Since last week Wednesday, I have since found a Pomona Electronics box (thanks to Jenne)
to use for my photosensor head circuit (to house the LED and 2 photodiodes). Suresh has
shown me how to use the 9-pin Dsub connector punch, and I have punched a hole in this box
to attach the Dsub connector.
Since this past entry regarding my mechanical design for the photosensor head (Photosensor Head Lessons),
I have modified the design to use a Teflon sheet instead of a copper PCB and I have moved the LED
and photodiodes closer together, upon the suggestions of Jamie and Koji. The distance between
components is now 0.112" instead of the initial 0.28". Last night, I cut the PCB board for the LED
and photodiodes and I drilled holes onto the PCB board and Teflon sheet so that the two may be
mounted to the metal plate face of the Pomona box. I still need to cut the viewer hole for and
drill screws into the face plate.

I have also been attempting to debug my photosensor circuit (box and LED/photodiode combination).
Since this last entry (Painful Votlage Regulator and Circuit Lessons), Suresh has helped me to get the parts
that I need from the Downs Electronics lab (15 wire ribbon cable, two 9 pin D-sub connectors M,
one 15 pin D-sub connector M, one 16 pin IDC connector). Upon the suggestion of Jamie, I have
also made additional safety changes to the circuit by fixing some of the soldering connections
so that all connections are done with wires (I had a few immediate lines connected with solder).
I believe the the photosensor circuit box is finally ready for testing. I may just need some help
attaching the IDC connector to the ribbon cable. After this, I would like to resume SAFELY
testing my circuit.

I have also been exploring SimMechanics. Unfortunately, I haven't been able to run the
inverted pendulum model by Sekiguchi Takanori. Everytime I attempt to run it, it says
there is an error and it shuts down Matlab. In the meanwhile, I have been watching
SimMechanics demos and trying to understand how to build a model. I'm thinking that
maybe once I figure out how SimMechanics works, I can use the image of his model
(I can see the model but it will not run) to construct a similar one that will hopefully work.
I have also been attempting to figure out the circuitry for the pre-assembled
accelerometer (made with the LIS3106AL chip). I have been trying to use a multi-meter
to figure out what the components are (beyond the accelerometer chip, which I have
printed out the datasheet for), but have been unsuccessful at that. I have figured out
that the small 5 pin chip says LAMR and is a voltage regulator. I am hoping that if I can
find the data sheet for this voltage regulator, I can figure out the circuitry. Unfortunately,
I cannot find any datasheets for a LAMR voltage regulator. There is one by LAMAR, but
the ones I have seen are all much larger. Does anyone know what the miniature voltage
regulator below is called and if "LAMR" is short for "LAMAR"?
|