40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Tue Aug 12 18:20:13 2014, ericq, Update, IOO, FSS box TFs FSSbox.pdfFSSfilt.pdfFSSdata.zip
    Reply  Wed Aug 13 23:08:17 2014, rana, Update, IOO, FSS box TFs FSScomm.pdf
Message ID: 10370     Entry time: Tue Aug 12 18:20:13 2014     Reply to this: 10380
Author: ericq 
Type: Update 
Category: IOO 
Subject: FSS box TFs 

I made some measurements of the FSS box today, to have TFs for a loop model, but also to see what the difference between the different inputs was. 

As a reminder, the FSS box takes the error signal from the MC servo, does some filtering, and sends out two outputs: one to the laser PZT via KojiBox and Thorlabs HV amplifier, and one to be summed with the PMC modulation signal to the PC. Rana found the schematic at D040105

The MC error signal currently enters via a port called "IN1", but there is also a "Test 1 in," which experiences different filtering. I measured the TFs from each of these inputs to both the FAST and PC outputs. There is also an IN2, that is added after the offset point, but was not able to make a good measurement, for reasons unknown. From these TFs, I inferred the difference between the PC and FAST path, as well as the difference between IN1 and Test 1 in.

Specifically, I plugged the cable that is usually connected to the MC servo output, labelled "TO FSS BOX", into the RF out of the AG4395. I then took a BNC cable from the FAST out, or PC out, and fed it into a mini circuits DC block (BLK-89-S+), and then into input A, after checking on a scope that the signal was roughly zeroed and not too huge. Unbeknownst to me at the time, the PC drive output can be pretty big, and could potentially fry the analyzer's input. Fortunately, I think I avoided this fate. 


A ~1.3 MHz bump can be seen here, which would conspire with the bump in the demod board I measured yesterday, to steal even more phase around 1MHz. Maybe we can modify the FSS box to help our gain peaking situation out. 

The data is attached.

RXA: Shazam!

Attachment 3: FSSdata.zip  52 kB  Uploaded Tue Aug 12 19:34:06 2014
ELOG V3.1.3-