40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Tue Aug 29 01:52:22 2017, gautam, Update, SUS, Test mass actuator calibration ALS_comparison.pdf
    Reply  Tue Aug 29 15:04:59 2017, gautam, Update, SUS, ETMY Oplev PIT loop gain changed ETMY_OLPIT.pdfGTR_comparison.pdf
    Reply  Wed Oct 18 17:34:09 2017, gautam, Update, SUS, ASDC 
Message ID: 13265     Entry time: Tue Aug 29 01:52:22 2017     Reply to this: 13267   13392
Author: gautam 
Type: Update 
Category: SUS 
Subject: Test mass actuator calibration 

[ericq, gautam]

Tonight, we decided to double-check the POX counts-to-meters conversion.

It is unclear when this was last done, and since I modified the coil driver electronics for the ITMs and BS recently, I figured it would be useful to get this calibration done. The primary motivation was to see if we could resolve the discrepancy between the current ALS noise (using POX as a sensor) compared to the Izumi et. al. plot.

Because we are planning to change the coil driver electronics further soon anyways, we decided to do the calibration at a single frequency for tonight. For future reference, the extension of this method to calibrate the actuator over a wider range of frequencies is here. The procedure followed, and the relevant numbers from tonight, are as follows.


  1. Set dark offsets on all DCPDs and LSC PDs.
  2. Look at the free swinging Michelson signal on ASDC.
    • For tonights test, ASDC was derived from the AS55 photodiode.
    • The AS110 photodiode actually has more light on it, but we think that the ADC that the DCPD board is interfaced to is running on 0-2V rather than 0-10V, as the signal seemed to saturate around 2000 counts. It is unclear whether the actual photodiode is saturating, to be investigated.
    • So we decided to use ASDC from AS55 photodiode with 15dB whitening gain.
    • There is also some issue with the whitening filter (not whitening gain) on ASDC - engaging the whitening shifts the DC offset. This has to be investigated while we get stuck into the LSC electronics.
  3. Look at the peak-to-peak swing of ASDC. Use algebraic expression for reflected power from Michelson interferometer to calibrate the ASDC slope at Michelson half-fringe. For the test tonight, ASDC_max = 1026 counts, ASDC_min = 2 counts.
  4. Lock the Michelson at half-fringe, with ASDC as the error signal.
    • Zero out the MICH elements in the RFPD input matrix.
    • Set the matrix element from ASDC to MICH in the DCPD LSC input matrix to 1.
    • The servo gain used was +0.005 on the MICH_A servo path.
    • A low-frequency boost was turned on.
  5. Use the sensing matrix infrastructure to drive a line in the optic of interest.
    • Tonight, we looked at ITMX and ITMY.
    • The line was driven at 311.1Hz, and the amplitude was 300 counts.
    • Download 60secs of ASDC data, demodulate at the driven frequency to find the peak height in counts, and using the slope of ASDC (in cts/m) at the Michelson half-fringe, calculate the actuator gain in m/cts.
    • ITMY: 2.55e-9 / f^2 m/count
    • ITMX: 2.65e-9 / f^2 m/count
    • These numbers kind of make sense - the previous numbers were ~5nm/f^2 /ct, but I removed an analog gain of x3 in this path. Presumably there has been some change in the N/A conversion factor - perhaps because of a change in the interaction between the optics' face magnets and the static magnetic field in the OSEMs?
  6. Lock the arms with POX/POY, and drive the newly calibrated ITMs.
    • So we know how many meters we are driving the ITMs by.
    • Looking at POX/POY, we can calibrate these into meters/count.
    • Both POX and POY were whitened.
    • POX whitening gain = +30dB, POY whitening gain = +18dB.
    • ITMX and ITMY were driven at 311.1Hz, with amplitude = 2counts.
    • Download 60 secs of data, demodulate at the drive frequency to find the peak height, and use the known ITM actuator gains to calibrate POX and POY.
    • POX: 7.34e-13 m / count (approx. 5 times less than the number in the Foton filter bank in the C1:CAL-CINV model).
    • POY: 1.325e-13 m / count
    • We did not optimize the demod phases for POX/POY tonight. 

Once these calibrations were updated, we decided to control the arms with ALS, and look at the POX spectrum. Y-arm ALS wasn't so stellar tonight, especially at low frequencies. I can see the GTRY spot moving on the CCD monitor, so something is wonky. To be investigated. But the X arm ALS noise looked pretty good.

Seems like updating the calibration did the job; see the attached comparison plot.

Attachment 1: ALS_comparison.pdf  177 kB  Uploaded Tue Aug 29 03:25:56 2017  | Hide | Hide all
ELOG V3.1.3-