Aim: To synchronize data from the captured video and the signal applied to ETMX
In order to correlate the intensity fluctuations of the scattered light with the motion of the test mass, we are planning to use the technique of neural network. For this, we need a synchronised video of scattered light with the signal applied to the test mass. Gautam helped me capture 60sec video of scattering of infrared laser light after ETMX was dithered in PITCH at ~0.2Hz..
I developed a python program to capture the video and convert it into a time series of the sum of pixel values in each frame using OpenCV to see the variation. Initially we had tried the same with green laser light and signal of approximately 11.12Hz. But in order to see the variation clearly, we repeated with a lower frequency signal after locking IR laser today. I have attached the plots that we got below. The first graph gives the intensity fluctuations from the video. The third and fourth graphs are that of transmitted light and the signal applied to ETMX to shake it. Since the video captured using the camera was very noisy and intensity fluctuations in the scattered light had twice the frequency of the signal applied, we captured a video after turning off the laser. The second plot gives the background noise probably from the camera. Since camera noise is very high, it may not be possible to train this data set in neural network.
Since the videos captured consume a lot of memory I haven't uploaded it here. I have uploaded the python code 'sync_plots.py' in github (https://github.com/CaltechExperimentalGravity/GigEcamera/tree/master/Pooja%20Sekhar/PythonCode).
|