40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Thu Apr 11 17:30:45 2019, Jon, Update, SUS, Automated suspension testing with susPython 
    Reply  Mon Apr 15 18:13:23 2019, rana, Update, Computer Scripts / Programs, Automated suspension testing with susPython 
       Reply  Sun Apr 28 16:00:17 2019, gautam, Update, Computer Scripts / Programs, List of suspension test 
Message ID: 14582     Entry time: Sun Apr 28 16:00:17 2019     In reply to: 14542
Author: gautam 
Type: Update 
Category: Computer Scripts / Programs 
Subject: List of suspension test 

Here are some tests we should script.

  1. Checking Coil Vmons, OSEM PDmons, and watchdog enable wiring
    • Disable input to all the coil output filter modules using C1:SUS-<OPTIC>_<COIL>_SWSTAT (this is to prevent the damping loop control signals from being sent to the suspension)
    • Set ramptimes for these filter modules to 0 seconds.
    • Apply a step of 100 cts (~15 mV) using the offset field of this filter module (so the test signal is being generated by the fast CDS system).
    • Confirm that the step shows up in the correct coil Vmon channel with the appropriate size (in volts), and that other Vmons don't show any change (need to check the sign as well, based on the overall gain in this filter module).
    • Confirm that the largest response in the PDmon signals is for the same OSEM. There will be some cross-coupling but I think we always expect the largest response to be in the OSEM whose magnet we pushed provided the transimpedances are the same across all 5 coils (which is true except for PRM side), so this should be a robust criterion.
    • Take the step off using the watchdog enable field, C1:SUS-<OPTIC>_<COIL>_COMM. This allows us to confirm the watchdog signal wiring as well.
    • Reset ramptimes, watchdogs, input states to filter modules, and offsets to their pre-test values.
    • This test should tell us that the wiring assignments are correct, and that the Acromag ADC inputs are behaving as expected and are calibrated to volts.
    • This test should be done one channel at a time to check the wiring assignments are correct.
  2. Checking the SUS PD whitening
    • Measure spectrum of individual PD input (fast CDS) channels above 30 Hz with the whitening in a particular state
    • Toggle the whitening state.
    • Confirm that the whitened sensor noise above 30 Hz is below the unwhitened case (which is presumably ADC noise.
    • This test should be done one channel at a time to check the wiring assignments are correct.

Checking the Acromag DAC calibration is more complicated I think. There are measurements of the actuator calibration in units of nm/ct for the fast DACs. But these are only valid above the pendulum resonance frequency and I'm not sure we can synchronously drive a 10 Hz sine wave using the EPICs channels. The current test which drives the PIT/YAW DoFs with a DC misalingment and measures the response in the PDmon channels is a bit ad hoc in the way we set the "expected" response which is the PASS/FAIL criterion for the test. Moreover, the cross-coupling between the PDmon channels may be quite high. Needs some thought...

ELOG V3.1.3-