40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Tue Oct 2 15:14:54 2012, jenne, jamie, Update, IOO, PZT diagnosis 
    Reply  Tue Oct 2 16:32:43 2012, Jenne, Update, IOO, PZT diagnosis 
       Reply  Thu Oct 4 01:06:52 2012, Jenne, Update, IOO, PZT diagnosis 
          Reply  Mon Oct 8 14:19:17 2012, Jenne, Update, IOO, PZT diagnosis - not fixed yet 
             Reply  Mon Oct 8 18:45:48 2012, Jenne, Update, IOO, PZT diagnosis - not fixed yet, possible solution 
                Reply  Mon Oct 8 21:42:17 2012, Jenne, Update, IOO, PZT diagnosis - not fixed yet, possible solution 
                Reply  Tue Oct 9 00:25:33 2012, Jenne, Update, IOO, PZTs - hacky solution in place!! 
Message ID: 7505     Entry time: Mon Oct 8 18:45:48 2012     In reply to: 7504     Reply to this: 7506   7509
Author: Jenne 
Type: Update 
Category: IOO 
Subject: PZT diagnosis - not fixed yet, possible solution 

After the fuse-blowing fiasco earlier this afternoon, Koji and I took another look at the PZT controllers.

We put an ammeter in place of the fuse, and watched the current as we turned on the transformer module.  The steady-state current with no other modules plugged in is ~15mA.  However, there is a surge current right when you turn on the box which sometimes goes as high as 330mA.  Since the fuse is 250mA, this explains the fuse blowing, even though Koji had already checked out the low voltage path.

The high voltage line was connected, with +180V to the HV out pin of the backplane connector, and the (-) terminal of the power supply connected to signal ground on the board.

We inserted the PITCH module for PZT2, and we started with ~10V as our "high" voltage, and slowly increased the value (current at this time was ~60mA).  We also had a function generator plugged into the "MOD" input, which is where the epics slider goes, so that we should see a changing output voltage.  We never saw a changing output voltage.  Increasing the HV power supply didn't help. 

When Koji spun the "DC offset" knob really fast and then stopped, sometimes the output voltage as measured on the connector-converter board between the white and red wires would jump up, and then settle back down. It came back to the same value that it always was, but it was bizzarre that it would jump like that.  We suspect that that knob is an offset for use with the closed loop setting, so it isn't relevant for us anyway.  Watching the MON output, the value never changed, even when Koji did his fancy knob twirling.

We switched to the other PITCH module, and watched the output voltage on the MON output.  This time, with the function generator unplugged, so no modulation input (so we were expecting a steady DC output voltage) the number on the LCD and the MON output fluctuated wildly.  We plugged in the function generator, and the fluctuations did not change in approximate amplitude or DC offset.  They kind of looked the same. 

So, we have concluded that (a) the PZT drivers don't work, and (b) we don't understand why.  Therefore, we don't know how to fix them.

With that in mind, we are thinking of totally circumventing the PZT drivers. 

I plugged in the PZT1 connector converter board, which has Koji's circuit that he made last time when PZT1 died.  I plugged the ribbon cable which goes to the PZT, and the +\- 30V power supply, and the PZT responded!  Just plugging in the power supply puts the PZTs near the center of their nominal range.  I then put a function generator on the epics inputs for pitch and yaw (one at a time), and saw the spot move around at the ~1Hz that I was applying.  Yay!

What I think I'll do for tonight - modify the other connector converter board so that I can just use 2 HV power supplies (current limited) to steer the PZT.  I set up a TV monitor next to the PZT electronics (1Y3? 1Y4?  I forget), and it's connected to output 20 of the video switch, so I can watch the AS camera and move the PZTs by hand.  Then maybe I can try to align some stuff. (Evan is coming to work tonight, so if I electrocute myself, someone will be here to call 5000)  Koji suggested buying 2 single-channel thorlabs piezo drivers, like we have on the PSL table for the FSS loop.  These take in 0-10V and output either 0-75V, 0-100V or 0-150V (depending on which setting you choose).  These cost $712 each. This would be a more permanent solution than me just sitting out there, since we could once again control PZT2 via epics.

ELOG V3.1.3-