Considering equal areas covered by seismic arrays, the number of seismometers relates to the density of seismometers and therefore to the amount of aliasing when measuring spatial spectra. In the following, I considered four cases:
1) 10 seismometers randomly placed (as usual, one of them always at the origin)
2) 10 seismometers in a spiral winding one time around the origin
3) The same number winding two times around the origin (in which case the array does not really look like a spiral anymore):
4) And since isotropy issues start to get important, the forth case is a circular array with one of the 10 seismometers at the origin, the others evenly spaced on the circle.
Just as a reminder, there was not much of a difference in NN subtraction performance when comparing spiral v. random array in case of 20 seismometers. Now we can check if this is still the case for a smaller number of seismometers, and what the difference is between 10 seismometers and 20 seismometers. Initially we were flirting with the idea to use a single seismometer for NN subtraction, which does not work (for horiz NN from surface fields), but maybe we can do it with a few seismometers around the test mass instead of 20 covering a large area. Let's check.
Here are the four performance graphs for the four cases (in the order given above):
All in all, the subtraction still works very well. We only need to subtract say 90% of the NN, but we still see average subtractions of more than 99%. That's great, but I expect these numbers to drop quite a bit once we add spherical waves and wavelets to the field. Although all arrays perform pretty well, the twicewinding spiral seems to be the best choice. Intuitively this makes a lot of sense. NN drops with 1/r^3 as a function of distance r to the TM, and so you want to gather information more accurately from regions very close to the TM, which leads you to the idea to increase seismometer density close to the TM. I am not sure though if this explanation is the correct one.
