40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 13635     Entry time: Fri Feb 16 01:09:55 2018
Author: gautam 
Type: Update 
Category: ALS 
Subject: EX green locking duty cycle 

I have been puzzled as to why the duty cycle of the EX green locks are much less than that of the EY NPRO. If anything, the PDH loop has higher bandwidth and comparable stability margins at the X end than at the Y end. I hypothesize that this is because the EX laser (Innolight 1W Mephisto) has actuation PZT coefficient 1MHz/V, while the EY laser (Lightwave 125/126) has 5MHz/V. I figure the EX laser is sometimes just not able to keep up with the DC Xarm cavity length drift. To test this hypothesis, I disabled the LSC locking for the Xarm, and enabled the SLOW (temperature of NPRO crystal) control on the EX laser. The logic is that this provides relief for the PZT path and prevents the PDH servo from saturating and losing lock. Already, the green lock has held longer than at any point tonight (>60mins). I'm going to leave it in this state overnight and see how long the lock holds. The slow servo path has a limiter set to 100 counts so should be fine to leave it on. The next test will be to repeat this test with LSC mode ON, as I guess this will enhance the DC arm cavity length drift (it will be forced to follow MCL).

Why do I care about this at all? If at some point we want to do arm feedforward, I thought the green PDH error signal is a great target signal for the Wiener filter calculations. So I'd like to keep the green locked to the arm for extended periods of time. Arm feedforward should help in lock acquisiton if we have reduced actuation range due to increased series resistances in the coil drivers.

As an aside - I noticed that the SLOW path has no digital low pass filter - I think I remember someone saying that since the NPRO controller itself has an in-built low pass filter, a digital one isn't necessary. But as this elog points out, the situation may not be so straightforward. For now, I just put in some arbitrary low pass filter with corner at 5Hz. Seems like a nice simple problem for optimal loop shaping...


gautam noon CNY2018: Looks like the green has been stably locked for over 8 hours (see Attachment #1), and the slow servo doesn't look to have railed. Note that 100 cts ~=30mV. For an actuation coefficient of 1GHz/V, this is ~30MHz, which is well above the PZT range of 10V-->10MHz (whereas the EY laser, by virtue of its higher actuation coefficient, has 5 times this range, i.e. 50MHz). Supports my hypothesis.

Attachment 1: GreenLock8hrs.png  34 kB  Uploaded Fri Feb 16 11:59:35 2018  | Hide | Hide all
GreenLock8hrs.png
ELOG V3.1.3-