Rana suggested taking a look at the Y-arm test mass actuator TFs (measured by driving the coils one at a time, with only local damping loops on, using the Oplev to measure the response to a given drive). Attached are the results from this measurement (I used the Oplev pitch error signal for all 8 measurements). Although the magnitude response for all coils have the expected 1/f^2 shape, there seems to be some significant (~10dB) asymmetry in both the ETM and ITM coils. The phase-response is also not well understood. If we are just measuring the TF of a pendulum with 1 Hz resonant frequency, then at and above 10Hz, I would expect the phase to be either 0 or 180 deg. Looks like there is a notch at 60 Hz somewhere, but it is unclear to me where the ~90 degree phase at ~100Hz is coming from.
For the ITM, the UL OSEM was replaced during the 2016 summer vent - the coil that is in there is now of the short OSEM variety, perhaps it has a different number of turns or something. I don't recall any coil balancing being done after this OSEM swap. For the ETM, it is unclear to me how long this situation has been like this.
Yesterday night, I tried to measure the ASS output matrix by stepping the ITM, ETM and TTs in PIT and YAW, and looking at the response in the various ASS error signals. During this test, I found the ETM and ITM pitch and yaw error signals to be highly coupled (the input matrix was diagonal). As Rana suggested, I think the whole coil driver signal chain from DAC output to coil driver board output has to be checked before attempting to fix ASS. Results from this investigation to follow.
Note: The OSEM calibration hasn't been done in a while (though the HeNes have been swapped out), but as Attachment #2 shows, if we believe the shadow sensor calibration, then the relative calibrations of the ITM and ETM Oplevs agree. So we can directly compare the TFs for the ITM and ETM.
|