Yoichi, Osamu,
Last night's locking work was totally interrupted by the sabotage by the MC.
First, after I measured the RF_AM, the MC alignment was somehow shifted largely and the MC did not lock to TEM00 mode.
I only mis-aligned MC2 to measure the RF_AM, but the MC reflection beam was also shifted (looking at the WFS QPD), that means MC1 was mis-aligned somehow.
Moreover, even when the MC is not locked, i.e. no feedback to the mirrors, the OSEM values of the MC mirrors (all of them) drift a lot in 10min scale.
I was totally puzzled. So I rebooted c1iovme and c1sosvme. Then this strange drift of the OSEM values stopped.
Even though, the MC tended to lose lock within ten minutes because the WFS QPDs were not centered.
We did several iterations of re-centering and finally the MC started to stay locked happily. The MC reflection beam was symmetric.
Then this morning when I came in (to be honest, afternoon), the MC reflection looked asymmetric again. The WFS QPDs were mis-centered again.
The attached files show an 8-hour trend of various MC related signals.
There was a half-degree temperature change starting from around 11AM. Corresponding to that, the IOO-QPD signals drifted indicating that the PSL beam pointing
was shifted. The MZ PZT signal shows a similar trend, so the beam pointing may have been shifted by the MZ (not sure).
The MC WFS, transmission QPD signals show the same trend.
This is too bad.
Right now, the PSL beam pointing is monitored by the QPDs detecting the transmitted beam through the first mirror of the periscope.
This means even if we can track the beam pointing drift with the QPDs, we can't correct the beam pointing using the periscope mirrors.
I don't want to touch the MZ mirrors for this purpose.
I propose to put a pick-off mirror after the second mirror of the periscope to send light to the IOO-QPDs. This way, we can use the periscope
mirrors to restore the beam pointing screwed up by the MZ.
|