40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Mon Oct 22 20:44:49 2012, Ayaka, Update, Adaptive Filtering, microphone noise mic_noise2.png
    Reply  Tue Oct 23 00:51:41 2012, Jamie, Update, Adaptive Filtering, microphone noise 
       Reply  Tue Oct 23 10:24:42 2012, Ayaka, Update, Adaptive Filtering, microphone noise 
Message ID: 7596     Entry time: Tue Oct 23 10:24:42 2012     In reply to: 7592
Author: Ayaka 
Type: Update 
Category: Adaptive Filtering 
Subject: microphone noise 



I will do some experiments on acoustic noise canceling during my stay.
Now I am planning to cancel acoustic noise from PMC and see how the acoustic noise work and how we should place microphones.a

First, I measured the noise in microphones and its circuit.
-blue, green, red, solid lines; microphone signals
-blue, green, red, dashed lines; un-coherent noise in signals
-yellow, black, solid lines; circuit noise (signal input is open, not connected to the microphones)

We can see the acoustic signal above 1 Hz, and the circuit does not seem to limit its sensitivity. But I do not know why yellow and black is so different. I will check it tomorrow.

Hi, Ayaka.  It would be good if you could give a little bit more detail about this plot:

  • What exactly are the "signals"?  Are you making a sound somehow?  If so, what is producing the sound?  What is it's spectrum?
  • Are the blue/green/red traces from three different microphones?
  • Coherence usually implies a comparison between two signals.  Is something being compared in the dashed traces?
  • Are the yellow and black traces from different amplifiers?
  • What are the units of the Y axis?


 Sorry for my poor explanation.

I measured this by the same way as you measured the instrumental noise of seismometers.
I put the three microphones at the same place so that the three can hear the same sound. I did not make any sounds, just put them in the lab.
The signals from microphones are all amplified by the circuit.
And I took the correlations of each signals and two others and got the noise (dashed lines) by subtracting the correlated signal from the original signal.

-The signal is the acoustic sound in the lab, amplified by the circuit.
-Three lines are from three different microphones.
-Dashed lines are subtraction of coherent signal from the original.
-Yellow and black lines are from different amplifiers in the same circuit box. The circuit has 6 channels.
-I did not calibrate the signals I got by DTT since I do not know the calibration factor now. It is just the number I got from the real time system.


ELOG V3.1.3-