Based on the evaluation of the error signals, the new servo was designed.
Concept:
- Don't touch the locking filters. (i.e. FM5)
- Sacrifice some phase at 150Hz to increase the gain between 3-20Hz.
- As resonant gains costs the phase without increasing the LF gains, replace them with a poles for the integrators.
FM(:,1) = zero2(f,.5,.7).*pole2(f,0.001,.7)*(0.5/0.001)^2;
FM(:,2) = zero2(f,5,2).*pole2(f,3,3).*pole1(f,1).*zero1(f,5)*5*(5/3)^2;
FM(:,3) = zero2(f,25,.7).*pole2(f,3.2,10)*(25/3.2)^2; % Zero crossing
FM(:,4) = zero2(f,35,2).*pole2(f,3,3).*zero1(f,3000).*pole1(f,1).*pole2(f,3000,1/sqrt(2)).*pole1(f,700).*zero1(f,10).*zero1(f,350).*136e1;
FM(:,5) = zero1(f,1).*pole1(f,4010).*pole2(f,17.3211e3,1.242).*zero2(f,18.865e3,100e3);
FM(:,6) = zero2(f,5,2).*pole2(f,10,2).*pole2(f,16.5,30).*zero2(f,30,2);
FM(:,7) = 1;
FM(:,8) = 1;
FM(:,9) = 1;
FM(:,10) = 1;
dc_gain = 14;
FM1/2/3/5/6 are expected to be used for the control.
FM1: Boost below 0.5Hz. This does not cost the phase margin.
FM2: Increase the gain below 5Hz. This hardly cost the phase margin.
FM3: Boost below 25Hz. This is the main phase cost at UGF. This has a complex pole pair at 3Hz with Q=10 to supress the stack motion.
FM6: zero-pole-pole-zero combination to boost the gain between 5 to 30Hz. This eats the phase margin a little.
Note that the phase tracker gain for the X arm was increased by factor of 2.5. |