Summary:
I did some more detailed tests to see if I could isolate where the excess ALS noise at low CARM offset is coming from, by measuring the spectrum of the IMC error point (in loop). The results, shown in Attachment #1 and #2, are inconclusive.
Details:
Since MC_F didn't show any signatures of elevated noise, I decided to hook up an SR785 to the A excitation bank TEST1 input of the IMC servo board to monitor the in-loop error signal. I initially took a few measurements spanning 800 Hz in frequency, and to my surprise, I found that there was elevated noise in the frequency band we see an increase in the ALS noise, even when the CARM feedback goes to the ETMs (so the IMC cavity is in principle isolated from the main interferometer). This is Attachment #1. So I re-took a couple of measurements (this time only for the case of CARM feedback to the ETMs), with a 200 Hz frequency span, and found no significant noise elevation. This is Attachment #2. I am led to conclude that the IMC error point level changes over time for reasons other than the CARM offset - it'd be nice to have a spectrogram of the IMC error point and compare excursions relative to the median level over a few 10s of minutes, but we don't have this data stream digitized by the CDS system - maybe I will hijack the MC_L channel temporarily to record this data stream. It seems a waste that we're not able to take full advantage of the measured <10pm RMS noise of the IR ALS system. |