40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  TCS elog  Not logged in ELOG logo
Entry  Tue Jun 22 22:30:24 2010, James K, Misc, Hartmann sensor, SURF Log -- Day 5, more Hartmann image preliminary analysis 13x
    Reply  Wed Jun 23 06:49:48 2010, Aidan, Misc, Hartmann sensor, SURF Log -- Day 5, more Hartmann image preliminary analysis 
Message ID: 56     Entry time: Wed Jun 23 06:49:48 2010     In reply to: 55
Author: Aidan 
Type: Misc 
Category: Hartmann sensor 
Subject: SURF Log -- Day 5, more Hartmann image preliminary analysis 

Nice work!

 

Quote:

 Today I spoke with Dr. Brooks and got a rough outline of what my experiment for the next few weeks will entail. I'll be getting more of the details and getting started a bit more, tomorrow, but today I had a more thorough look around the Hartmann lab and we set up a few things on the optical table. The OLED is now focused through a microscope to keep the beam from diverging quite as much before it hits the sensor, and the beam is roughly aligned to shine onto the Hartmann plate. The Hartmann images currently look like this (on a color scale of intensity):

hws.png

Where this image was taken with the camera set to exposure time 650 microseconds, frequency 58Hz. The visible 'streaks' on the image are believed to possibly be an artifact of the camera's data acquisition process.

I tested to see whether the same 'flickering' is present in images under this setup.

For frequency kept at 58Hz, the following statistics were found from a 200x200 pixel box within series of 10 images taken at different exposure times. Note that the range on the plot has been reduced to the region near the relevant feature, and that this range is not being changed from image to image:

750 microseconds:

750us.png

1000 microseconds:

1000us.png

1500 microseconds:

1500us.png

2000 microseconds:

2000us.png

3000 microseconds:

3000us.png

4000 microseconds:

4000us.png

5000 microseconds. Note that the background level is approaching the level of the feature:

5000us.png

6000 microseconds. Note that the axis setup is not restricted to the same region, and that the background level exceeds the level range of the feature. This demonstrates that the 'feature' disappears from the plot when the plot does not include the specific range of ~115-130:

8000us.png

 

When images containing the feature intensities are averaged over a greater number of images, the plot takes on the following appearance (for a 200x200 box within a series of 100 images, 3000us exposure time):

hws3k.png

This pattern changes a bit when averaged over more images. It looks as though this could, perhaps, just be the result of the decrease in the standard deviation of the standard deviations in each pixel resulting from the increased number of images being considered for each pixel (that is, the line being less 'spread out' in the y-axis direction). 

 

To demonstrate that frequency doesn't have any effect, I got the following plots from images where I set the camera to different frequencies then set the exposure time to 3000us (I wouldn't expect this to have any effect, given the previous images, but these appear to demonstrate that the 'feature' does not vary with time):

 

Set to 30Hz:

f30Hz.png

Set to 1Hz:

f1Hz.png

 

To make sure that something weird wasn't going on with my algorithm, I did the following: I constructed a 10-component vector of random numbers. Then, I concatenated that vector besides itself ten times. Then, I concatenated that vector into a 3D array by scaling the 2D vector with ten different integer multiples, ensuring that the standard deviations of each row would be integer multiples of each other when the standard deviation was found along the direction of the random change (I chose the integer multiples to ensure that some of these values would fall within the range of  115-130). Thus, if my function wasn't making any weird mistakes, I would end up with a linear plot of standard deviation vs. mean, with a slope of 1. When the array was inputted into the function with which the previous plots were found, the output plot was indeed observed to be linear, and a least squares regression of the mean/deviation data confirmed that the slope was exactly 1 and the intercept exactly 0. So I'm pretty certain that the feature observed in these plots is not any sort of 'artifact' of the algorithm used to analyze the data (and all the functions are pretty simple, so I wouldn't expect it to be, but it doesn't hurt to double-check).

 

I would conjecture from all of this that the observed feature in the plots is the result of some property of the CCD array or other element of the camera. It does not appear to have any dependence on exposure time or to scale with the relative overall intensity of the plots, and, rather, seems to depend on the actual digital number read out by the camera. This would suggest to me, at first glance, that the behavior is not the result of a physical process having to do with the wavefront.

 

EDIT: Some late-night conjecturing: Consider the following,

I don't know how the specific analog-to-digital conversion onboard the camera works, but I got to thinking about ADCs. I assume, perhaps incorrectly, that it works on roughly the same idea as the Flash ADCs that I dealt with back in my Digital Electronics class -- that is, I don't know if it has the same structure (a linear resistor ladder hooked up to comparators which compare the ladder voltages to the analog input, then uses some comb logic circuit which inputs the comparator outputs and outputs a digital level) but I assume that it must, at some level, be comparing the analog input to a number of different voltage thresholds, considering the highest 'threshold' that the analog input exceeds, then outputting the digital level corresponding to that particular threshold voltage.

Now, consider if there was a problem with such an ADC such that one of the threshold voltages was either unstable or otherwise different than the desired value (for a Flash ADC, perhaps this could result from a problem with the comparator connected to that threshold level, for example). Say, for example, that the threshold voltage corresponding to the 128th level was too low. In that case, an analog input voltage which should be placed into the 127th level could, perhaps, trip the comparator for the 128th level, and the digital output would read 128 even when the analog input should have corresponded to 127.

So if such an ADC was reading a voltage (with some noise) near that threshold, what would happen? Say that the analog voltage corresponded to 126 and had noise equivalent to one digital level. It should, then, give readings of 125, 126 or 127. However, if the voltage threshold for the 128th level was off, it would bounce between 125, 126, 127 and 128 -- that is, it would appear to have a larger standard deviation than the analog voltage actually possessed.

Similarly, consider an analog input voltage corresponding to 128 with noise equivalent to one digital level. It should read out 127, 128 and 129, but with the lower-than-desired threshold for 128 it would perhaps read out only 128 and 129 -- that is, the standard deviation of the digital signal would be lower for points just above 128.

This is very similar to the sort of behavior that we're seeing!

Thinking about this further, I reasoned that if this was what the ADC in the camera was doing, then if we looked in the image arrays for instances of the digital levels 127 and 128, we would see too few instances of 127 and too many instances of 128 -- several of the analog levels which should correspond to 127 would be 'misread' as 128. So I went back to MATLAB and wrote a function to look through a 1024x1024xN array of N images and, for every integer between an inputted minimum level and maximum level, find the number of instances of that level in the images. Inputting an array of 20 Hartmann sensor images, along with minimum and maximum levels of 50 and 200, gave the following:

levelinstances.png

Look at that huge spike at 128! This is more complex of behavior than my simple idea which would result in 127 having "too few" values and 128 having "too many", but to me, this seems consistent with the hypothesis that the voltage threshold for the 128th digital level is too low and is thus giving false output readings of 128, and is also reducing the number of correct outputs for values just below 128. And assuming that I'm thinking about the workings of the ADC correctly, this is consistent with an increase in the standard deviation in the digital level for values with a mean just below 128 and a lower standard deviation for values with a mean just above 128, which is what we observe.

 

This is my current hypothesis for why we're seeing that feature in the plots. Let me know what you think, and if that seems reasonable.

 

 

ELOG V3.1.3-