40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 10879     Entry time: Thu Jan 8 19:02:42 2015
Author: Jax 
Type: Summary 
Category: Electronics 
Subject: MC demod modifications 

Here's a summary of the changes made to the D990511 serial 115 (formerly known as REFL 33), as well as a short procedure. It needed tuning to 29.5MHz and also had some other issues that we found along the way. 

So here's a picture of it as built:

The changes made are:

1. U11 and U12 changed from 5MHz LP to 10 MHz LP filters.

2. Resistors R8 and R9 moved from their PCB locations to between pins 1 (signal) and 3 (ground) of U11 and U12, respectively. These were put in the wrong place for proper termination so it made sense to shift them while I was already replacing the filters.

Also, please note- whoever labeled the voltages on this board needed an extra cup of coffee that day. There are two separate 15V power supplies, one converted from 24V, one directly supplied. The directly supplied one is labeled 15A. This does NOT mean 15 AMPS.

Transfer functions:

Equipment: 4395A, Signal generator (29.5 MHz), two splitters, one mixer

You can't take the TF from PD in to I/Q out directly. Since this is a demod board, there's a demodulating (downconverting) mixer in the I and Q PD in paths. Negligible signal will get through without some signal applied to the L input of the mixer. In theory, this signal could be at DC, but there are blocking capacitors in the LO in paths. Therefore, you have to upconvert the signal you're using to probe the board's behavior before it hits the board.  Using the 4395A as a network analyzer, split the RF out. RFout1 goes to input R, RFout2 goes to the IF port of the mixer. Split the signal generator (SG). SG1 goes to LO in, SG2 goes to the L port of the mixer. The RF port of the mixer (your upconverted RFout2) goes to PD in, and the I/Q out goes back to the A/B port of the 4395A - at the same frequency as the input, thanks to the board's internal downconversion. 

Phase measurement:

Equipment: Signal generator (29.5 MHz), signal generator (29.501 MHz), oscilloscope

Much simpler: 29.5 MHz to the LO input (0 dBm), 29.501 MHz to the PD input (0 dBm), compare the phases of the I/Q outputs on the oscilloscope. There are four variable capacitors in the circuit that are not on the DCC revision of the board - C28-31. On the LO path, C28 tunes the I phase, C30 tunes the Q phase. On the PD path, C29 and 31 appear to be purely decorative - both are in parallel with each other on the PD in Q path, I'm guessing C29 was supposed to be on the PD in I path. Fortunately, C28 and C30 had enough dynamic range to tune the I/Q phase difference to 90 degrees.

Before tuning:

After tuning:

 

ELOG V3.1.3-