[Jon, Gautam]
Attached is supporting documentation for the AUX-PSL PLL electronics installed in the lower PSL shelf, as referenced in #13845.
Some initial loop measurements by Gautam and Koji (#13848) compare the performance of the LB1005 vs. an SR560 as the controller, and find the LB1005 to be advantageous (a higher UGF and phase margin). I have some additional measurements which I'll post separately.
Loop Design
Pickoffs of the AUX and PSL beams are routed onto a broadband-sensitive New Focus 1811 PD. The AUX laser temperature is tuned to place the optical beat note of the two fields near 50 MHz. The RF beat note is sensed by the AC-coupled PD channel, amplified, and mixed-down with a 50 MHz RF source to obtain a DC error signal. The down-converted term is isolated via a 1.9-MHz low-pass filter in parallel with a 50 Ohm resistor and fed into a Newport LB1005 proportional-integral (PI) servo controller. Controller settings are documented in the below schematic. The resulting control signal is fed back into the fast PZT actuator input of the AUX laser.
Schematic diagram of the PLL.
Hardware Photos
Optical layout on the PSL table.
PLL electronics installed in the lower PSL shelf.
Close-up view of the phase detector electronics.
Slow temp. (left) and fast PZT signals into the AUX controller.
AUX-PSL beat note locked at 50 MHz offset, from the control room.
|