40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  TCS elog, Page 4 of 5  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  85   Fri Jul 30 19:22:24 2010 AidanComputingEPICSWaveform Channel Access for storing centroids

 A waveform channel was added to the HWS softIoc on hartmann. This allows arrays of data to be stored in a single channel. It's not clear whether it is storing this data as a set of number or strings. However, the values can be changed by the following command:

caput -a -n C4:TCS-HWS_CENTROIDSX 5 1,2,3,4,5

Although the <no of values> entry doesn't seem to actual enforce anything - you can have more or less values than this in the array and they are still added to the channel. What does seem to be necessary is no spaces between the commas and the values of the array.

This also works:

[controls@fb1 cds]$ caput -a -n C4:TCS-HWS_CENTROIDSX 2 1,2,3n
Old : C4:TCS-HWS_CENTROIDSX          1,2,35.4342 
New : C4:TCS-HWS_CENTROIDSX          1,2,3n 
which suggests that this is really a string variable - even with the -n enforce. The cainfo command suggests this as well. 

[controls@fb1 cds]$ cainfo C4:TCS-HWS_CENTROIDSX
C4:TCS-HWS_CENTROIDSX
    State:         connected
    Host:          
    Access:        read, write
    Data type:     DBR_STRING (native: DBF_STRING)
    Element count: 1
 
 

Usage: caput [options] <PV name> <PV value>

       caput -a [options] <PV name> <no of values> <PV value> ...

  -h: Help: Print this message

Channel Access options:

  -w <sec>:  Wait time, specifies longer CA timeout, default is 1.000000 second

Format options:

  -t: Terse mode - print only sucessfully written value, without name

Enum format:

  Default: Auto - try value as ENUM string, then as index number

  -n: Force interpretation of values as numbers

  -s: Force interpretation of values as strings

Arrays:

  -a: Put array

      Value format: number of requested values, then list of values


 

  86   Fri Jul 30 21:19:05 2010 AidanComputingEPICSWaveform Channel Access for storing centroids

After some discussion with Frank we figured out how to edit the record type in HWS.db so that the waveform/array channel actually behaved like a numerical array and not like a single string. This just involved defining the data type and the element count in the record definition, like so:

record(waveform, "C4:TCS-HWS_CENTROIDSX")
{
field(EGU,"PIXELS")
field(HOPR,"1024")
field(LOPR,"0")
field(FTVL,"DOUBLE")
field(NELM,"1000")
}
 

and then when the ioc was rebooted, examination of the channel showed the following:

 

[controls@hartmann softIoc]$ cainfo C4:TCS-HWS_CENTROIDSX
C4:TCS-HWS_CENTROIDSX
    State:         connected
    Host:          hartmann:5064
    Access:        read, write
    Data type:     DBR_DOUBLE (native: DBF_DOUBLE)
    Element count: 1000
 
 
[controls@hartmann softIoc]$ caput -a -n C4:TCS-HWS_CENTROIDSX 10 1 2 3 4 5 6 7 8 9 10 11 12 13.1
Old : C4:TCS-HWS_CENTROIDSX 13 1 2 3 4 5 6 7 8 9 10 11 12 13.1 
New : C4:TCS-HWS_CENTROIDSX 13 1 2 3 4 5 6 7 8 9 10 11 12 13.1 
 
 
[controls@hartmann softIoc]$ caget C4:TCS-HWS_CENTROIDSX
C4:TCS-HWS_CENTROIDSX 1000 1 2 3 4 5 6 7 8 9 10 11 12 13.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 

 

Quote:

 A waveform channel was added to the HWS softIoc on hartmann. This allows arrays of data to be stored in a single channel. It's not clear whether it is storing this data as a set of number or strings. However, the values can be changed by the following command:

caput -a -n C4:TCS-HWS_CENTROIDSX 5 1,2,3,4,5

Although the <no of values> entry doesn't seem to actual enforce anything - you can have more or less values than this in the array and they are still added to the channel. What does seem to be necessary is no spaces between the commas and the values of the array.

This also works:

 

[controls@fb1 cds]$ caput -a -n C4:TCS-HWS_CENTROIDSX 2 1,2,3n
Old : C4:TCS-HWS_CENTROIDSX          1,2,35.4342 
New : C4:TCS-HWS_CENTROIDSX          1,2,3n 
which suggests that this is really a string variable - even with the -n enforce. The cainfo command suggests this as well. 

 

 

[controls@fb1 cds]$ cainfo C4:TCS-HWS_CENTROIDSX
C4:TCS-HWS_CENTROIDSX
    State:         connected
    Host:          
    Access:        read, write
    Data type:     DBR_STRING (native: DBF_STRING)
    Element count: 1
 
 

 

 

Usage: caput [options] <PV name> <PV value>

       caput -a [options] <PV name> <no of values> <PV value> ...

  -h: Help: Print this message

Channel Access options:

  -w <sec>:  Wait time, specifies longer CA timeout, default is 1.000000 second

Format options:

  -t: Terse mode - print only sucessfully written value, without name

Enum format:

  Default: Auto - try value as ENUM string, then as index number

  -n: Force interpretation of values as numbers

  -s: Force interpretation of values as strings

Arrays:

  -a: Put array

      Value format: number of requested values, then list of values


 

 

 

  87   Sat Jul 31 11:54:20 2010 AidanComputingSLEDSLED Test Day 5 - Re-tuned current set-point control voltage

Main Points

  • Re-set SLED current set-point control voltage to 0.111V
  • SLED current set-point voltage drops by about 5mV when the SLED is dis-engaged
  • Resetting was around 11:45AM PDT 31st-Jul-2010

I turned off the SLED for 10s and reset the current set-point voltage (read using a mutlimeter and probing a couple of pins at the back of the driver board). The initial voltage when the test started on Monday was 0.111V when the SLED was engaged. This drooped to 0.109V over the week and there was a corresponding (but possible not resulting) drop in on-board photo-diode voltage. When the SLED was disengaged the set-point current control voltage dropped to 0.104V. I turned the LP pot on the front of the SLED driver board until the multimeter read 0.106V and re-engaged the SLED. The curernt set-point voltage then read 0.111V, occasionally popping up to 0.112V for a moment or two.

The DC Power Supply to the SLED reads 8.9V with 0.26A current being drawn.

  89   Mon Aug 9 10:58:37 2010 AidanLaserSLEDSLED 15-day trend

 Here's a plot of the 15-day output of the SLED.

Currently there is an 980nm FC/APC fiber-optic patch-cord attached to the SLED. It occurred to me this morning that even though the patch cord is angle-cleaved, there may be some back-reflection than desired because the SLED output is 830nm (or thereabouts) while the patch cord is rated for 980nm.

 I'm going to turn off the SLED until I get an 830nm patch-cord and try it then. 

Correction: I removed the fiber-optic connector and put the plastic cap back on the SLED output. The mode over-lap (in terms of area) from the reflection off the cap with the output from the fiber is about 1 part in 1000. So even with 100% reflection, there is less than the 0.3% danger level coupled back into the fiber. The SLED is on again.

Attachment 1: SLED_superlum_long_term_test_0005A_annotated_15-day_result.pdf
SLED_superlum_long_term_test_0005A_annotated_15-day_result.pdf
  90   Tue Aug 17 16:31:55 2010 AidanThings to BuyLaserBought a laser diode from Thorlabs for HWS

http://www.thorlabs.com/thorProduct.cfm?partNumber=CPS180

I bought this laser diode from Thorlabs today to try the current modulation trick Phil and I discussed last Friday. 

That is:

  1. Accept that there will be interference fringes on the Hartmann sensor probe beam with a laser diode source (especially if the probe beam is the retro-reflection from a Michelson interferometer with a macroscopic arm length difference)
  2. Modulate the current of the laser diode source to vary its wavelength by a few hundreds on nm. Do this on a time scale that is much faster than the exposure time for a Hartmann sensor measurement
  3. The contrast of the interference fringes should average out and the exposure should appear to be the sum of two incoherent beams.

 

 

 

  92   Wed Aug 18 18:38:11 2010 AidanComputingHartmann sensorHartmann sensor code

 I downloaded and tested revision 47 of the Adelaide Hartmann sensor code from the SVN (https://trac.ligo.caltech.edu/Hartmann_Sensor/browser/users/won/HS_OO?rev=47). After giving it the correct input filenames it centroided the Hartmann sensor images pretty seamlessly. The output and code is attached below.

The code takes two Hartmann images. Locates the centroids in both instances and then determines the displacements of all the centroids between the two images. The locations of the centroids are plotted in a diagram and the x- and y- centroid displacements are plotted vs the index of each centroid.

The following comments are output on the command line in MATLAB:

 

>> test_HS_Classes
Current plot held
Current plot released
----------------------------------------------------------------
Obtained reference and test centroids.
Number of centroids in reference centroids = 951
average position of reference centroids:
x = 506.39615297  y = 512.890603168
Number of centroids in test centroids = 951
average position of test centroids:
x = 506.396160891  y = 512.892513673

---------------------------------------------------------------- 

HWS_code_output.png - shows the output from the code: we'll need to get more labels on these plots.

HWS_input_image.png - the reference input image (using false color scale) to the Hartmann code

Attachment 1: test_HS_Classes.m
% test_HS_classes.m
%
% A script to test and demonstrate the usage of classes HS_Centroids and
% HS_Classes.

% (LIGO) If half_offset is set true, image and centroids won't be in
% sync in the scatter plot.

% Input parameters
background = 49.3;
... 107 more lines ...
Attachment 2: HS_Image.m
% HS_Image.m
%
%
% HS_Image is a class used to store and interact with images from
% Hartmann Sensor camera.
%
% An instance of the class HS_Image is also used as a property of an
% instance of the class HS_Centroids.
%
% Properties:
... 70 more lines ...
Attachment 3: HS_Centroids.m
% HS_Centroids.m
%
%
% HS_Centroids is a class used to generate and interact with centroids
% of Hartmann Sensor images.
%
% An instance of the class HS_Centroids holds a set of centroids of an
% image.
%
% Properties:
... 254 more lines ...
Attachment 4: HWS_code_output.png
HWS_code_output.png
Attachment 5: HWS_input_image.png
HWS_input_image.png
  93   Mon Aug 23 08:43:16 2010 AidanThings to BuyLaserBought a laser diode from Thorlabs for HWS

It arrived on Friday.

Quote:

http://www.thorlabs.com/thorProduct.cfm?partNumber=CPS180

I bought this laser diode from Thorlabs today to try the current modulation trick Phil and I discussed last Friday. 

That is:

  1. Accept that there will be interference fringes on the Hartmann sensor probe beam with a laser diode source (especially if the probe beam is the retro-reflection from a Michelson interferometer with a macroscopic arm length difference)
  2. Modulate the current of the laser diode source to vary its wavelength by a few hundreds on nm. Do this on a time scale that is much faster than the exposure time for a Hartmann sensor measurement
  3. The contrast of the interference fringes should average out and the exposure should appear to be the sum of two incoherent beams.

 

 

 

 

  94   Mon Sep 13 18:24:52 2010 AidanLaserHartmann sensorEnclosure for the HWS

I've assembled the box Mindy ordered from Newport that will house the Hartmann sensor. It's mainly to reduce ambient light, air currents and to keep the table cleaner than it would otherwise be.

We need to add a few more holes to allow access for extra cables.

 

Attachment 1: 00001.jpg
00001.jpg
Attachment 2: 00002.jpg
00002.jpg
Attachment 3: 00003.jpg
00003.jpg
Attachment 4: 00005.jpg
00005.jpg
  95   Tue Sep 28 10:41:32 2010 AidanLaserHartmann sensorAligning HWS cross-sample experiment - polarization issues

I'm in the process of aligning the cross-sampling experiment for the HWS. I've put the 1" PBS cube into the beam from the fiber-coupled SLED and found that the split between s- and p-polarizations is not 50-50. In fact, it looks more like 80% reflected and 20% transmitted. This will, probably, be due to the polarization-maintaining patch-cord that connects to the SLED. I'll try switching it out with a non-PM maintaining fiber.

 


Later ...

That worked.

  96   Tue Sep 28 17:53:40 2010 AidanLaserHartmann sensorCrude alignment of cross-sampling measurement

I've set up a crude alignment of the cross-sampling system (optical layout to come). This was just a sanity check to make sure that the beam could successfully get to the Hartmann sensor. The next step is to replace the crappy beam-splitter with one that is actually 50/50.

Attached is an image from the Hartmann sensor.

Attachment 1: 2010_09_28-HWS_cross_sample_expt_crude_alignment_01.pdf
2010_09_28-HWS_cross_sample_expt_crude_alignment_01.pdf
  97   Wed Sep 29 16:49:36 2010 AidanLaserHartmann sensorCross-sampling experiment power budget

I've been setting up the cross-sampling test of the Hartmann sensor, Right now I'm waiting on a 50/50 BS so I'm improvising with a BS for 1064nm.

The output from the SLED (green-beam @ 980nm) is around 420uW (the beam completely falls on the power meter.) There are a couple of irises shortly afterwards that cut out a lot of the power - apparently down to 77uW (but the beam is larger than the detection area of the power meter at this point - by ~50%). The BS is not very efficient on reflection and cuts down the power to 27uW (overfilled power meter). The measurement of 39uW is near a focus and the power meter captures the whole beam. There is a PBS cube that is splitting the beam unequally between s- and p-polarizations (I think this is due to uneven reflections for s- and p-polarizations from the 1064nm BS). The beam is retro-reflected back to the HWS where about 0.95uW makes it to the detector.

There is a 1mW 633nm laser diode that is used to align the optical axis. There are two irises that are used to match the optical axis of the laser diode and the SLED output.

 

Attachment 1: 00001.jpg
00001.jpg
  98   Mon Oct 4 19:44:03 2010 AidanLaserHartmann sensorCross-sampling experiment - two beams on HWS

I've set up the HWS with the probe beam sampling two optics in a Michelson configuration (source = SLED, beamsplitter = PBS cube). The return beams from the Michelson interferometer are incident on the HWS. I misaligned the reflected beam from the transmitted beam to create two Hartmann patterns, as shown below.

The next step is to show that the centroiding is a linear superposition of these two wavefronts.

Attachment 1: test001_two_beams_on_HWS.pdf
test001_two_beams_on_HWS.pdf
  99   Tue Oct 5 12:51:16 2010 AidanLaserHartmann sensorVariable power in two beams of cross-sampling experiment

The SLED in the cross-sampling experiment produces unpolarized light at 980nm. So I added a PBS after the output and then a HWP (for 1064nm sadly) after that. In this way I produced linearly p-polarized light from the PBS. Then I could rotate it to any angle by rotating the HWP. The only drawback was that the HWP was only close to half a wave of retardation at 980nm. As a result, the output from this plate became slightly elliptically polarized.

The beam then went into another PBS which split it into two beams in a Michelson-type configuration (REFL and TRANS beams) - see attached image. By rotating the HWP I could vary the relative amount of power in the two arms of the Michelson. The two beams were retro-reflected and we then incident onto a HWS.

I measured the power in the REFL beam relative to the total power as a function of the HWP angle. The results are shown in the attached plot.

 

Attachment 1: test002_two_beams_on_HWS_analyze.pdf
test002_two_beams_on_HWS_analyze.pdf
Attachment 2: Hartmann_Enclosure_Diagram__x-sampling.png
Hartmann_Enclosure_Diagram__x-sampling.png
  102   Tue Nov 30 11:01:19 2010 AidanComputingGeneralNew workstation added in TCS Lab. New Static IP

I added a workstation at 10.0.1.26 in the TCS lab.

  103   Tue Nov 30 11:03:19 2010 AidanComputingFrame GrabberEDT frame grabber works under Ubuntu

The new machine in the TCS lab is running Ubuntu. I installed the frame-grabber into it and, after loading the configuration file for the camera, was able to access the serial port on the camera and also was able to record a properly formatted image from the Hartmann sensor.

  104   Tue Jan 25 16:38:16 2011 AidanElectronicsPre-amplifierL1 TCSY ISS Board transfer function

 I measured the AC and DC channel transfer functions of the eLIGO L1 TCSY ISS board for PD1 and PD2. The gain is quite high on the AC channels so I added +40dB of attenuation to the source from the SR785. As Frank pointed out, even though this isn't exactly +40dB at low frequencies, it still attenuates and that attenuation is common to both the input to the Channel 1 of the SR785 and the input to the ISS board.

The results are shown in the attached plot. I didn't bother including the phase, I'm just interested in the magnitude for calibration purposes.

 The original data files from the SR785 are attached below: 

Channel Name Filename
L1 TCSY PD1 - AC SRS003.78D
L1 TCSY PD2 - AC SRS004.78D
L1 TCSY PD1 - DC SRS005.78D
L1 TCSY PD2 - DC SRS006.78D

 

Attachment 1: L1TCS_ISS_boards_transfer_functions.pdf
L1TCS_ISS_boards_transfer_functions.pdf
Attachment 2: SRS003.78D
Attachment 3: SRS004.78D
Attachment 4: SRS005.78D
Attachment 5: SRS006.78D
  105   Tue Feb 8 13:02:26 2011 AidanElectronicsDelivery NoteThorlabs S322C 200W power head arrived

 The 200W Thermopile power head from Thorlabs arrive today. The scanned delivery note and calibration info are attached.

Attachment 1: Co2_200W_power_meter_delviery_note.pdf
Co2_200W_power_meter_delviery_note.pdf
Attachment 2: Co2_200W_power_meter_calibration_info.pdf
Co2_200W_power_meter_calibration_info.pdf
  106   Fri Feb 18 13:26:23 2011 AidanThings to BuyDelivery NoteFirst parts of Bosch framing have arrived from Valin

The first pieces of the Bosch framing have arrived from Valin Corporation. These are just small pieces such as the fasteners and the gussets. There are no custom lengths of framing yet.

The details are in the attached Packing List. [1:25PM] I haven't verified that everything is there yet.

 

Attachment 1: Packing_List_01.pdf
Packing_List_01.pdf Packing_List_01.pdf
  108   Wed Feb 23 18:04:38 2011 AidanThings to BuyDelivery NoteFirst parts of Bosch framing have arrived from Valin

Quote:

The first pieces of the Bosch framing have arrived from Valin Corporation. These are just small pieces such as the fasteners and the gussets. There are no custom lengths of framing yet.

The details are in the attached Packing List. [1:25PM] I haven't verified that everything is there yet.

 

 Another box of Bosch stuff arrived in my office. The packing list is attached

Attachment 1: Packing_List_02.pdf
Packing_List_02.pdf Packing_List_02.pdf
  109   Wed Feb 23 20:18:30 2011 AidanElectronicsHartmann sensorSuccessfully re-started the Hartmann sensor

 I reattached the Hartmann Sensor to the LENOVO machine that is running Ubuntu and turned it on (it's been disconnected for a couple of months). The /opt/EDTpdv/serial_cmd was able to communicate successfully with the camera.

  111   Thu Feb 24 13:35:41 2011 AidanThings to BuyDelivery NoteBosch framing has arrived

 The custom pieces of the Bosch framing have arrived. Transportation is currently moving them downstairs to the lab. The packing list is attached.

 

 

Attachment 1: Packing_List_03.pdf
Packing_List_03.pdf Packing_List_03.pdf
  112   Thu Feb 24 14:20:55 2011 AidanMiscRing HeateraLIGO H2 Ring Heater Pics

 Here are some pictures of the ring heater segments destined for the H2 Y-arm this year.

 These still need to be put onto ResourceSpace.

Attachment 1: aLIGO_Ring_Heaters.zip
  113   Thu Feb 24 14:23:58 2011 AidanLab InfrastructureHartmann sensorHartmann Sensor box cut down to size

 I reduced the height of the Hartmann sensor box. This is what it looks like now:

 

Attachment 1: P1000109.jpg
P1000109.jpg
Attachment 2: P1000110.jpg
P1000110.jpg
Attachment 3: P1000111.jpg
P1000111.jpg
Attachment 4: P1000113.jpg
P1000113.jpg
  114   Mon Feb 28 17:33:07 2011 AidanComputingHartmann sensorHartmann Seidel abberation channels in frame builder

Using the same methods as before, see below, I've added some Hartmann sensor EPICS channels to the frames.

The channels record the Hartmann sensor Probe (and Secondary) Coefficients of the Seidel aberrations (PSC, SSC) that are specified (PRISM, ALPHA, PHI, etc).

  1. Created /cvs/cds/caltech/chans/daq/C4HWS.ini with the attached contents.
  2. Added a line to /cvs/cds/caltech/target/fb1/master to load C4HWS.ini
  3. restarted the frame builder by killing daqd

[default]
dcuid=4
datarate=16
gain=1.0
acquire=1
ifoid=0
datatype=4
slope=1.0
offset=0
units=NONE


[C4:TCS-HWSX_PSC_PRISM]
[C4:TCS-HWSX_PSC_ALPHA]
[C4:TCS-HWSX_PSC_PHI]
[C4:TCS-HWSX_PSC_CYLINDRICAL_PO]
[C4:TCS-HWSX_PSC_SPHERICAL_POWE]
[C4:TCS-HWSX_PSC_COMA]
[C4:TCS-HWSX_PSC_BETA]
[C4:TCS-HWSX_PSC_SPHERICAL_ABER]
[C4:TCS-HWSX_SSC_PRISM]
[C4:TCS-HWSX_SSC_ALPHA]
[C4:TCS-HWSX_SSC_PHI]
[C4:TCS-HWSX_SSC_CYLINDRICAL_PO]
[C4:TCS-HWSX_SSC_SPHERICAL_POWE]
[C4:TCS-HWSX_SSC_COMA]
[C4:TCS-HWSX_SSC_BETA]
[C4:TCS-HWSX_SSC_SPHERICAL_ABER]

Quote:

 I've added the digitizer and sensor board temperature readings from the HWS to the frames. This was done in the following way

1. Create a new file /cvs/cds/caltech/chans/daq/C4TCS.ini - with the channels in it - see below

2.  open /cvs/cds/caltech/target/fb1/master

3. add a line that includes the C4TCS.ini file when the frame builder starts

4. restart frame-builder by killing the daq daemon - kill <process id for daqd> (this is the only thing that needs to be entered as it will automatically restart)

 

C4TCS.ini

 

[default]

dcuid=4

datarate=16

gain=1.0

acquire=1

ifoid=0

datatype=4

slope=1.0

offset=0

units=NONE

 

 

 

[C4:TCS-HWS_TEMP_SENSOR]

[C4:TCS-HWS_TEMP_DIGITIZER]


 

 

 

 

  115   Mon Feb 28 17:56:32 2011 AidanComputingHartmann sensorGot HWS code running and interface to EPICS

Here are the notes from today's efforts:

 

 

- When you 'Run_HWS' in MATLAB and the camera has not been initialized, it says the camera is not accessible. Either that or you need to run 'sudo matlab' (no, sudo doesn't help)

- In Ubuntu have to run '/opt/EDTpdv/initcam -f ~/dalsa_1m60.cfg' to start the camera

- Now have to install MCA

- MCA installed by is crashing MATLAB - not sure why. Maybe its a 'sudo' problem again?
- sudo matlab has the following problem:
mca
??? Invalid MEX-file
'/home/controls/base-3-14-11/extensions/lib/linux-x86_64/mca.mexa64':
libdbStaticHost.so.3.14: cannot open shared object file: No such file or
directory.
 
- adjusting Makefile for MCA to include the correct suffix for a Linux based MEX file ('mexa64', not 'mexglnx') gets the program to compile correctly and then MATLAB runs MCA fine.


- Running 'Run_HWS' with EPICS running but no channels crashes the program

- copy the HWS.db file to the EPICS db location

- cannot create the matlab images folder when the program runs.
- created these manually
- program is trying to adjust the maximum pixel count - it is failing and the camera is complaining (intensity is quite low right now)
- why exposure mode 6? - requires an external SYNC signal
- can't handle low exposure - FIX THIS!!
- why is the expsoure time increased in stepwise fashion? Use algorithm!
      - Commenting this out!!
    - same for the secondary beam
- After running State 1 it asks to continue to State 2 - if you select 'n' the program crashes

- steered beam properly onto HWS
-----------
- continue to State 2 - 'yes' crashes the program
- HS_report is doesn't work
- commented out lines 37 to 47

- get rid of constant requests to continue [run_acquire_auto.m]
- change names of EPICS variables [done]
- add an RMS variable
- the named EPICS variables need to be dynamically named rather than statically named.


--------
run_acquire_auto.m CHANGES
0. Update sensor date: mres = 'y'
1. pres = 'n'; - don't update reference centroids
2. sres = 'n'; - don't update secondary reference centroids
3. select probe beam commented out
4. select secondary beam commented out
5. State 2B - select probe live commented out
6. set user_response = 'y' for continue

A1 - added a loopcounter that starts at zero. the first loop includes user prompts and then they're bypassed in subsequent loops.

-----------

-Seidel aberration fitting seems wrong - not resembling the integrated field
- get rid of the constant pop ups
- have a network license EPICS variable
- how many images are used for reference image?
    - added a variable in run_acquire_auto.m :
        - no_of_cim_ref = 200; (no_of_cim = 5 images was previous)
    - changed the averaging in reference image acquisition from
        - "no_of_cim" to "no_of_cim_ref"
    - didn't change the take command from 5 to 200 images
- commented out lines 239-242 in run_initialize - gives a second way to start run_acquire.m
- probe and secondary beams share the probe background - deliberate?
- average all the images and save as a single matlab 16-bit array
- what is the rms noise as a function of the reference image number of averages?


------
Changing the EPICS variable names.
1. HS_WF - where Seidel coefficients are named.
    - in function seidel_from
2. changed the following lines in 'run_acquire_auto.m'
        %channelname = ['probe-seidel-',fn{counter}];
            channelname = ['C4:TCS-HWSX_PSC_', fn{counter}];

        %channelname = ['secondary-seidel-',fn{counter}];
            channelname = ['C4:TCS-HWSX_SSC_', fn{counter}];
3. ammended the following code in 'run_acquire_auto.m'

    maxEPICSLength = 14;
    for counter = 1:length(fn)
        %channelname = ['probe-seidel-',fn{counter}];
        strname = upper(fn{counter});
        if (numel(strname) > maxEPICSLength)
            strname = strname(1:maxEPICSLength);
        end     
        channelname = ['C4:TCS-HWSX_PSC_', strname];
        probe_seidel_array{counter} = HS_EPICS(channelname);
    end
-----
- bug: on restarting and pressing 'space' and enter at approximately the same times here, the program crashed:

Is it okay to assign one of the already existing handle (y or n)? y
Assigned handle 2 to the instance.
Established the connection to the channel secondary_shutter_open.

hsep_secondary =

  HS_EPICS handle

  Properties:
         channelname: 'secondary_shutter_open'
             handler: 2
    EPICS_is_running: 1

  Methods, Events, Superclasses

Please select the probe beam as the light source. Hit any key to continue.

??? Error using ==> textscan
First input can not be empty.

Error in ==> HS_Camera>HS_Camera.get_exposure_time at 942
        ccet = textscan(ccet,'%f %s');

-----------------

Added the following lines to HWS.db

record(ai, "C4:TCS-HWSX_PSC_PRISM")
record(ai, "C4:TCS-HWSX_PSC_ALPHA")
record(ai, "C4:TCS-HWSX_PSC_PHI")
record(ai, "C4:TCS-HWSX_PSC_CYLINDRICAL_PO")
record(ai, "C4:TCS-HWSX_PSC_SPHERICAL_POWE")
record(ai, "C4:TCS-HWSX_PSC_COMA")
record(ai, "C4:TCS-HWSX_PSC_BETA")
record(ai, "C4:TCS-HWSX_PSC_SPHERICAL_ABER")
record(ai, "C4:TCS-HWSX_SSC_PRISM")
record(ai, "C4:TCS-HWSX_SSC_ALPHA")
record(ai, "C4:TCS-HWSX_SSC_PHI")
record(ai, "C4:TCS-HWSX_SSC_CYLINDRICAL_PO")
record(ai, "C4:TCS-HWSX_SSC_SPHERICAL_POWE")
record(ai, "C4:TCS-HWSX_SSC_COMA")
record(ai, "C4:TCS-HWSX_SSC_BETA")
record(ai, "C4:TCS-HWSX_SSC_SPHERICAL_ABER")

- restarting IOC with C4:TCS-HWSX channels

-------------

-time to add these to the frames



 

  116   Tue Mar 1 10:47:18 2011 AidanMiscHartmann sensorElectron to Counts conversion efficiency

Using some of the old data from James (attached below), I calculated the CCD conversion efficiency (CE) from electrons to bits (Counts).

Number of electrons(Ne) = QE*Number of Photons(Np)

noiseE = sqrt(Ne);

Number of Counts (NCo)= CE*Ne

Noise in Counts (noiseCo)= CE*sqrt(Ne)

noiseCo = sqrt(CE * NCo)

log(CE) = 2*noiseCo - NCo

Therefore CE = 10.0^(2*noiseCo - NCo)

From James's data on the intensity noise in the CCD, CE = 0.0269

 

Quote:
 
Using this function, I did the same analysis of the upper-left 200x200 pixels over all 200 images:

(data from 200 images, over the upper-left 200x200 pixels)

 

  117   Tue Mar 1 11:19:34 2011 AidanThings to BuyDelivery NoteMFF001 flipper mirror has arrived

 The Thorlabs MFF001 flipper mirror recommended by Bram has arrived. The delivery note is attached.

Attachment 1: Flipper_mirror_delivery_notice.pdf
Flipper_mirror_delivery_notice.pdf
  118   Tue Mar 1 11:21:37 2011 AidanThings to BuyDelivery NoteMore Bosch framing parts - angle connectors

 Another box of Bosch framing parts arrived today. The delivery note is attached.

Attachment 1: Packing_List_04.pdf
Packing_List_04.pdf
  119   Tue Mar 1 17:05:45 2011 AidanElectronicsHartmann sensorDalsa 1M60 current draw

Steve and I measured the current drawn by the Dalsa 1M60 by connecting it to the BK Precision 1735 lab power supply that display current and voltage supplied. We tried the camera at a variety of different voltages. The results are presented below:

Voltage  Current(t<5s)  Current(5s<t<10s)   Current(t>10s)

12.7V       0.6A              0.8A              1.11A

15.0V       0.55A             0.69A             0.91A

18.0V       0.41A             0.57A             0.75A

20.0V       0.42A             0.52A             0.67A

Additionally, we tried running the other camera with the lab power supply. I varied the exposure mode and exposure time and checked the current drawn. The supplied voltage was 18.0V.

Exposure Mode 4: current = 0.67A

Exposure Mode 2: 58Hz, exposure time = 16 ms, current = 0.70A

Exposure Mode 2: 58Hz, exposure time = 100 us, current = 0.72A

Exposure Mode 2: 1Hz, exposure time = 998 ms, current = 0.68A

Exposure Mode 2: 1Hz, exposure time = 16 us, gm 0, current = 0.69A

Exposure Mode 2: 1Hz, exposure time = 16 us, gm 2, current = 0.69A

  121   Tue Mar 8 11:30:26 2011 AidanComputingHartmann sensorHartmann sensor code changes and NTP server

I've made the following changes to the Hartmann sensor code and to the machine running the HWS.

  • Machine name is now princess_sparkle (10.0.1.26)
  • I set up ntpd on that machine to sync the clock to GPS - roughly.
  • I added a MATLAB function (store_current_centroids.m) to the Hartmann sensor that saves the centroids and peak intensities to file in GPS labeled files
  • ~/Hartmann_Sensor_Data/centroids/<GPSTIME1>/<GPSTIME2>/<GPSTIME>_<name>.mat

GPSTIME1 = floor(GPSTIME/4E4)*4E4

GPSTIME2 = floor(GPSTIME/2E2)*2E2

I had to add a line in the run_acquire_auto.m script to accommodate this new function and I had to add a function that calculates the peak intensities to the HS_Centroids.m class.

  122   Tue Mar 8 18:28:14 2011 AidanComputingGeneralTO DO notes
  1. Write a Wiki page that describes how to add channels to the Athena Box
  2. Write a Wiki page that describes how to add a new computer to the network and mount all the network drives
  3. Add an EPICS channel that writes the disk usage to file (to keep track of the total accumulated disk space used by the centroid storage)
  123   Tue Mar 8 18:48:00 2011 AidanComputingHartmann sensorHWS code is running and recording centroids

The Hartmann sensor is running continuously and is now recording data to file. The formatting has changed slightly with the data now stored in structures called store_measurement every 200s in files in the following way:

  • store_measurement(ii).centroids - the ii-th centroids
  • store_measurement(ii).intensities - the ii-th intensity list
  • store_measurement(ii).time - the time of the ii-th measurement

The files are stored in ~/Hartmann_Sensor_Data/centroids/<GPSTIME rounded to nearest 4E4 seconds>/<GPSTIME rounded to nearest 2E2 seconds>_<subname>.mat

 

  124   Tue Mar 8 18:57:50 2011 AidanThings to BuyDelivery NoteFiber optics cable and Bosch Fastener
Attachment 1: deliveries_2011-03-08.pdf
deliveries_2011-03-08.pdf deliveries_2011-03-08.pdf
  126   Fri Mar 11 13:11:33 2011 AidanLab InfrastructureDelivery NoteMore Bosch connectors have arrived

 See attached delivery note ...

Attachment 1: Packing_List_05.pdf
Packing_List_05.pdf
  127   Wed Mar 16 15:05:47 2011 AidanLab InfrastructureDelivery NoteMore Bosch equipment has arrived

30mm T-junctions, grounding straps and T-slot covers have arrived

Quote:

 See attached delivery note ...

 

Attachment 1: Packing_List_06.pdf
Packing_List_06.pdf Packing_List_06.pdf Packing_List_06.pdf
  128   Mon Mar 28 13:00:50 2011 AidanLaserHartmann sensorTo do: Check the polarization from the SLED
  129   Wed Mar 30 12:55:54 2011 AidanLaserHartmann sensorPrism modulation experiment

I've set up a quick experiment to modulate the angle of the Hartmann sensor probe beam at 10mHz and to monitor the measured prism. The beam from the SLED is collimated by a lens and this is incident on a galvo mirror. The reflection travels around 19" and is incident on the HWS. When the galvo mirror is sent a 1.1Vpp sine wave, then beam moves around +/- 0.5" on the surface of the Hartmann sensor, giving around 50mrad per Vpp.

The galvo is currently being sent a 0.02Vpp sine wave at 10mHz.

  130   Thu Mar 31 11:27:02 2011 AidanLaserHartmann sensorPrism modulation experiment

I changed the drive amplitude on the function generator to 0.05Vpp and have measured the angle of deflection by bouncing a laser off the laser mirror and projecting it 5.23m onto the wall. The total displacement of the spot was ~3.3mm +/- 0.4mm, so the amplitude of the angular signal is 1.6mm/5.23m ~ 3.1E-4 radians. The Hartmann Sensor should measure a prism of corresponding magnitude.

The frequency is still 10mHz.

Quote:

I've set up a quick experiment to modulate the angle of the Hartmann sensor probe beam at 10mHz and to monitor the measured prism. The beam from the SLED is collimated by a lens and this is incident on a galvo mirror. The reflection travels around 19" and is incident on the HWS. When the galvo mirror is sent a 1.1Vpp sine wave, then beam moves around +/- 0.5" on the surface of the Hartmann sensor, giving around 50mrad per Vpp.

The galvo is currently being sent a 0.02Vpp sine wave at 10mHz.

 

  132   Fri Apr 1 09:51:45 2011 AidanComputingHartmann sensorPrism measurement

 I analyzed the results from the prism experiment. The time series and spectra of the prism are attached.

Conclusions to follow ...

Attachment 1: Hartmann_Sensor_prism_measurement_2011-03-31.pdf
Hartmann_Sensor_prism_measurement_2011-03-31.pdf
Attachment 2: Hartmann_Sensor_Prism_measurement_times_series_2011-03-31.pdf
Hartmann_Sensor_Prism_measurement_times_series_2011-03-31.pdf
  133   Mon Apr 4 13:13:23 2011 AidanThings to BuyDelivery NoteNewfocus 5102 mirrors and Firewire extension cable have arrived

 See attached delivery note ...

Attachment 1: receipt_mirrors.pdf
receipt_mirrors.pdf receipt_mirrors.pdf
  134   Tue Apr 12 22:30:59 2011 AidanComputingEPICSInstalled the thermistor on the Hartmann plate/created MEDM ADC Input screen

I restarted the Athena box and created an MEDM screen that shows the 8 differential input voltages next to their corresponding inputs on the breakout terminal strip. See the attached image. The MEDM screen is located at /home/controls/TCS_athena01_input_screen.adl on tcs_daq.

Channel 1 in the Athena is taking the output from the first channel in the temperature sensing box. That is connect to an RTD in the Hartmann sensor. The three other resistors in the Wheatstone bridge that the RTD is connected to have resistances of 1130 Ohms. There is 7V across the bridge and it has 100x gain afterwards (50x gain stage + 2x gain in single to differential output). The thermistor has temperature dependence K = 0.00385 Ohms/Ohm/degree K for 1000Ohms at 0 degrees.

R = 1000*EXP(K *delta T)

delta T = LOG(R/1000)/K

 I have configured some EPICS channels on the softIoc on the Athena box to display the voltage across the thermistor, calculate its resistance and then calculate the temperature in a linear and exponential fashion. These are stored in /target/TCS_westbridge.db on tcs_daq.

 The calibration of DEGREES_LOG is incorrect (or at least, the sign is). Fix this please.

grecord(calc,"C4:TCS-HWS_THERM_VOLTS")
{
        field(SCAN,".1 second")
        field(INPA,"C4:TCS-ATHENA_ADC0")
        field(INPB,"C4:TCS-ATHENA_ADC8")
        field(CALC,"(A-B)/3276.8")
}
grecord(calc,"C4:TCS-HWS_THERM_OHMS")
{
        field(SCAN,".1 second")
        field(INPA,"C4:TCS-HWS_THERM_VOLTS")
        field(CALC,"(-1130)*((A/700)-0.5)/((A/700)+0.5)")
}
grecord(calc,"C4:TCS-HWS_THERM_DEGREES_LIN")
{
        field(SCAN,".1 second")
        field(INPA,"C4:TCS-HWS_THERM_OHMS")
        field(CALC,"(A-1000)*3.85")
}
grecord(calc,"C4:TCS-HWS_THERM_DEGREES_LOG")
{
        field(SCAN,".1 second")
        field(INPA,"C4:TCS-HWS_THERM_OHMS")
        field(CALC,"(LOGE(A/1000))/0.00385")
}

Attachment 1: Screenshot-TCS_athena01_input_screen.adl.png
Screenshot-TCS_athena01_input_screen.adl.png
  135   Tue Apr 12 22:46:27 2011 AidanComputingEPICSAdded temperature sensor channels to the frame builder and restarted fb1

Added the following to the frame builder in /cvs/cds/caltech/chans/daq/C4HWS.ini and restarted daqd as per instructions in http://nodus.ligo.caltech.edu:8080/TCS_Lab/29

 

[C4:TCS-HWS_THERM_VOLTS]
[C4:TCS-HWS_THERM_OHMS]
[C4:TCS-HWS_THERM_DEGREES_LIN]
[C4:TCS-HWS_THERM_DEGREES_LOG]

  136   Sun Apr 17 14:59:36 2011 AidanThings to BuyDelivery NoteL-Com patch panel, Newport lenses, Thorlabs fibers delivery notes
Attachment 1: newport_lenses_2011-03.pdf
newport_lenses_2011-03.pdf
Attachment 2: L-Com_patch_panel_-_2011-03.pdf
L-Com_patch_panel_-_2011-03.pdf
Attachment 3: thorlabs_fiber_optic_cables_2011-03.pdf
thorlabs_fiber_optic_cables_2011-03.pdf thorlabs_fiber_optic_cables_2011-03.pdf
  137   Sun Apr 17 21:55:51 2011 AidanLaserHartmann sensorHartmann sensor prism/displacement test

I've set up an experiment to test the HWS intensity distribution displacement measurement code. Basically the beam from a SLED is just reflecting off a galvo mirror onto the HWS. The mirror is being fed a 0.02Vpp *10 gain, 10mHz sinewave from the function generator.

The experimental setup is shown below.

I hacked the HWS code to export the Gaussian X and Y centers to Seidel Alpha and Beta channels in EPICS (C4:TCS-HWSX_PSC_ALPHA, C4:TCS-HWSX_PSC_BETA)

Attachment 1: HWS_prims.jpg
HWS_prims.jpg
  138   Mon Apr 18 15:03:49 2011 AidanComputingDAQAthena DAC channels hooked up to BNC patch panel

 I added the four Athena DAC channels to the second BNC patch panel in the rack. At the moment there are only two EPICS channels in the database:

  • C4:TCS-ATHENA_DAC0
  • C4:TCS-ATHENA_DAC1

 

  139   Mon Apr 18 15:06:53 2011 AidanThings to BuyHartmann sensorOrdered 2" optics from Newport

 Given that the HWS requires several 2" optics to handle the big beam size, I've ordered the following items from Newport:

  • 2x 2" 50/50 beam splitter: 20B20BS.2
  • 6x 2" NIR mirrors: 5122
  • 8x 2" Ultima mirror mounts: U200-A2K
  140   Fri Apr 22 19:51:37 2011 AidanComputingEPICSpyepics installed on princess_sparkle

 I installed the pyepics package on princess_sparkle since this is much easier under Ubuntu than under CentOS.

  1. sudo apt-get install python-dateutil python-setuptools
  2. make sure that LD_LIBRARY_PATH points to EPICS libraries by echo $LD_LIBRARY_PATH
  3. sudo ldconfig
  4. sudo easy_install -U pyepics

Then I started the following python script ~/start_test_channels.py in the background on princess_sparkle. The EPICS channels are actually in an IOC on tcs_daq. They are all acquired by the frame builder at 16Hz.

 

 

 

 

Attachment 1: start_test_channels.py
#!/usr/bin/python
# a short script to output low frequency sine wave to EPICS channels

import epics
import math
import time
import os
import random

a = 0
... 70 more lines ...
  141   Sun Apr 24 18:31:18 2011 AidanComputingNetwork architectureAdded hosts and network drives on TCS machines

Under edit ...

I added the names of the network machines to the /etc/hosts file on princess_sparkle, tcs_daq and tcs_ws.

I also added the /cvs drive on fb1 to the /etc/fstab file on princess_sparkle so that can be accessed from those machines.

  143   Thu Apr 28 22:48:47 2011 AidanLab InfrastructureElectronicsBNC Cables from HWS table to rack

 I labelled and strung 8 of the 16 custom 40' BNC cables from L-Com between the HWS table and the BNC feed-through on the rack. Each cable is labelled HWS TABLE CHxx where 01<= xx <= 08. I'm going to leave the other 8 until we have room in the BNC feedthrough on the rack.

  145   Wed May 11 09:07:03 2011 AidanComputingHartmann sensorChanged ownership of /opt/EDTpdv

 I changed the ownership of /opt/EDTpdv to controls with the command:

controls@princess_sparkle:/opt/EDTpdv$ sudo chown controls EDTpdv/

 

ELOG V3.1.3-