40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 1933     Entry time: Fri Aug 21 17:28:50 2009
Author: Kevin, rana 
Type: Summary 
Category: PEM 
Subject: Magnetic Field Measurements Around the Lab 

This goal of this test was to measure and map the AC (at 60 Hz) and DC magnetic fields around the interferometer. I've attached the final products which were drawn up with Google SketchUp.

The notes on the maps make them more or less self explanatory: for each numbered point there's an X, Y, and Z measurement produced by the magnetometer. For the AC numbers I measured the Peak-to-Peak value, while for the DC I simply measured the Mean. The magnetometer's axes were always oriented about the same way, with the X arrow on the magnetometer pointing north. I tried to keep variables such as the lights constant as much as possible (they were all on for most measurements, with the exception of a few noted DC ones) and all measurements had the top of the magnetometer at about 32 inches.  The map is pretty close to scale and all the walls and numbered locations were measured out (though the location of objects and the laser tubes is somewhat estimated). I added "landmarks" in the room, which were pretty much the laser tubes, computer racks, and ISC tables.

For each laser room measurement I also took a screenshot using the oscilloscope as a means of recording the shape of the wave for each measurement. Ch1 corresponds to the X value, Ch2 to the Y, and Ch3 to the Z. The screenshots are numbered 1-29 corresponding to the numbers on the map. The zip folders containing the screenshots can be found on the wiki:  PEM:Magnetometers

I should also mention that there is no point #24 and accordingly no 24 screenshot. I realized after I was done that I had messed up the location of that one and instead of risking bad data decided to just remove it.

I decided on the location of the points mainly based on the location of outlets in the room (since I had to plug in the oscilloscope for the AC numbers to set it to 60 Hz). After an initial pass of the room, I went back and filled in some of the larger gaps by moving the magnetometer as far as I could while the oscilloscope remained plugged in to the wall. I used the same points for DC numbers.

Prior to measuring the laser room, I measured the field in other rooms as well. I have

  • AC numbers and screenshots for the control room and the adjoining office room.

  • DC numbers for the entry room and the office room, not including the control room. The X-axis arrow is pointed south (instead of north) for these numbers.

These numbers were sort of a warm up for me to figure out the process and how I would go about recording my data. Since they're not in really important locations and aren't guaranteed to be accurate, I decided not to map them, though the screenshots are still on this Dell Inspiron 1300 Laptop and the measurements in my notebook.

Here are the settings I used on the oscilloscope for all measurements (I merely changed the Vertical Coupling between DC and AC depending on what I was measuring):

  • Impedance: 1M ohms

  • Bandwidth: Full

  • Probe Setup: Voltage 1X

  • Trigger Type: Edge

  • Trigger Coupling: DC

  • Fast Trig: Normal

  • Trigger Mode: Auto

  • Trigger Source: AC Line

  • Acquire Mode: 512 Average

 The notebook that I used contains some additional info that I didn't include in the map, most importantly more precise descriptions of where each of the points is located and the measured distance between each of them (as well as slight changes I made to my measured distances in order to make the room a rectangle; the changes are slight enough that they shouldn't have any real effect on the data).

Since Kevin used our 3-axis Bartington Fluxgate magnetometer, we can guess that we can convert his voltage measurements (below) into magnetic field
by using the manual's guess of 10 uT /V or 10 V/Gauss. This is probably ok at the factor of 2 level, but one day we should calibrate it with a coil.

The punchline is that the DC fields in the lab are roughly what we expect from the Earth's field plus the rebar in our floors: ~1 Gauss. The 60 Hz fields are ~50-500 nT peak-peak.

Attachment 1: AC-field.png  36 kB  Uploaded Sat Aug 22 01:43:37 2009  | Hide | Hide all
AC-field.png
Attachment 2: DC-field.png  39 kB  Uploaded Sat Aug 22 01:44:43 2009  | Hide | Hide all
DC-field.png
ELOG V3.1.3-