We repeated the homodyne measurement to check whether we are measuring the actual frequency noise of the laser. The idea was to repeat the experiment when the laser is not locked and when the laser is locked to IMC.The frequency noise of the laser is expected to be reduced at higher frequency (the expected value is about 0.1 Hz/rtHz at 100 Hz ) when it is locked to IMC . In this measurement, the fiber beam splitter used is Non PM. Following are the observations
1. Time domain output_laser unlocked.pdf : Time domain output when the laser is not locked. The frequency noise is estimated from data corresponds to the linear regime. Following time intervals are considered to calculate the frequency noise (a) 104-116 s (b) 164-167 s (c) 285-289 s
2. Frequency_noise_laser_unlocked.pdf: Frequency noise when the laser is not locked. The model used has the functional form of 5x104/f as we did before. Compared to our previous results, the closeness of the experimental results to the model is less from this measurement. In both the cases, we have the uncertainty because of the fiber length fluctuation. Moreover, this measurement could have effect of polarisation fluctuation as well.
3.Time domain output_laser locked.pdf :Time domain output when the laser is locked. Following time intervals are considered to calculate the frequency noise (a) 70-73 s (b) 142-145 s (c) 266-269 s.
4. Frequency_noise_laser_locked.pdf : Frequency noise when the laser is locked
5. Frequency noise_comparison.pdf : Comparison of frequency noise in two cases. The two values are not significantly different above 10 Hz. We would expect reduction in frequency noise at higher frequency once the laser is locked to IMC. But this result may indicate that we are not really measuring the actual frequency noise of the laser. |