Here are the results from this test. The data for 17 April is with the DC bias for ETMY set to the nominal values (which gives good Y arm cavity alignment), while on 18 April, I changed the bias values until all four shadow sensors reported values that were at least 100 cts different from 17 April. The times are indicated in the plot titles in case anyone wants to pull the data (I'll point to the directory where they are downloaded and stored later).
There are 3 visible peaks. There was negligible shift in position (<5 mHz) / change in Q of any of these with the applied Bias voltage. I didn't attempt to do any fitting as it was not possible to determine which peak corresponds to which DoF by looking at the complex TFs between coils (at each peak, different combinations of 3 OSEMs have the same phase, while the fourth has ~180 deg phase lead/lag). FTR, the wiki leads me to expect the following locations for the various DoFs, and I've included the closest peak in the current measured data in parentheses:
DoF |
Frequency [Hz] |
POS |
0.982 (0.947) |
PIT |
0.86 (0.886) |
YAW |
0.894 (0.886) |
SIDE |
1.016 (0.996) |
However, this particular SOS was re-suspended in 2016, and this elog reports substantially different peak positions, in particular, for the YAW DoF (there were still 4). The Qs of the peaks from last week's measurements are in the range 250-350.
Quote: |
Repeat the free-swinging ringdown with the ETMY bias voltage adjusted such that all the OSEM PDmons report ~100 um different position from the "nominal" position (i.e. when the Y arm cavity is aligned). Investigate whether the resulting eigenmode frequencies / Qs are radically different. I'm setting the optic free-swinging on my way out tonight. Optic kicked at 1239690286.
|
|