I found the MCWFS gain slider down at 0.012. In this state the UGFs are probably around 10-30 mHz
and so there is no reduction of seismic noise. It is mainly a DC alignment tool in this state.
We often have reduced the loop gain thusly, to prevent the dreaded "MCWFS eating CM loop gain" disease.
That disease is where there are CM loop instabilities at ~5-30 Hz because of loop cross-couplings
who's exact nature has never been understood (TBI).
Today, I implemented a 4th order, 7 Hz low pass (RLP7) into the loops and turned up the gain by a factor
of 30 to 0.3. In this state, the damping time constants seem to be ~0.5-2 seconds as shown in the first
PDF. I didn't have enough patience to do the interminable swept sine measurements down to 0.1 Hz.
The second PDF shows the Bode plot of the RLP7 filter compared to the pre-existing but unused ELP10.
The third PDF shows my estimate of the OLG TF. This is made by just putting a "Pendulum" filter into the
MCWFS bank and then plotting all the filters together using FOTON. The BLUE curve shows the old TF but
with the new high gain and the RED curve shows the new TF with the new gain.
With this new filter, I bet that we can get away with the higher WFS gain, but if there's any problem during the
handoff, the gain should be reverted to the low value.
In the 4th PDF file, I plot the spectra of 4 of MC2's control signals so that you can see what is bigger than what.
ASCPIT is the one that has the feedback from the WFS's in it. These are all just in units of counts and so to compare
them in some sort of displacement units you have to take into account the pitch moment of inertia, the mirror mass,
and the mis-centering of the beam from the center of rotation of MC2... |