The LSC model was modified for CESAR.
A block called ALSX_COMBINE was made in the LSC block. This block receives the signals for ALS (Phase Tracker output), TRX_SQRTINV, TRX, POX11 (Unnormalized POX11I).
It spits out the composite ALS signal.
Inside of the block we have several components:
1) a group of components for sign(x) function. We use the PDH signal to produce the sign for the transmission signal.
2) Hard triggering between ALS and TR/PDH signals. An epics channel "THRESH" is used to determine how much transmission
we should have to turn on the TR/PDH signals.
3) Blending of the TR and PDH. Currently we are using a confined TR between 0 and 1 using a saturation module. When the TR is 0, we use the 1/SQRT(TR) signal for the control,
When the TR is 1, we use the PDH signal for the control.
4) Finally the three processed signals are combined into a single signal by an adder.
It is important to make a consideration on the offsets. We want all of ALS, 1/SQRT(TR), and PDH to have zero crossing at the resonance.
ALS tends to have arbitorary offset. So we decided to use two offsets. One is before the CESAR block and in the ALS path.
The other is after the CESAR block. Right now we are using the XARM servo offset for the latter purpose.
We run the resonance search script to find the first offset. Once this is set, we never touch this offset until the lock is lost.
Then for the further scanning of the arm length, we uused the offset in the XARM servo filter module. |