40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Sun Jul 8 12:20:12 2018, Jon, Summary, AUX, Gouy Phase Measurements from AUX-Laser Scans yarm_aux_carrier_trans.pdfprmi_aux_carrier_trans.pdfdrmi_aux_carrier_trans.pdf
Message ID: 14044     Entry time: Sun Jul 8 12:20:12 2018     Reply to this: 14054
Author: Jon 
Type: Summary 
Category: AUX 
Subject: Gouy Phase Measurements from AUX-Laser Scans 

This note reports analysis of cavity scans made by directly sweeping the AUX laser carrier frequency (no sidebands). The measurement is made by sweeping the RF offset of the AUX-PSL phase-locked loop and demodulating the cavity reflection/transmission signal at the offset frequency.

Y-Arm Scan

Due to the simplicity of its expected response, the Y-arm cavity was scanned first as a test of the AUX hardware and the sensitivity of the technique. Attachment 1 shows the measured cavity transmission with respect to RF drive signal.

The AUX laser launch setup is capable of injecting up to 9.3 mW into the AS port. This high-power measurement is shown by the black trace. The same measurement is repeated for a realistic SQZ injection power, 70 uW, indicated by the red curve. At low power, the technique still clearly resolves the FSR and six HOM resonances. From the identified mode resonance frequencies the following cavity parameters are directly extracted.

YARM Gautam's Finesse Model Actual
FSR 3.966 MHz 3.967 MHz
Gouy phase 54.2 deg 52.0 deg

PRC Scan

An analogous scan was performed for the PRC, with the IFO locked on PSL carrier in PRMI. Attachment 2 shows the measurement of PRC transmission with respect to drive signal.

The scan resolves HOM resonances to at least ~13th order, whose frequencies yield the following cavity parameters.

PRC Gautam's Finesse Model Actual
FSR 22.30 MHz 22.20 MHz
Gouy phase 13.4 deg 15.4 deg

SRC Scan

Ideally (and at the sites) the SRC mode resonances will be measured in SRMI configuration. Because every other cavity is misaligned, this configuration provides an easily-interpretable spectrum whose resonances can all be attributed to the SRC.

Due to time constraints at the 40m, the IFO could not be restored to lockability in SRMI. It has been more than two years since this configuration was last run. For this reason the scan was made instead with the IFO locked in DRMI, as shown in Attachment 3. The quantity measured is the AUX reflection with respect to drive signal.

This result requires far more interpretation because resonances of both the SRC and PRC are superposed. However, the resonances of the PRC are known a priori from the independent PRMI scan. The SRC mode resonances identified below do not conincide with any of the first five PRC mode resonances.

Based on the identified mode resonance frequencies, the SRC parameters are measured as follows.

SRC Gautam's Finesse Model Actual
FSR 27.65 MHz 27.97 MHz
Gouy phase 10.9 deg 8.8 deg

Lessons Learned

From experience with the 40m, the main challenges to repeating this measurement at the sites will be the following.

  • Pointing jitter of the input AUX beam. This causes the PSL-AUX beam overlap to vary at transmission (or reflection), causing variation in the amplitude of the AUX-PSL beat note. As far as we can tell, the frequency of the resonances (the only object of this measurement) is not changing in time, only the relative amplitudes of the diferent mode peaks. I believe the SQZ alignment loops will mitigate this problem at the sites.
  • Stabilization of the network analyzer time base. We found the intrinsic frequency stability of the network analyzer (Agilent 4395A) to be unacceptably large. We solved this problem by phase-locking the Agilent to an external reference, a 10-MHz signal provided by an atomic clock.
Attachment 1: yarm_aux_carrier_trans.pdf  207 kB  Uploaded Sun Jul 8 13:40:45 2018  | Hide | Hide all
Attachment 2: prmi_aux_carrier_trans.pdf  200 kB  Uploaded Sun Jul 8 13:53:00 2018  | Hide | Hide all
Attachment 3: drmi_aux_carrier_trans.pdf  177 kB  Uploaded Sun Jul 8 14:13:52 2018  | Hide | Hide all
ELOG V3.1.3-