40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Thu Aug 20 00:21:51 2020, gautam, Update, Electronics, First look at HV coil driver IMG_8724.JPGtimeDomain.pdfHVampNoise.pdf
    Reply  Sun Aug 23 23:36:58 2020, gautam, Update, Electronics, First look at HV coil driver IMG_5379.JPGstabilityCriterion.pdf
       Reply  Wed Aug 26 16:12:25 2020, gautam, Update, Electronics, Test mass coil current requirements coilCurrents.png
       Reply  Tue Sep 1 15:39:04 2020, gautam, Update, Electronics, HV coil driver oscillations fixed testSetup.pdfHVampNoise_driven.pdf
          Reply  Thu Oct 22 11:14:47 2020, gautam, Update, Electronics, HV coil driver packaged into 2U chassis HVampNoise_driven_chassis.pdfHVampNoise_dispUnits.pdfD1900163_measurementSetup.zip
             Reply  Thu Oct 22 13:04:42 2020, rana, Update, Electronics, HV coil driver packaged into 2U chassis 
                Reply  Thu Oct 22 22:01:53 2020, gautam, Update, Electronics, HV coil driver packaged into 2U chassis DACnoiseFilterGain.pdfDACnoiseFilterNoises.pdf
                   Reply  Fri Oct 23 09:03:43 2020, anchal, Update, Electronics, HV coil driver packaged into 2U chassis 
             Reply  Thu Nov 12 14:55:35 2020, gautam, Update, Electronics, More systematic noise characterization powerSupplyNoise.pdfcoherence.pdf
                Reply  Thu Nov 12 15:40:42 2020, Koji, Update, Electronics, More systematic noise characterization 
                   Reply  Mon Nov 16 00:02:34 2020, rana, Update, Electronics, More systematic noise characterization 
                      Reply  Wed Jan 20 10:13:06 2021, gautam, Update, Electronics, HV Power supply bypassing bypassCaps.pdfIMG_9079.jpgIMG_9078.jpgHVampNoise_driven_chassis.pdfprintCoilCurrents.pdf
                         Reply  Mon Feb 1 12:30:21 2021, gautam, Update, Electronics, More careful characterization HVPS.pdfHV_testckt.pdftotalNoise.pdf
                         Reply  Wed Feb 10 21:14:03 2021, gautam, Update, Electronics, Production version of the HV coil driver tested inputDiffRecTF.pdfLVnoises.pdftotalNoise.pdftimeDomainTests.pdf
                            Reply  Fri Feb 26 16:31:02 2021, gautam, Update, Electronics, Production version of the HV coil driver tested with KEPCO HV supplies totalNoise_KEPCO.pdf
                               Reply  Fri Feb 26 20:20:43 2021, Koji, Update, Electronics, Production version of the HV coil driver tested with KEPCO HV supplies 
                                  Reply  Sat Feb 27 17:25:42 2021, gautam, Update, Electronics, Production version of the HV coil driver tested with KEPCO HV supplies 
                                     Reply  Thu May 20 16:56:21 2021, Koji, Update, Electronics, Production version of the HV coil driver tested with KEPCO HV supplies P_20210520_154523_copy.jpg
Message ID: 15802     Entry time: Wed Feb 10 21:14:03 2021     In reply to: 15773     Reply to this: 15846
Author: gautam 
Type: Update 
Category: Electronics 
Subject: Production version of the HV coil driver tested 

Summary:

I did what I consider to be a comprehensive set of tests on the production version of the high voltage coil driver circuit. I think the performance is now satisfactory and the circuit is ready for the production build. Barring objections from anyone, I will ask Chub to place an order for components to stuff the 4 necessary units + 1 spare on Friday, 12 Feb (so that people have a full day to comment). A big thanks to Chub and the folks at JLCPCB for dealing with my incessant order requests and patiently supporting this build and letting me turn this around in 10 days - hopefully this is the end of this particular saga.

Schematic is here. All references to component designations are for v4 of the schematic.

Important design changes:

  1. All I/O to this board will be via D9 connectors. This will allow bypassing the high voltage stage in future suspensions while retaining the same cable config in the suspension drive, if that is desired. Some re-arrangement of the grouping of coils was also done for consistency with the planned upgrade.
  2. Differential receiving for the input signal from the Acromag. The nominal quad opamp is LT1125 but if we find noise issues (which I didn't), the OP497 has compatible PCB footprint.
  3. Added input protection dual diode D6 to protect the PA95 as recommended in the datasheet. This should protect the IC if (for example) the HV line isn't plugged in but the Acromag input is non-zero.
  4. Increased the feedback resistance from 30kohms to 12kohms. R16 through R21 are now 20k, while the old design had 5k. The purpose is to reduce the current demand in the feedback path, hopefully this opens up the number of DCPS we can use. To keep the overall gain of 31, the resistor R15 was upped from 1kohms to 4kohms.
  5. Feedback capacitance reduced from 15 uF to 3 uF. This was largely for space saving / ease of layout on the PCB. The resulting corner frequency is increased slightly from 0.35 Hz to 0.45 Hz but this doesn't have any imapct on the performance of the circuit at frequencies of interest (1/2/pi/R/C had R=30k, C=15uF, now R=120k, C=3uF).
  6. Added an R-C-R network at the output of the PA95, before the fast actuation signal is summed and sent to the OSEM coil.
    • This is probably the most important change, noise-performance wise.
    • The purpose of the network is to passively filter out the excess noise we saw at ~100 Hz (the corner from the 4kohm resistor + 3uF cap is at ~13 Hz, so factor of 10 filtering at 100 Hz, which was deemed sufficient, see earlier elogs in the thread). 
    • The Johnson noise contribution of the 20 kohm resistor is slightly higher than the original design which had a 25 kohm series resistor (but no R-C-R passive filter at the output of the PA95). But once again, this was deemed to have negligible effect on the performance at frequencies of interest to us.
    • The total current driving capability of the circuit is almost unchanged since the 20kohm + 4kohm nearly equals the old 25kohm resistance.
  7. Made the Vmon paths for monitoring the HV output of the PA95 differential sending, seems like a good practise to follow for all new designs.
  8. Added on-board bypass capacitors (2 x 10uF WIMA film caps) for cleaning up the HV supply noise.

Tests:

A series of tests were done. Note that only 1 channel was stuffed (I am out of PA95s), and the HP power supplies borrowed from Rich were used for the HV rails. For the +/-18V, a regular bench-top unit was used.

  1. Low voltage stage tests
    • TF of the differential receiving stage was measured and the overall unity gain and corner at 24kHz were verified, see Attachment #1.
    • With the input of the circuit grounded, I measured the noise of the circuit at various points (see legends on Attachment #2). I didn't bother to do a detailed verification against a SPICE model as the levels seemed roughly what is expected.
  2. Overall noise performance with HV stage enabled
    • For a range of drive currents, generated by applying the appropriate voltage using an Acromag XT1541 DAC module to the J1 connector, I measured the voltage on the circuit side of the 20 kohm resistor (by clipping onto the resistor leg. Note that the path to ground for the current was provided by connecting a 20 ohm resistor between pins 1 and 6 on J3a, and then grounding pin 6.
    • Results are shown in Attachment #3
    • For the drive currents at the edge of the range of operation, there is a small excess relative to lower drive currents. My best hypothesis for why this is happening is that the HV rail is too close to the requested output voltage (the HP units are rated for 320V, which is borderline if we want 300V at the output of the PA95). In any case, the R-C-R passive filter means that above ~60 Hz, there is excellent agreement between model and measurement.
  3. Time domain tests
    • Used a function generator. to drive a 50 mHz, 3Vpp sine wave to the "Bias Input" (=J1), and monitored (i) pickoff of drive signal, (ii) High voltage output at the circuit side of the 20kohm resistor, and (iii) the Vmon output (=pins 1/6 on J4), all on a 100 MHz Tektronix scope.
    • Results shown in Attachment #4. Once again, I see no red flags.
    • While I had the unit hooked up to the scope, I also checked the time domain signal with the scope set to 100 ns/div time base. I saw no evidence of any oscillatory features, either when no input signal was applied, or when a DC signal was provided (in which case the scope was set to AC coupling). 👍 
  4. Checked that the protection diodes at various locations in the circuit work.
  5. Checked the pin-mapping on all 6 D9 connectors is consistent with the top level diagram in the schematic.

PCB remarks:

As I was stuffing the board, I noticed a few improvements that can be made. Just noting these here for documentation purposes - these changes are mostly aesthetic and I personally see no need to order another set of PCBs.

  1. In some places, the silkscreen designators don't have the correct "orientation" relative to the component they are designating. I didn't find any serious ambiguity in terms of being misled to stuff the wrong component onto the wrong pads, but in the spirit of doing a professional job...
  2. The current limiting resistors on the +/-430V LEDs (R37/R38) have footprints for leaded components rather than SMT (which is what the +/-15V LEDs have).
  3. R45 and R46, the current limiting resistors for the rear panel power indicator LEDs, have 0805 footprint rather than 1206.
  4. When I drew up the PCB, R23, the 4kohm resistor in the R-C-R network, was set up as a 1W resistor. Let's say there can be 15 mA flowing through this resistor - the power dissipated is 15e-3 ^2 * 4e3 is 0.9W, which is uncomfortably close to the limit. For all the tests above, I used a 3W resistor, and didn't find any serious noise issues. The drilled holes are a little tight for this higher power rated resistor, but I don't think this is a showstopper.

Communications with Apex:

I've been talking to support at Apex, and pointed out that I couldn't match the SPICE model performance even for a simple non-inverting amplifier with the PA95. The feedback I got from them was that 

  1. They don't optimize the SPICE models for input noise and so it was a nice coincidence that model and measurement are somewhat close (but not exactly).
  2. They recommend the PA194, which is actually advertised as "low-noise". The PA95 is apparently not a "low-noise" part, with its 2uVrms input noise. 

Whiel the PA194 is compatible with our voltage and current requirements for this application, it is ~3x the cost, and seems like the R-C-R output filter allows us to realize the goal of 1pA/rtHz, so I'm inclined to stick with the PA95.

Production assembly:

I'd prefer to get as much of the board stuffed by Screaming Circuits as possible. It took me ~3 hours to stuff 1 channel + the power supply parts, standoffs etc. So I estimate it'll take me ~6 hours to stuff the entire board. So not the end of the world if we have to do it in-house.

Attachment 1: inputDiffRecTF.pdf  93 kB  | Hide | Hide all
inputDiffRecTF.pdf
Attachment 2: LVnoises.pdf  192 kB  | Hide | Hide all
LVnoises.pdf
Attachment 3: totalNoise.pdf  566 kB  Uploaded Wed Feb 10 22:20:49 2021  | Hide | Hide all
totalNoise.pdf
Attachment 4: timeDomainTests.pdf  174 kB  Uploaded Wed Feb 10 22:21:01 2021  | Hide | Hide all
timeDomainTests.pdf
ELOG V3.1.3-