40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 958     Entry time: Wed Sep 17 17:31:24 2008
Author: Yoichi 
Type: Update 
Category: PSL 
Subject: FSS calibration 
I calibrated the reference cavity error signal with the following procedure.

(1) I disconnected the PC path BNC cable and locked the RC only using the PZT. To do so, I had to insert a 20dB attenuator
in the RF signal path going to the EOM to reduce the gain of the loop sufficiently.
The normal RF level going to the EOM is 17dBm. With the attenuator it is of course -3dBm.

(2) Using the SR785, I injected signal into the Test-IN2 (a sum-amp after the mixer) of the FSS box and measured the TF from the Ramp-IN to the IN1.
When the Ramp-In switch is off, the Ramp-IN port can be used as a test point connected to the PZT drive signal path just before the output.
There is a RC low-pass filter after the Ramp-IN. IN1 is the direct output from the mixer (before the sum-amp).
The attm1 is the measured transfer function along with the fitting by a first order LPF.
From this measurement, the DC transfer function from the applied voltage on the PZT to the error signal is determined to be 163.6 (V/V).
Since the RF level is lowered by 20dB, the cavity gain in the normal operation mode is 10 times larger (assuming that the modulation depth is
linearly proportional to the applied voltage to the EOM).

(3) According to elog:791, the conversion factor from the voltage on the PZT to the frequency change of the NPRO is 11.172MHz/V. Combining this with the
number obtained above, we get 6.83kHz/V as the calibration factor for converting the error signal (mixer output) to the frequency at DC.
Using 38kHz cavity pole frequency, the calibration factor is plotted as a function of frequency in the attm2.

(4) I took a spectrum of the error signal of the FSS and calibrated it with the obtained calibration factor. See attm3.
The spectrum was measured by SR785. I will measure wide band spectra with an RF analyzer later.

TO DO:
1: Use the actual modulation depth difference to extrapolate the calibration factor obtained by with a low RF signal for the EOM.
The cavity sweep was already done.

2: I assumed 38kHz cavity pole. I will measure the actual cavity pole frequency by cavity ringdown.

3: Measure out-of-the-loop spectrum of the frequency noise using PMC and MC.
Attachment 1: PZTresp.png  13 kB  | Hide | Hide all
PZTresp.png
Attachment 2: Calibration.png  6 kB  | Hide | Hide all
Calibration.png
Attachment 3: FreqNoiseSpectrum.png  18 kB  | Hide | Hide all
FreqNoiseSpectrum.png
ELOG V3.1.3-