can be absorbed by the rest of the stainless V dump. The 35 W of heat in the silicon will be mostly gotten rid of through conduction into the attached heat sink fins.

This kind of dump would go into places like the PMC-REFL, MC-REFL, & IFO-REFL, where we occasionally need to take high power, but also are sensitive to backscatter.
ELOG V3.1.3-