40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  ATF eLog, Page 55 of 56  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  2261   Wed Nov 14 16:49:47 2018 RahulUpdateCryo vacuum chamberassembly

The top (seen with several threaded holes along with 16 through holes) and bottom (only 2 threaded holes for lifting and 16 through holes) plate for the vacuum chamber has arrived and I have moved them into the QIL optical bench/table. Using some aluminum struts/bosch, I am making a simple 3’’ tall spacer on top of which the bottom plater will be resting. After wiping them with solvents, I will start assembling the chamber and the plates.

Attachment 1: Bottom_plate.jpg
Bottom_plate.jpg
Attachment 2: top_plate.jpg
top_plate.jpg
  2301   Fri Mar 8 17:05:52 2019 AnjaliUpdate Frequency stabilization of 2 micron source

 

The schematic of the homodyne configuration is shown below.

Following is the component list

Item Quantity Availability Part number Remarks
Laser diode 1 Yes EP 2004-0-DM-B06-FA  
Isolator 1 Yes    
Coupler(50/50) 5 Yes TW2000R5A2A Fiber type : SM2000
Delay fiber   Yes SM2000 Need to check the exact length of the fiber
Photodetector 4 Yes DET10D  
SR560 3 Yes    

 

Attachment 1: Homodyne_setup_2micron.png
Homodyne_setup_2micron.png
  2313   Tue Mar 26 17:13:53 2019 AnjaliUpdate2micronLasersFrequency stabilization of 2 micron source

Experimental plan 

  • The aim is to repeat the homodyne measurement setup with  balanced detection scheme for the frequency stabilisation of 2 micron laser source.
  • Attachment # 1 shows the schematic of the experimental setup.
  • All the components specified in the schematic are available.
  • For the balanced detection, we can initialy use SR560, but we need to design a new circuitry for the same.
Attachment 1: Homodyne_setup_for_2_micron.pdf
Homodyne_setup_for_2_micron.pdf
  2317   Thu Mar 28 18:16:59 2019 JonUpdateComputingCymac assembly started

This afternoon Chris and I installed the ADC and DAC cards in fb4.

  • We connected them to the timing card adapters (left external to the computer chassis for now).
  • We found fb4 to be running Debian 8 so first attempted to upgrade to 9, as that is the version supported by Jamie's cymac binaries.
  • However, we encountered problems during the upgrade, apparently with gdm (the linux GUI). 
  • By switching to consol mode and killing gdm, were able to proceed to the point of updating all the packages.
  • It completed successfully, but then the system failed to reboot, even in recovery mode.
  • During boot, the advligo-rts kernel fails to start, and then boot hangs completely at the point the graphical interface is started.

We may want to start with a fresh install of Debian 9 and just reinstall the LIGO binaries.

  2319   Mon Apr 1 11:03:24 2019 JonUpdateComputingCymac assembly started

I know there is some CTN slow channel data on the disk. Is it at all possible to boot so that can be recovered?

Quote:

This afternoon Chris and I installed the ADC and DAC cards in fb4. We connected them to the timing card adapters (left external to the computer chassis for now).

We found fb4 to be running Debian 8 so first attempted to upgrade to 9, as that is the version supported by Jamie's cymac binaries. However, we encountered problems during the upgrade, apparently with gdm (the linux GUI). By switching to consol mode and killing gdm, were able to proceed to the point of updating all the packages. It completed successfully, but then the system failed to reboot, even in recovery mode. During boot, the advligo-rts kernel fails to start, and then boot hangs completely at the point the graphical interface is started.

We may want to start with a fresh install of Debian 9 and just reinstall the LIGO binaries.

 

  2323   Wed Apr 10 12:17:34 2019 AnjaliUpdate2micronLasersIntensity noise stabilization of 2 micron source

[Aidan, Anjali]

  • Attachment #1 shows the cleaned up setup for  2 micron experiment
  • We also have received the AOM . The initial test is to do the intensity stabilisation of 2 micron laser diode using AOM
  • Today, we started with the laser and AOM characterisation
  • Attachment #2 shows the schematic of the experimental setup for the laser characterisation. Laser output is connected to a Faray isolator and the isolator output is measured using Thorlabs thermal power meter.
  • The current limit on the current controller is set to 95 mA (maximum allowed current to the laser diode is 120 mA) and thermistor is set to 10 kohm (maximum value of thermistor resistance is 10 kohm)
  • Attachment #3 shows the output power as a function of input current to the laser diode.
  • From the data sheet of the laser diode, the threshold current is 20 mA.For a given inut current,  the output power measured is less compared to the value given in the data sheet. This is beacuse of the insertion loss of the isolator in the path.
  • The slope efficieny is calculted to be 0.018 mW/mA. The value given in the data sheet is 0.3 mW/mA. The reduction is because of the insertion loss of the isolator
  • The output of isolator is then connected to the AOM. Attachement #4 shows the schematic of the setup. The zeroth order port of the AOM is connected to the power meter and the output power from the first order port is blocked.
  • We then applied a dc voltage to the modulation input port of the AOM driver. We expect a decrease in the power from the zeroth order port with increase in the input voltage to the  AOM driver as the light is getting deflcted and power is geting coupled to the first order port.
  • Attachmet #5 shows the variation in power from zeroth order port with input voltage to the AOM driver.As expected, the power levels are decreasing with increase in input voltage
  • It is also observed that the output power levels are fluctuating. This could be because of temperature fluctuation and the thermal power meter is sensitive to that. 
Attachment 1: 2_micron_setup.jpg
2_micron_setup.jpg
Attachment 2: Laser_chara_setup.png
Laser_chara_setup.png
Attachment 3: Laser_characteristics.pdf
Laser_characteristics.pdf
Attachment 4: AOM_chara_setup.png
AOM_chara_setup.png
Attachment 5: AOM_characteristics.pdf
AOM_characteristics.pdf
  2325   Wed Apr 10 18:58:48 2019 ranaUpdate2micronLasersIntensity noise stabilization of 2 micron source

OK...but how will the amplitude stabilization be done? How about a diagram showing the feedback loop and electronics?

  1. what is the feedback circuit?
  2. Can it drive the low impedance of an AOM driver?
  3. What is the photodiode?
  4. It has to be an AC coupled feedback (DC coupled is always terrible).
  5. What is the requirement on the intensity noise as a function of frequency?
Quote:

[Aidan, Anjali]

  • Attachment #1 shows the cleaned up setup for  2 micron experiment
  2328   Wed Apr 24 09:01:49 2019 AnjaliUpdate2micronLasersIntensity noise stabilization of 2 micron source

Attachment #1 shows the schematic of the experimental setup for amplitude stabilization using AOM. The proposed idea is as follows

  • The output power from the  Zeroth order port of the AOM depends on the RF power supplied to the AOM and the  RF power from the RF driver is dependent on the input voltage to the driver. 
  • When amplitude of the laser chnages to due to amplitude noise, the output from photodiode will also changes. The output of one of the photodiodes is connected through a gain element (G) to the RF driver of AOM. So, when PD output changes , the gain of the gain element should be adjusted such that the input voltage to the AOM driver changes and thus the RF power which affect the output power from the AOM. 
  • The gain element could be SR560 (I still have to understand more about it) and the photodiodes that we have are thorlabs DET10D detector which are DC coupled. We also need additional TIA stage after the PD. There were two of them built by the summer student. We tested both and one of them only works fine now.
Quote:

OK...but how will the amplitude stabilization be done? How about a diagram showing the feedback loop and electronics?

  1. what is the feedback circuit?
  2. Can it drive the low impedance of an AOM driver?
  3. What is the photodiode?
  4. It has to be an AC coupled feedback (DC coupled is always terrible).
  5. What is the requirement on the intensity noise as a function of frequency?
Quote:

[Aidan, Anjali]

  • Attachment #1 shows the cleaned up setup for  2 micron experiment

 

Attachment 1: Intensity_stabilisation.png
Intensity_stabilisation.png
  2338   Fri May 10 16:22:45 2019 AnjaliUpdate2micronLasersCharacterization of RF driver and AOM .

Following are the results from RF driver and AOM characterisation.

  • Attachment #1 shows the results from  characterisation of Brimrose RF driver . The RF power and frequency are measured on Agilent spectrum analyser. A 30 dB attenuator was also used in the path from RF driver to spectrum analyser. This attenuation value is taken care in RF power output calculation. The RF driver has two BNC connectors labelled as “Modulation” and “Frequency” , located on the front panel. Varying the modulation input (in the range 0 V to 1 V) changes the RF output power from the RF driver as shown in attachment #1 (a). The maximum RF output power is about 0.6 W and the input RF power to the AOM is limited to this value as exceeding the same might cause damage to the AOM. Varying the frequency input (in the range 0 V to 10 V) changed the RF frequency from the RF driver as shown in attachment #1 (b). The AOM centre frequency is at 80 MHz with a frequency shift range of 8 MHz.

  • Attachment #2 and #3 shows the output power from the zeroth order and first order port of the AOM when the frequency input voltage to the RF driver (thus the RF frequency from the driver) is varied. The output power from the first order port is maximum (output power from zeroth order is minimum) when the frequency is about 78.8 MHz.  As expected, the power in the zeroth order port is completely transferred to the first order port. This happens when the frequency input voltage to the RF driver is about 8.8 V.

  • Attachment #4 and #5 shows the output power from the zeroth order port of the AOM when the Modulation input voltage to the RF driver (thus the RF power from the driver) is varied. The output power from the first order port is maximum (output power from zeroth order is minimum) when the RF power to the AOM is maximum. This happens when the modulation input voltage to the RF driver is 1 V.

  • Attachment #5 shows the diffraction efficiency to the first order port (we use output power from first order port for the heterodyne measurement) as a function of frequency and RF power. The diffraction efficiency is calculated from the ratio of Power in first order port to the input power to the AOM.The power at the input end of AOM is 1.29 mW. So the percentage value calculated includes the insertion loss ( as per data sheet : 3-4 dB for the first order port ) as well . So the conclusion is , inorder to get maximum diffraction efficiency to the first order port of AOM, we should supply RF power of about 0.6 W at 78.8 MHz . If we are using the Brimrose driver, this can be set by giving modulation input voltage of 1 V and frequency input voltage of 8.8 V.

Attachment 1: RF_driver_characterisation.pdf
RF_driver_characterisation.pdf
Attachment 2: AOM_zero_order_output_Vs_Frequency.pdf
AOM_zero_order_output_Vs_Frequency.pdf
Attachment 3: AOM_first_order_output_Vs_frequency.pdf
AOM_first_order_output_Vs_frequency.pdf
Attachment 4: AOM_zeroorder_output_Vs_RF_power.pdf
AOM_zeroorder_output_Vs_RF_power.pdf
Attachment 5: AOM_first_order_output_Vs_RF_power.pdf
AOM_first_order_output_Vs_RF_power.pdf
Attachment 6: Diffraction_efficiency.pdf
Diffraction_efficiency.pdf
  2343   Wed May 15 20:08:01 2019 AnjaliUpdate2micronLasersPLL loop for frequency noise measurement
  • We are trying to setup the phase locked loop (PLL) for the frequency noise measurement of 2 micron laser. We started with a sample experiment in which we were trying to lock an arbitrary function generator (AFG) with the Marconi using PLL. Attachment #1 shows the schematic of the PLL setup. We are using a level 7 mixer (ZFM-3-S+). The RF port is connected to  AFG and LO port to Marconi. Output of mixer is passing through a low pass filter with cut off frequency at 1.9 MHz (SLP-1.9 +). The output of LPF is fed into input A of SR 560. SR560 is set with 1 MHz low pass. Initially, we set a gain value of 10 dB and actuation slope of 100 kHz/V in SR 560 and Marconi respectively. The 50 Ohm output  of SR 560 was connected to Marconi and the 600 Ohm output was connected to an oscilloscope to check the performance of PLL. The carrier frequency from AWG and Marconi were set close to each other (~ 11 MHz). We observed  a dc output at about 60 mV on the oscilloscope. This ensures that PLL is working.
  • We then attempted to measure the band width. To do that, the source output from SR785 was fed into input B of SR560. Part of the source output was fed into channel 1 of SR 785, through T connector, for the transfer function measurement. We also used a T connector at the input A port of SR 560 and one of the ports of this T connector was fed into channel B of SR785. I still must interpret most of the results that we got.

  • Attachment # 2: Closed loop transfer function (a) Magnitude (b) Phase, at different gain values  in SR 560 when the Marconi actuation slope is 10 kHz/V.

  • Attachment # 3: Closed loop transfer function at different actuation slope value in Marconi when the gain is 7 dB.  The increase in noise at lower frequency in phase plot (b) may indicate that the phase/frequency noise of the Marconi increases if the actuation slope value is increased. 

  • Attachment # 4: Closed loop transfer function at different actuation slope value set in Marconi when the gain is 10 dB. The transfer function measured for the case of gain = 10 dB and actuation slope = 100 kHz/V (that is the product of gain and actuation slope is larger) shows significantly different characteristics.

  • Using the SSUserFn option in SR785, we tried to get the open loop transfer function as well from SR 785. The functional form was \frac{x}{1-x}

  • Attachment # 5: Open loop transfer function at different gain values set in SR 560 when the Marconi actuation slope is 10 kHz/V. The unity gain band width are 0.9 kHz, 2.8 kHz and 5.8 kHz respectively when the gain values are 3 dB, 7 dB and 10 dB

  • Attachment # 6 : Closed loop transfer function at different actuation slope value set in Marconi when the gain is 7 dB. The unity gain band width are 3 kHz, 9 kHz and 30 kHz respectively when the actuation slope values are 10 kHz/V, 30 kHz/V, and 100 kHz/V.

  • We also tried to estimate the open loop transfer function from the closed loop transfer function using the equation G_{ol}=\frac{G_{cl}}{1-G_{cl}}

  • Attachment # 7 : Comparison of Open loop transfer function that is measured from SR 785 and that is estimated from the closed loop transfer function using the above expression. These two values are significantly different. Kindly correct me.

Attachment 1: PLL_setup.png
PLL_setup.png
Attachment 2: closed_loop_FM_dvn_10kHz_diff_gain.pdf
closed_loop_FM_dvn_10kHz_diff_gain.pdf
Attachment 3: closed_loop_gain_5_diff_FM_dvn.pdf
closed_loop_gain_5_diff_FM_dvn.pdf
Attachment 4: closed_loop_gain_10_diff_FM_dvn.pdf
closed_loop_gain_10_diff_FM_dvn.pdf
Attachment 5: open_loop_FM_dvn_10kHz_diff_gain.pdf
open_loop_FM_dvn_10kHz_diff_gain.pdf
Attachment 6: open_loop_gain_5_diff_FM_dvn.pdf
open_loop_gain_5_diff_FM_dvn.pdf
Attachment 7: Comparison_measured_estimated_open_loop.pdf
Comparison_measured_estimated_open_loop.pdf
  2344   Thu May 16 13:40:13 2019 anchalUpdate2micronLasersPLL loop for frequency noise measurement

I think you have made some coding error in your attachment 7 plot. Just pick a point in your plot and calculate by hand if your estimate is correct. Otherwise, we need to see your code to pinpoint the error. You can attach your code in a .zip file here.

  2346   Sat May 18 22:25:30 2019 AnjaliUpdate2micronLasersCharacterization of new detector

The new photo detector has arrived (https://www.newport.com/p/818-BB-51F) . We did the DC and AC characterization of the same.

  • Following table shows the results from DC characterisation            
  • Laser diode current (mA) Input power (mW) Output voltage(mV)
    50 0.5 7.2
    70 0.9 13.6
    90 1.3 19.7
  • In this case, the input power was measured after the isolator.The power to voltage conversion is linear. The voltage levels are very low because this is a non-amplified detector. Also, the detector is coupled to a FC/UPC patch cord and we have all FC/APC fiber connectors. So, there could be some coupling loss from FC/APC to FC/UPC. FC/APC to FC/UPC conversion patch cord is ordered. We can check the performance again after it is arrived.

  • We then assembled the Mach-Zehnder interferometer (MZI) for the 2-micron laser source. Attachment #1 shows the schematic of the same. We measured a power level of 0.37 mW when the AOM was not turned on (RF power to AOM off). When AOM is turned ON, the power level measured at the output of MZI is 0.5 mW. Power meter was then replaced with the new photodetector and the beat note was observed on spectrum analyser.

  • Attachment # 2 shows the RF beat note at 78.8 MHz on spectrum analyser. So, the band width of the detector is enough to work at this frequency range. The signal to noise ratio is about 37 dB. There are some small peaks appearing at around 77 MHz and 80 MHz, but they are about  29 dB below the main peak.
  • Attachment # 3 shows the noise floor. There are no other RF interferences at this frequency range.
Attachment 1: setup.png
setup.png
Attachment 2: beat_note.pdf
beat_note.pdf
Attachment 3: Noise_floor.pdf
Noise_floor.pdf
  2347   Sun May 19 22:08:09 2019 AnjaliUpdate2micronLasersPLL loop for frequency noise measurement
  • After the discussion with Prof.Rana, we realised the mistake in our analysis. It was also suggested to make the measurement at the output of SR560. Attachment #1 shows the schematic of the setup for the measurement of closed loop transfer function. The RF power from AFG is 0 dBm and that  from Marconi is 7 dBm.

  • The open loop transfer function is calculated from closed loop transfer function using the expression G_{ol}=\frac{G_{cl}+G_{560}}{G_{cl}} , where G_{560}} is the gain value set in SR560.

  • Attachment #2 : Closed loop and open loop transfer functions at different values of gain in SR 560 when the actuation slope in Marconi is 10 kHz/V. The unity gain frequencies are respectively 1kHz, 3 kHz and 5 kHz when the gain values are 3 dB, 7 dB and 10 dB.

  • Attachment #3 : Closed loop and open loop transfer function at different values of actuation slope in Marconi when the gain in SR 560 is 10 dB.The unity gain frequencies are respectively 5kHz, 16 kHz and 43 kHz when the actuation slope values are 10 kHz/V, 30 kHz/V and 100 kHz/V. It can be seen that the characteristics are significantly different for a larger value for the product of gain and actuation slope (G=10, S=100 kHz/V).

  • The probing signal from SR 785 was then disconnected. In this case, the oscilloscope measure the error signal in time domain and the measurement from SR 785 essentially gives the frequency noise of AFG. The measurement from SR 785 has the unit of V/rt Hz, which is then multiplied with actuation slope to get the frequency noise in Hz/rt Hz. During our measurements, the oscilloscope signal was showing a low level ( mV) DC line , confirming that the PLL is  locked.

  • Attachment # 4 : Frequency noise of AFG at different gain value in SR 560 when the actuation slope in Marconi is 30 kHz/V. In the full span mode, the line width (resolution) is 128 Hz where as the line width is 2 Hz in short span mode. The peak at 60 Hz visible in short span plot corresponds to AC mains. 

  • Attachment # 5 : Frequency noise of AFG at different  actuation slope in Marconi when the gain in SR 560 is 10 dB.  I was thinking, we should measure the same frequency noise irrespective of the setting in the PLL. It can be seen from attachment # 5 that the frequency noise measurement is affected by the value of actuation slope in Marconi. It was earlier observed that the phase noise of Marconi increases with increase in the actuation slope and , from these measurment shown in attachment #5, we are seeing increase in frequency noise value at larger values of actuation slope in Marconi.

Quote:

 

  • We also tried to estimate the open loop transfer function from the closed loop transfer function using the equation G_{ol}=\frac{G_{cl}}{1-G_{cl}}

  • Attachment # 7 : Comparison of Open loop transfer function that is measured from SR 785 and that is estimated from the closed loop transfer function using the above expression. These two values are significantly different. Kindly correct me.

 

Attachment 1: setup_close_loop_transfer_function.png
setup_close_loop_transfer_function.png
Attachment 2: Actuation_slope_10kHzV_diff_gain.pdf
Actuation_slope_10kHzV_diff_gain.pdf
Attachment 3: gain_10_different_actuation_slope.pdf
gain_10_different_actuation_slope.pdf
Attachment 4: FM_noise_AFG_Actuation_30kHzV_diff_gain.pdf
FM_noise_AFG_Actuation_30kHzV_diff_gain.pdf
Attachment 5: FM_noise_AFG_gain_10_different_actuation_slope.pdf
FM_noise_AFG_gain_10_different_actuation_slope.pdf
  2348   Mon May 20 02:23:14 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source using PLL
  • Attachment # 1 shows the schematic of the experimental setup for the frequency noise measurement of 2-micron laser source using PLL. Instead of Brimrose driver, another Marconi is used to provide the RF power to the AOM. We know from the characterisation of AOM that we need to give RF power of 28 dBm at 78.8 MHz to achieve maximum diffraction efficiency to the first order port of AOM. The maximum output power from Marconi is 13 dBm. Hence, we used another RF amplifier (ZHL-3-A+) to amplify the RF power from Marconi. We initially tested the RF output from RF amplifier on spectrum analyser (RF power fed into spectrum analyser with proper attenuation in the path) and adjusted the RF frequency and power in Marconi such that we get 28 dBm output power from the RF amplifier at 78.8 MHz. The two marconis are set such that they are share the same time standard.

  • Now, the output power from the photodetector in MZI (Laser diode operated at input current of 90 mA) is fed into the RF input port of the mixer, instead of AFG. The 600 Ohm output of SR 560 is observed on oscilloscope and SR 785 simultaneously.

  • We observed dc line in the oscilloscope when the gain in SR 560 is set to 13 dB (20 times). Gain value below this ( 10 dB) or above this (17 dB) was showing oscillations in the oscilloscope with frequency varying with the actuation slope in Marconi. Attachment #2 shows the frequency noise measurement from SR 785 (V/rt Hz value from SR 785 multiplied with the actuation slope).  

  • It is observed that, the time domain trace on the oscilloscope was not very stable. In between, we could see the oscillation was popping up. Also, the trace on SR 785 was swinging a lot (attached the video). As we observed in the case of AFG, the FM noise measured increses with the value of actuation slope in Marconi. 

  • In this case, the RF power that is fed into the RF port of the mixer is very small (~ -40 dBm) compared to our previous experiment with AFG. So, I would like to repeat the sample experiment (locking AFG to Marconi) with AFG set to RF power comparable with that from the actual experiment.I should then find out the unity gain frequency of that particular combination of gain and actuation slope,which would help us to find the frequency range upto which the PLL measurment is valid.

  •  I also need to measure the actual delay line length. I will also clean up the fiber connectors again and we can also use the FC/UPC to FC/APC patch cord for the detector after it is arrived. I still must understand the results better.Since we are using Non-PM fibers, the polarisation fluctuation might have also affected the measurement .Kindly give me further suggestions.

Attachment 1: FM_noise_measurement_setup.png
FM_noise_measurement_setup.png
Attachment 2: 2_micron_FM_noise.pdf
2_micron_FM_noise.pdf
Attachment 3: Oscilloscope.mp4
Attachment 4: SR_785.mp4
  2350   Thu May 23 02:53:19 2019 AnjaliUpdate2micronLasersCharacterization of new detector

FC/UPC to FC/APC patch cord has arrived. I repeated the DC characterisation of the photodetector with this patchcord. The couping is improving by about 2 dB (Table below shws the result)

Laser diode current (mA) Input power (mW) Output voltage (mv)
50 0.5 11
70 0.9 20.7
90 1.3 30.3
Quote:

In this case, the input power was measured after the isolator.The power to voltage conversion is linear. The voltage levels are very low because this is a non-amplified detector. Also, the detector is coupled to a FC/UPC patch cord and we have all FC/APC fiber connectors. So, there could be some coupling loss from FC/APC to FC/UPC. FC/APC to FC/UPC conversion patch cord is ordered. We can check the performance again after it is arrived.

  2351   Thu May 23 03:00:24 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source using PLL
  • The delay line length is measured to be 15.7 m. 
  • As suggested by Prof.Rana, I used a DC block after the photodetector and the output of it was then fed into a RF amplifier (ZHL-3 A+). Attachment #1 shows the output of the detector (a) MZI output- we see the beat note at 78.8 MHz and SNR is about 37 dB (b) when light is bloked- we see  radiation from RF amplifier with a small amplitude of about -63 dBm at 78.8 MHz  (c) when RF is turned off. 
  • It can be seen that, after the RF amplifier, the noise level is also increased with the signal.
  • The RF level that is now fed into the mixer is about -23 dBm. But the PLL was not getting locked-oscilloscope trace is oscillating. A video is attached, which is captured when the there were no gain in SR 560 (G=1) and actuation slope was 10 kHz/V. Attachment 2 and 3 shows the corresponsing traces from SR 785 in full span mode and short spn mode respectively. It is observed that , the oscillation strength was increasing as I increased the gain value in SR 560. I doubt, this is happening because of the higher noise level at the RF port of the mixer in this case. The trace on SR 785 was more stable and it was not swinging as much as we observed before. 
Attachment 1: Detector_output.pdf
Detector_output.pdf
Attachment 2: FM_noise_full_span.pdf
FM_noise_full_span.pdf
Attachment 3: FM_noise_short_span.pdf
FM_noise_short_span.pdf
Attachment 4: oscilloscope.mp4
  2353   Sun May 26 01:12:33 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source using PLL
  • I added one more amplifier stage (ZFL-500 LN) after the detector. Since noise figure of ZFL-500LN (2.9 dB) is lower than that of ZHL-3A (5 dB), ZFL-500LN is the first amplifier stage after the photo detector and it is followed by ZHL-3A.

  • Attachment # 1 shows the beat note spectrum measured from the spectrum analyser. There was a 30 dB attenuator in the path during the measurement. So, the output RF power from the MZI (with two stages of amplification) is now about 3 dBm and the SNR of 37 dB is preserved even after two stages of amplification.

  • So, now the RF power to the RF port of the mixer is 3 dBm. I have attached the video of signal from the PLL loop at different gain (G=1, G=2,G=5) values in SR 560. The time domain trace seems to very noise. I suspect this is because of the inherent large noise in 2-micron laser diode with a broad line width of 2 MHz.

  • I then attempted to do the closed loop transfer function in the present PLL configuration by injecting the signal from SR 785. Attachment 2 shows the closed and open loop transfer functions at different gain values in SR 560 when the actuation slope is 10 kHz/V. Attachment 3 shows the closed and open loop transfer functions at different values of actuation slope when the gain is 5. The magnitude and phase traces are not very smooth as we observed when we did the similar measurement with an arbitrary function generator (AFG) as the RF source. In this case, when MZI output is fed in as the RF source, the RF power is fluctuating.

  • I also tried to do the frequency noise measurement. Attchement # 4 is the FM noise at different gain values when the actuation slope is 10 kHz/V. Attachement 5 is the FM noise at different actuation slope values when the gain is 5. This time, depending on the gain value and the actuation slope value, a short frequency span was considered in SR 785 for the frequency noise measurement. The frequency span is considered based on the value of unity gain frequencies  that are approximated from the open loop transfer functions measured from attachment # 2 and #3

Attachment 1: beat_note.pdf
beat_note.pdf
Attachment 2: Transfer_function_S_10kHzV_different_gain.pdf
Transfer_function_S_10kHzV_different_gain.pdf
Attachment 3: transfer_function_G_5_different_actuation.pdf
transfer_function_G_5_different_actuation.pdf
Attachment 4: FM_noise_diff_gain.pdf
FM_noise_diff_gain.pdf
Attachment 5: FM_noise_G_5_different_actuation_slope.pdf
FM_noise_G_5_different_actuation_slope.pdf
Attachment 6: Gain_1.mp4
Attachment 7: Gain_2.mp4
Attachment 8: Gain_5.mp4
  2355   Wed May 29 08:16:47 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source using PLL

Attachment #1 shows the oscilloscope traces at different gain values when the actuation slope is 100 kHz/V. It also shows the base line when there is no input to the oscilloscope. Even in the absence of any signal to the oscilloscope, there is an offset with mean value, RMS value and peak to peak value respectively of 35 mV, 42 mV and 200 mV.

Table below summarises the mean value, RMS value and peak to peak value for different combinations of actuation slope and gain.

Actuation slope (kHz/V) Gain Mean value (mV) RMS value (mV) Peak-peak (V)
10  1 -22.5 44 0.3
10 2 -33 74  
10 5 -70 205 1.52
30 1 2.7 33 0.26
30 2 -3.8 71 0.52
30 5 -85 189 1.08
100 1 42 67 0.42
100 2 -32 88 0.6
100 5 -65 207 1.36

The RMS value and the peak to peak value is increasing with increase in gain and the mean value is not showing any trend. I was pressing the Run/stop button before saving the data. I press the same to make the trace alive after saving the data as well. But the mean value read out from the oscilloscope shows different /random values in either case. If I don’t save the data, but only increases the gain, the mean value readout from oscilloscope shows almost the same.

I saw the beat note on the oscilloscope and I was trying to find the change in frequency. The frequency readout from oscilloscope was showing very large fluctuation (60-100 MHz). I feel its not a reliable measurement, but I don’t know whether we have an option to measure the frequency jitter in this oscilloscope (TDS 3032).

Attachment 1: oscilloscope_trace_s_100kHz.zip
  2357   Thu May 30 07:43:21 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source using PLL
  • The new 2 micron detector has a 50 ohm termination resistance, which is the transimpedance resistor, and hence the gain is very low 50 Ohms.
  • We observed the output of photodetector (beat note from MZI) on oscilloscope. Initially, we observed a large DC value (20 mV) and a small AC value (peak-peak=5 mV). 20 mV of DC with 50-ohm termination corresponds to a photo current of 0.4 mA.  This corresponds to optical power of 0.42 mW (responsivity = 0.95 A/W). (I'm not sure if its really as good as 0.95 A/W at 2 microns)
  • This ratio of  small AC value to large DC value says that the contrast is poor (25 %). We were then trying to improve the contrast. The RF power and RF frequency to the AOM was already set to have the maximum contrast. Prof. Rana then removed the fiber connection from laser to isolator and redid the connection. Surprisingly, the contrast became very good. We measured a AC peak-peak of 23 mV, which indicates almost 100% contrast.smiley
  • We then added a DC block and an amplifier stage (ZFL-500 LN) after the photodetector. Looking at the RMS value of the sinusoidal signal on oscilloscope, we realised that the RMS value is increasing as the thermistor resistance value set on the temperature controllerfor the laser diode increases. From the oscilloscope readout, we measured RMS value of 80 mV, 89 mV and 105 mV respectively when the thermistor resistance values are 10 kΩ, 11 kΩ and 13 kΩ. But as per the data sheet of the laser, the typical value of thermistor resistance is 10 k kΩ and the maximum value is 10.5 kΩ. Also, as per the data sheet, the thermistor temperature coefficient is -4.4 %/oC. I suppose, from the negative value, the temperature of the laser diode is reducing as the thermistor resistance value increases. Kindly correct me. This laser diode also has a current tuning coefficient of 0.01 nm/mA and temperature tuning coefficient of 0. 1 nm/ oC.
  • Attached the videos of oscilloscope signal when the thermistor resistance is 10 kΩ. From the oscilloscope trace, there is no significant amplitude fluctuation, but the frequency seems to be fluctuating a lot.
  • I have attached another video when the beat note observed on spectrum analyser (this video was captured when we had a dc block and two amplifier stage after the photo detector), but the characteristics are the same, except the power evel is different now. The peak is fluctuating a lot (sometime, the peak is even disappearing). We observed these fluctuations even with a resolution band width of 1 MHz. This indicates that the frequency of the laser diode is fluctuating by a large factor which is even greater than the maximum actuation Marconi can provide. Hence, we will not be able to lock the PLL with this laser having large frequency fluctuationfrown. We need to find another method to measure the frequency noise of the laser. One option is to perform RF herterodyne, but we don’t have a deep memory oscilloscope or ADC with large sampling rate to capture the data. Kindly give further suggestions to perform the frequency noise measurement.

RXA: we have a few options for measuring large frequency fluctuations:

  1. make an electronic delay line frequency discriminator. This is what is used at the 40m lab to track the ALS beat note. This requires the use of a medium power RF amp (ZHL-3A or similar), a splitter, 1 short cable, 1 long cable, and a mixer/LP. Two of these setups to get I & Q.
  2. a VCO with a much larger range than the Marconi - maybe 10 MHz p-p would be enough
  3. Use the heterodyne setup that Anjali mentions: a 90 deg hybrid splitter to get I & Q and then record the two mixer outputs with the Moku
Attachment 1: Oscilloscope.mp4
Attachment 2: Spectrum_analyser.mp4
  2358   Sat Jun 1 09:46:00 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source

[Anchal, Anjali]

We tried the Lock in amplifier in Moku lab for the frequency noise measurement. In this case, the output of the photo detector , after dc block and one stage of amplification, is fed into  input 1 of Moku. It gives out the inphase and quadrature component. We have saved the data. I will process the data offline and update later.

  2359   Wed Jun 5 14:16:07 2019 KojiUpdate2micronLasers2um laser / cryo stat: setup inspection and action item updates

[Aidan, Chris, Koji]

We went down to the lab to check the situation of the setups for 2um laser measurement and stabilization and the new cryostat.

[2um laser frequency noise measurement]

  • Looked at the add-on transimpedance amps: Something was wrong with them. The power bypass caps are attached to the "hot" supply lines in parallel (both sides of the caps are soldered to a same line). And some power supply lines have no voltage. This circuit is not necessary to be bipolar. To be fixed (KA)
  • We temporarily connected one of the thorlabs 2um InGaAs biased detectors to an SR560. It showed reasonable output: DC/AC response OK & no nonsense.
  • The AOM was bypassed and the homodyne fringe was checked.
    The fringe visibility was low (~10%) and was dependent on the stress applied to the delayline fiber.
    Suspected polarization rotation somewhere -> ToDo: Check the polarization states of the output beams.
  • ToDo: Check should be done with each component. how much are the output power, output polarization, dependence/fluctuation of the polarization, etc. 
    We might be able to use the 2um Faraday Isolators (as PBSs) for the measuement.
  • Checked the fringing of the fiber delayline Mach Zehnder. We observed one fringe per sec level fluctuation.
  • Laser current actuation was checked and it turned out that it is so strong and sufficient to lock the delayline fringe.

[2um AOM]

  • The fiber coupled AOM gave us a reasonable amount of DC/AC actuation of the laser intensity.
  • The power of the 1st order output has the dependence on the "freq input" of the driver. This is probably because of the matching between the fiber coupling and the deflection angle, which is freq dependent.
  • When the freq input is 8.8V_DC, the 1st order output has the maximum efficiency. The efficiency was 96%@990mV_DC input to the modulation in.
  • The AOM actuation bandwidth was tested to be ~MHz, at least.
  • We are not supposed to give more than 1V to the modulation in while we want to apply 8.8V to the freq input. Incorrect plugging may cause the damage of the modulation input port. The setup needs to be improved with a protection circuits / AOM driver circuit.
  • Our understanding is that the modulation input has a 50Ohm input impedance while the freq input has high-Z
  • The next step towards the intensity stabilization is low noise photodetector circuits and proper interface to the AOM driver.
  • Also we want to set up TECs and other circuits for the LaserComponents PDs.

[Cryostat]

  • Cleaning: there are many components are scattered on the table.
  • Plan:
    • Move the Zack rack to the next of the optical table (or somewhere)
    • Move the yellow chemical cabinet to the place where the rack was. We can pile up some plastic boxes on it.
    • Remove the delicate optics from the steel table.
    • Place heavy cryostat components on the steel table.
    • Connect the cryo cooler to the cryostat. How do we do that? Fisrt rigidly attach for testing and then move to soft attaching?
    • Replace the optical windows to the 2um ones (2"). The current ones are for 1.5um.
    • We need a 2" 50/50 BS at 2um. Lenses and steering mirrors are in hand.
  2360   Fri Jun 7 16:32:59 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source

Attachment # 1 show the schematic of the lock in amplifier configuration used in Moku lab. We saved the in phase and quadrature components.

In phase =cos\left ( \right \omega_o\tau+\Delta\phi(t))

quadrature =Sin\left ( \right \omega_o\tau+\Delta\phi(t))

where \omega_0  corresponds to 2 -micron , \tau is the delay time in the delay fiber  and \Delta\phi(t)=\phi(t) - \phi(t-\tau).

 \phi(t) is the phase noise of the laser. 

From the inphase and quadrature component \Delta \phi(t)value is extracted. So, we are actually extrating the combined effect of phase noise of laser as well the phase noise due to fiber length fluctuations due to environmental fluctuations. ASD of this is converted to frequency noise in Hz/rt Hz. Attachment # 2 shows the frequency noise estimated from two sets of measurements. This curve exhibit a 1/f characteristics from about 240 Hz upto 30 kHz

Quote:

[Anchal, Anjali]

We tried the Lock in amplifier in Moku lab for the frequency noise measurement. In this case, the output of the photo detector , after dc block and one stage of amplification, is fed into  input 1 of Moku. It gives out the inphase and quadrature component. We have saved the data. I will process the data offline and update later.

 

Attachment 1: Lock_in_amplifier_moku_lab.jpg
Lock_in_amplifier_moku_lab.jpg
Attachment 2: FM_noise.pdf
FM_noise.pdf
  2362   Thu Jun 13 22:53:25 2019 AnjaliUpdate2micronLasersFrequency noise measurement of 2 micron source

There was a correction in the script I used to estimate the frequency noise from the inphase and quadrature component. Attachment #1 shows the frequency noise estimated after the correction. 

I have also attached the Matlab script ( I am not able to attach the zip file with data files). I remember, while saving the data, we gave the time duration as 70 s. But while processing the data only I realised that the  time domain data is captured only upto 2 s. Even in this case, I would expect the frequency axis to start from 0.5 Hz, but I don't see that in the FM noise plot. Kinldy let me know whther I am doing anything wrong in data proocessing. 

Quote:

Attachment # 1 show the schematic of the lock in amplifier configuration used in Moku lab. We saved the in phase and quadrature components.

In phase =cos\left ( \right \omega_o\tau+\Delta\phi(t))

quadrature =Sin\left ( \right \omega_o\tau+\Delta\phi(t))

where \omega_0  corresponds to 2 -micron , \tau is the delay time in the delay fiber  and \Delta\phi(t)=\phi(t) - \phi(t-\tau).

 \phi(t) is the phase noise of the laser. 

From the inphase and quadrature component \Delta \phi(t)value is extracted. So, we are actually extrating the combined effect of phase noise of laser as well the phase noise due to fiber length fluctuations due to environmental fluctuations. ASD of this is converted to frequency noise in Hz/rt Hz. Attachment # 2 shows the frequency noise estimated from two sets of measurements. This curve exhibit a 1/f characteristics from about 240 Hz upto 30 kHz

Quote:

[Anchal, Anjali]

We tried the Lock in amplifier in Moku lab for the frequency noise measurement. In this case, the output of the photo detector , after dc block and one stage of amplification, is fed into  input 1 of Moku. It gives out the inphase and quadrature component. We have saved the data. I will process the data offline and update later.

 

 

Attachment 1: FM_noise_new_.pdf
FM_noise_new_.pdf
Attachment 2: Mokulab.m
close all
clear all
clc
lam=2e-6;%wavelength
c=3e8;%velocity of light 
n=1.5;%refractive index of fiber
len=15;%length of delay fiber
omeg=2*pi*(c/lam);%optical frequency corresponds to 2-micron
tau=(len*n)/c;%time delay due to delay fier
Fs=500e3;%acquisition rate
... 27 more lines ...
  2424   Mon Sep 23 23:48:12 2019 KojiUpdate2micronLasers2um sensor cards / focusing optics

Fiber Collimator (Thorlabs F028APC-2000+AD11F+LMR1) and MIR sensor cards (Thorlabs VRC6S Qty2) were delivered.

The sensor card is liquid crystal and seems temperature sensitive. It's slow and diffused. But at least we can now see 2um beams in a certain condition.

The fiber collimator seems working fine, but this gave me another issue. Now because the beam is small (w<500um) everywhere, I can't focus it very well. To make a focused beam, one needs a large beam, of course. Previously, the beam was not well focused. Therefore the final focused beam with f=150mm was sufficiently small like w=50um.

It looks like some kind of  telescope is necessary.

Attachment 1: IMG_8936.jpg
IMG_8936.jpg
  2440   Tue Nov 5 20:06:36 2019 RaymondUpdateCryo vacuum chamberCooler to tank connection

Attached is a drawing of the first phase (minimal vibration isolation) cryocooler attachment, where the main tank connects via the blue rimmed feedthrough. Boxed/circled components are those that will require custom fabrication:

  1. Copper adaptor from heat station to thermal strap
  2. 5.25" outer diameter 2-153 o-ring connection to conflat adapter (DN75 (4-5/8" outer diameter, 3" tube OD) pictured, but am comparing this with the DN100 (6" OD, 4" tube diameter))
  3. Conflat to ASA o-ring adapter
  4. a + b: Copper adapter from the flat strap connector to the round copper vacuum feedthrough (closeup shown in second figure)

Currently there are only two connections that require viton o-ring rather than conflat connections (cooler to piece 1, piece 3 to HV feedthrough). 

Attachment 1: CoolerCartoon.pdf
CoolerCartoon.pdf
Attachment 2: Screen_Shot_2019-11-05_at_20.25.54.png
Screen_Shot_2019-11-05_at_20.25.54.png
  2459   Mon Nov 25 15:03:34 2019 KojiUpdatePD QEIn solder and PD mounts are in

The PD mounts were delivered from ProtoLabs. The order was sent on Tue last week and it's here on Monday. Excellent!
And the quality looks pretty good.

The surfaces are sandblasted. Do we want to do any process on the bottom surface to reduce the thermal resistance?

An indium solder string also came in.

Attachment 1: PB259778.JPG
PB259778.JPG
Attachment 2: PB259780.JPG
PB259780.JPG
Attachment 3: PB259781.JPG
PB259781.JPG
  2462   Tue Nov 26 18:49:11 2019 KojiUpdatePD QESocket soldering test piece made

Normal solder (Sn63 Pb37): with flux, wetting o

Pure Indium - In 99.995: no flux, wetting x, low melting temp, like paste

Pb93.5 Sn5 Ag1.5: with flux, wetting o, high melting temp (soldering iron setting 380~430F)

Cryo solder In97 Ag3: no flux, wetting x, low melting temp, like paste

Attachment 1: IMG_9118.jpeg
IMG_9118.jpeg
Attachment 2: IMG_9120.jpeg
IMG_9120.jpeg
Attachment 3: IMG_9121.jpeg
IMG_9121.jpeg
Attachment 4: IMG_9123.jpeg
IMG_9123.jpeg
Attachment 5: IMG_9125.jpeg
IMG_9125.jpeg
Attachment 6: socket.pdf
socket.pdf
  2465   Tue Dec 3 13:52:04 2019 KojiUpdatePD QESocket soldering test piece made

[Raymond and Koji]

We dunked the PD socket test piece into LN2 and repeated heat cycle 8 times. No obvious change was observed. Then the wires were pulled to find any broken joint or etc.
None of the solder joints showed the sign of failure.

For cleanliness, we are going to use In-Ag solder (no flux) for the actual wiring.

Attachment 1: Frozen connector

Attachment 2-4: Inspection after thawing.

Attachment 1: PC029784.jpeg
PC029784.jpeg
Attachment 2: PC029788.jpeg
PC029788.jpeg
Attachment 3: PC029786.jpeg
PC029786.jpeg
Attachment 4: PC029787.jpeg
PC029787.jpeg
  2482   Fri Dec 20 21:58:14 2019 KojiUpdatePD QEPD TEC driver / A2P6 aligned / Lens moved

== Currently, A2P6 is aligned ==


1) I've brought another TEC driver fro the PD temp control. This unit was borrowed from the 2um ECDL setup. Eventually, we need to return this to ECDL. (Attachment 1)
The PID loop of the TEC control works. But it is not well optimized yet. If you change the target temp too quickly, the TEC out seemed oscillating. Watch the TEC out carefully and change the temp setpoint slowly.
So far I have tried to cool the thermister up to 30kOhm (~232K) and I_TEC was 0.33A.
I did not try further. I felt it was better to cool the PD base for further trial.

2) A part of the alignment study, the beam is aligned to A2P6. Also, the lens position was investigated, and I decided to move the lens ~1 inch away from the window.  (Attachment 2)
    In fact, this allowed us to insert the power meter between the lens and the window. 

Attachment 1: P_20191220_192440_vHDR_On.jpg
P_20191220_192440_vHDR_On.jpg
Attachment 2: P_20191220_180929_vHDR_On.jpg
P_20191220_180929_vHDR_On.jpg
  2483   Fri Dec 20 22:26:19 2019 KojiUpdatePD QEPD TEC driver / A2P6 aligned / Lens moved

The QEs were measured at 293K, 239K, 232K, and 293K again. The cooling was provided by the PD TEC.  At each temperature, the incident power was changed from 30uW to 1mW to see the dependence of the QE on the incident power to check the possible saturation.

The QE was 79~81% (the window T=96.6% was already compensated). I'm not 100% sure this 1% variation in the plateau is real or due to insufficient calibration of the REF PD.
The REF PD was calibrated at 1mW at 100mA injection current to the laser.

No obvious saturation was observed.

We can cool the PD with LN2 and we should make a careful alignment of the beam at each temperature.

Attachment 1: Sb3513_A2P6_DarkCurrent_293K.pdf
Sb3513_A2P6_DarkCurrent_293K.pdf
Attachment 2: Sb3513_A2P6_DarkCurrent_239K.pdf
Sb3513_A2P6_DarkCurrent_239K.pdf
Attachment 3: Sb3513_A2P6_DarkCurrent_232K.pdf
Sb3513_A2P6_DarkCurrent_232K.pdf
Attachment 4: Sb3513_A2P6_DarkCurrent_293K_2.pdf
Sb3513_A2P6_DarkCurrent_293K_2.pdf
Attachment 5: Sb3513_A2P6_DarkCurrent_Comparison.pdf
Sb3513_A2P6_DarkCurrent_Comparison.pdf
Attachment 6: 191220_3513A2P6.zip
  2492   Mon Apr 6 18:38:50 2020 KojiUpdateGeneralWest Bridge flooding Apr 6th

To check the status of all the labs, I went to WB. There was no ongoing water leakage in the labs.

Attachment 1: The subbasement was completely dry.

Attachment 2: Upon the lab inspection, I took PPE from the OMC lab. This was intended to prevent me to pick up anyone's anything and you to pick up my anything.

Attachment 3: The EE shop has no problem

Attachment 4: Cryo Lab. No problem.

Attachment 5: Crackle Lab. No problem, but a lot of dead cockroaches on the floor!

Attachment 6: OMC Lab. No problem.

Attachment 7: C.Ri.Me Lab. Gabriele has already checked the status in the morning. And I found no problem. Didn't bother to turn on the light.

Attachment 8: CTN Lab. No problem.

Attachment 9: QIL Lab. The floor was mostly dry. Did someone wipe the floor?

Attachment 10: Some water drip was found in front of the workbench.

Attachment 11: It comes from the ceiling.

Attachment 12: Left a trash box to catch future possible leak.

Attachment 13/14: TCS Lab. No problem found.

Attachment 15: As per Aidan's request, the instruments were moved to the North-East area of the room to avoid future possible leak.

Attachment 1: 20200406143251_IMG_9618.jpg
20200406143251_IMG_9618.jpg
Attachment 2: 20200406143856_IMG_9621.jpg
20200406143856_IMG_9621.jpg
Attachment 3: 20200406143932_IMG_9622.jpg
20200406143932_IMG_9622.jpg
Attachment 4: 20200406144014_IMG_9623.jpg
20200406144014_IMG_9623.jpg
Attachment 5: 20200406144119_IMG_9626.jpg
20200406144119_IMG_9626.jpg
Attachment 6: 20200406143837_IMG_9620.jpg
20200406143837_IMG_9620.jpg
Attachment 7: 20200406144413_IMG_9633.jpg
20200406144413_IMG_9633.jpg
Attachment 8: 20200406144522_IMG_9635.jpg
20200406144522_IMG_9635.jpg
Attachment 9: 20200406144648_IMG_9639.jpg
20200406144648_IMG_9639.jpg
Attachment 10: 20200406144730_IMG_9643.jpg
20200406144730_IMG_9643.jpg
Attachment 11: 20200406144752_IMG_9644.jpg
20200406144752_IMG_9644.jpg
Attachment 12: 20200406144942_IMG_9645.jpg
20200406144942_IMG_9645.jpg
Attachment 13: 20200406145125_IMG_9646.jpg
20200406145125_IMG_9646.jpg
Attachment 14: 20200406145127_IMG_9647.jpg
20200406145127_IMG_9647.jpg
Attachment 15: 20200406145347_IMG_9652.jpg
20200406145347_IMG_9652.jpg
  2493   Mon Apr 6 19:01:21 2020 KojiUpdateGeneralWest Bridge flooding Apr 6th

Additional notes:

I did not see anyone in the building.

Attachment 1/2: Our labs have no sticker/paper to indicate any disinfection of the room. (Make sense)

Attachment 3: Most of the basement offices have the notes to indicate disinfection.

Attachment 4/5: Our offices have no notes.

Attachment 1: 20200406151420_IMG_9653.jpg
20200406151420_IMG_9653.jpg
Attachment 2: 20200406151428_IMG_9654.jpg
20200406151428_IMG_9654.jpg
Attachment 3: 20200406151459_IMG_9655.jpg
20200406151459_IMG_9655.jpg
Attachment 4: 20200406151633_IMG_9656.jpg
20200406151633_IMG_9656.jpg
Attachment 5: 20200406151709_IMG_9658.jpg
20200406151709_IMG_9658.jpg
  2494   Thu Apr 16 18:03:22 2020 aaronUpdatePSOMApreliminary PSOMA layout

I put together two PSOMA layouts, one for a bowtie cavity and one for a ring cavity configuration.

I expect there are a number of problems with the layout as I've drawn it, and I note a number of these in the bowtie diagram. Among these

  • Should I put PSOMA updates in the QIL elog, or in Cryo, SUS, or elsewhere? I think QIL has some 1550nm light, as does cryo. Cryo is pretty crowded, although cryo Q has the possibility of moving to the QIL cryostat.
  • What's the best way to get pump and signal -- signal picked off from the pump, or two separate lasers?
  • I expect this layout is rife with errors in how the locking should go. Shruti and I should probably just talk with someone (and each other) about this rather than listing my various uncertainties.
  • Probably also picked off the homodyne LO from a nonideal place
  • I haven't fully considered a number of things like: mode matching, scattered light, LO phase noise and homodyne angle, etc.
Attachment 1: PSOMA_layout.pdf
PSOMA_layout.pdf PSOMA_layout.pdf
  2495   Fri May 1 13:27:07 2020 Raymond UpdatePD noiseSb3513 A2P6 2020-02-04 Dark Noise/QE data

Attachment 1 contains the SR785 dark noise measurements at number of PD reverse bias voltages from 77-295K with filenaming convention:

[PD]_drkspec_[date]_[temp]_[input V]_[scan freq]_[FEMTO gain]_[date]_.txt

It also contains the keithley sweeps for QE calculations.

I'm still working out what is wrong with the QE data and how to effectively process the dark noise versus temperature. 

Attachment 1: 20200204_A2P6_77Kto295K.zip
  2496   Tue May 12 10:15:30 2020 aaronUpdatePSOMApreliminary PSOMA layout

I've updated the PSOMA optical layout. I still have some questions on locking, and there are a few additional configurations that we could try. In particular:

  1. Amplifier cavity as a 2-port device (signal and pump mixed before reaching an overcoupled amplifier cavity)
  2. Amplifier cavity as a 4-port device (signal and pump enter the cavity through different ports)
    1. Overcoupled case -- 'signal out' at the same mirror as 'signal in'
    2. Critically coupled case -- 'signal out' through the 'pump in' port

Each of these configurations also has a couple different ways to pickoff an LO for homodyne readout. Shruti and I enumerated these configurations on a zoom whiteboard a couple weeks ago, and I've attached them (the zip contains png).

Chris also mentioned last week that we may run into a frequency-dependent loss in the critically coupled cavity configurations. The pdf I've attached shows a configuration that I think is a minimal modification of the Mach-Zehnder amplifier described in PSOMA. One of the ring cavities is replaced with a tunable steering mirror, and the LO is picked off before the pump reaches the MZ.

In the new diagram, I'm thinking about controlling the following degrees of freedom:

  • Signal phase relative to pump phase
  • Pump frequency relative to amplifier cavity resonance
  • pump intensity
  • MZ relative path length
  • Homodyne mixing angle
  • Signal and pump spatial mode

Some things I'm unsure about:

  • I am not currently controlling signal laser intensity -- can this be done by sending the first order AOM beam to a PD rather than dumping it as shown?
  • Not sure about the right place to place several of the EOM
  • If we have transmission through the cavity's curved mirror, is the associated loss acceptable?

Shruti and I are now tracking our work on git issues in the PSOMA repo.

Attachment 1: whiteboard_configs.zip
Attachment 2: ring_MZ_config.pdf
ring_MZ_config.pdf
  2501   Fri Jul 24 07:50:00 2020 RaymondUpdateCryo vacuum chamberPrototype shield panels

Picked up the prototype shield panels from Hamilton Metalcraft 7/22 and brought them to QIL. All of the parts are wrapped by part number and in a bin (see attached photo). There are 6 sets of shield panels, but 2 full sets were removed for coating vendors. One full set is as follows (20 parts total):

Part # Quantity
01 2
02 1
03 4
11 2
12 1
13 2
14 2
031 1
032 1
033 1
131 1
132 1
133 1

All component #'s are preceded by 'D2000298-'. 031, 032, and 033 are 03 panels but with hole variations, same goes for 131, 132, and 133 with respect to panel 13  

Attachment 1: MarinerShieldPrototype_parts.jpg
MarinerShieldPrototype_parts.jpg
  2502   Tue Aug 4 17:08:00 2020 RaymondUpdateCryo vacuum chamber19 pin MIL feedthrough and CTC100 wiring

Used the 19-pin MIL feedthrough to run 4 platinum RTD's and a 25 Ω 100 W resistive heater to the cold head. Attachment 1 is the wiring diagram for the feedthrough and the D-sub connector to the CTC-100 temperature sensor. Attachment 2 shows the three RTDs placed on the cold head. It also shows the thermal anchoring of all lead wires. Attachment 3 shows the RTD attached to the cooler below the cold head using cigarette paper and cryo varnish (stored in the flammables cabinet in QIL).

 The Al block is a premade PT-RTD integrated mounting setup, which was placed on some indium sheet bits and clamped down with a screw and belleville washer. The other two cold head sensors are pressure fit to the cold head by a spring loaded mini dog clamps, and one of the two has some indium underneath the RTD to see if there is any value in doing so going forward with these mounting springs. The glued sensor was attached by painting a thin layer of cryo varnish on the cooler, adding a strip of cig paper, layer of varnish, press in sensor, another strip of paper, paint over all of it with a last thin layer of varnish that reaches beyond the bounds of the paper strips. 

Attachment 1: QIL_TempSensor_MIL19pinWiringDiagram.pdf
QIL_TempSensor_MIL19pinWiringDiagram.pdf
Attachment 2: external_tank_RTDs_1.pdf
external_tank_RTDs_1.pdf
Attachment 3: F6D69C6A-7168-4D06-B02A-E83CE8AFE524_1_105_c.jpeg
F6D69C6A-7168-4D06-B02A-E83CE8AFE524_1_105_c.jpeg
  2503   Fri Aug 7 11:50:06 2020 RaymondUpdateCryo vacuum chamberTank pumpdown

The diaphragm pump was turned on earlier this week after finally closing up this external adapter tank. Out of an overabundance of caution the tank and cryocooler are supported by the skycrane and a number of posts to prevent it walking off the foam resting pad once the cryocooler is switched on.

All temperature sensors agree with each other within 0.1 K at room temperature yes

Attachment 1: 6A57C6DF-0B58-413E-B9C0-797B14A10CCF_1_105_c.jpeg
6A57C6DF-0B58-413E-B9C0-797B14A10CCF_1_105_c.jpeg
  2504   Fri Aug 14 11:17:04 2020 RaymondUpdateCryo vacuum chamberCooler now operational

Cryopump is up and running. Initial attempts to run the cooler were stymied by an open circuit in the cold head to compressor connection caused by one of the two accessory port fuses (right, circled in attachment 1). The compressor would run but the valve motor wouldn't start in the cooler itself. I extended the spring in the fuse housing (attachment 2) and it seems to have fixed the problem, as now the valve motor starts at the same time the compressor is turned on. Attachment 1 also shows the highly technical cord management procedure done to reduce the trip hazard caused by the compressor power plug. 

User manual recommendations*:

  • Equalization pressure (when not operating): 270-275psi
    • Currently sits at 270psi
  • Operating pressure: 290-330psi
    • Operating at 300psi
  • Insulating vacuum pressure: 1 x 10-3 Torr
    • Vacuum pressure stabilized at 8.5 x 10-1 Torr
      • Edwards diaphragm pump listed ultimate pressure is 1.5 mbar ≈ 1.1 Torr, so either the multirange gauge is malfunctioning or we're getting better backing pressure than expected from the diaphragm pump. A Pirani gauge will be attached to the vacuum space going forward so we'll see how it compares; either way we're above the recommended insulation pressure. The 11" nipple surrounding the coldhead does become cool to the touch during operation, but it does not get cold enough to create condensation.

*Manuals for both the compressor and the cryocooler are linked on the West Bridge wiki manuals page

Attachment 1: IMG-1190.JPG
IMG-1190.JPG
Attachment 2: IMG-1187.JPG
IMG-1187.JPG
Attachment 3: IMG-1189.JPG
IMG-1189.JPG
  2513   Fri Nov 6 08:14:58 2020 AidanUpdate2um PhotodiodesPhotodiode testing recovery status

Quick update, more detailed update to follow.

  • Laser is working
  • Photodiode sweep with the Keithley shows a sensible dark Current v Voltage plot (when laser is off) - indicating that PD wiring is still intact
  • Laser was aligned onto photodiode (although it took a while aligning to find the signal)
  • Ran a sweep with the Keithley and the laser on - saw another sensible bright Current v Voltage plot (more current than in the dark case)
  • DAQ control still works
  • DAC output is directly providing (unfiltered) 200mV bias

Still to do:

  • Get the SR785 plugged back in
  • Get an SR560 inserted between DAC output and PD bias to low pass filter
  • Investigate why the laser current set point is so noisy
  • Sort out RTD situation inside the chamber
  • Miscellaneous stuff
  2514   Fri Nov 6 12:45:21 2020 AidanUpdate2um PhotodiodesPhotodiode testing recovery status

Embellished Chris's PD MEDM screen a bit to illustrate controls in a diagram. The representation of the RELAY SWITCH between the Keithley and the SR560 is a bit off - I think the transimpedance amplifier is switched out as well.

Also - Keithley bright PD sweep output is attached.

Quote:

Quick update, more detailed update to follow.

  • Laser is working
  • Photodiode sweep with the Keithley shows a sensible dark Current v Voltage plot (when laser is off) - indicating that PD wiring is still intact
  • Laser was aligned onto photodiode (although it took a while aligning to find the signal)
  • Ran a sweep with the Keithley and the laser on - saw another sensible bright Current v Voltage plot (more current than in the dark case)
  • DAQ control still works
  • DAC output is directly providing (unfiltered) 200mV bias

Still to do:

  • Get the SR785 plugged back in
  • Get an SR560 inserted between DAC output and PD bias to low pass filter
  • Investigate why the laser current set point is so noisy
  • Sort out RTD situation inside the chamber
  • Miscellaneous stuff

 

Attachment 1: MEDM.png
MEDM.png
Attachment 2: PD_sweep.png
PD_sweep.png
  2516   Mon Nov 9 15:49:58 2020 AidanUpdate2um PhotodiodesJPL PD resurrection (cont.)

Okay - all the steps in the procedure of eLOG 2476 have been verified as working - with the exception of the RTDs in the chamber.

 With regards to taking dark noise spectra at different biases and temperatures, looks like Raymond took spectra with biases of [50, 100, 200, 400, 600, 1000]mV. If no objections, I’ll stick to that number of measurements. 

I’m a bit pushed for time with other stuff. I wonder if the shield RTD is sufficient to run tests on the system? I’ll go back through the data and see how reproducible the relationship between shield temperature and PD temperature is. If it is reliable then in the interests of time, I’m going to forgo re-installing the extra RTDs in the chamber just now.

 

  2517   Tue Nov 10 12:46:34 2020 AidanUpdate2um PhotodiodesJPL PD resurrection (cont.)

Looks like the temperature difference between the PD and the shield is relatively small. Even the transients when the heater is applied are order 5K. 

This means that, for quick purposes, the shield RTD is a good proxy for the PD temperature. 

The attached data is the difference between PD and shield RTD from circa 5th-6th February 2020.

Quote:

Okay - all the steps in the procedure of eLOG 2476 have been verified as working - with the exception of the RTDs in the chamber.

 With regards to taking dark noise spectra at different biases and temperatures, looks like Raymond took spectra with biases of [50, 100, 200, 400, 600, 1000]mV. If no objections, I’ll stick to that number of measurements. 

I’m a bit pushed for time with other stuff. I wonder if the shield RTD is sufficient to run tests on the system? I’ll go back through the data and see how reproducible the relationship between shield temperature and PD temperature is. If it is reliable then in the interests of time, I’m going to forgo re-installing the extra RTDs in the chamber just now.

 

 

Attachment 1: temperature_diff_shield_v_PD.png
temperature_diff_shield_v_PD.png
  2519   Tue Nov 17 17:51:44 2020 AidanUpdate2um PhotodiodesAgilis piezo mirror installed in JPL PD testing apparatus

I installed the Agilis mirror before the lens and cryo-chamber. Used the USB interface to align the beam onto the PD. So we can control the alignment remotely now (or once I’ve properly connected the USB cable instead of today’s janky test connection).
 

Attachment 1: IMG_9401.jpg
IMG_9401.jpg
Attachment 2: IMG_9400.jpg
IMG_9400.jpg
  2520   Thu Nov 19 16:25:30 2020 AidanUpdate2um PhotodiodesAgilis piezo mirror installed in JPL PD testing apparatus

Here's the python code I used to control this. 

I incorrectly used the Move to Limit command ('1MV-3': axis 1, MoVe, negative direction, speed 3', where the speeds are given in the manual, see Section 4.7 in particular). Once this command is issued, the stage will keep moving until it receives the stop command. The JOG command would be more appropriate.

I confirmed a smooth change in the PD output as the beam translated across it.

Quote:

I installed the Agilis mirror before the lens and cryo-chamber. Used the USB interface to align the beam onto the PD. So we can control the alignment remotely now (or once I’ve properly connected the USB cable instead of today’s janky test connection).
 

 

Attachment 1: Screen_Shot_2020-11-19_at_4.27.17_PM.png
Screen_Shot_2020-11-19_at_4.27.17_PM.png
  2524   Wed Dec 16 22:08:36 2020 anchalUpdateEquipment transferTook delay line box, compressed nitrogen cylinder and lens to 2um (Crackle) lab
  • Took a delay line box DB64 from QIL from the WOPO table to the 2um (formerly known as Crackle) lab. The box was marked Crackle on it.
  • Took the compressed nitrogen cylinder for optics cleaning which was stored in Adaptive Optics lab.
  • Took some lens from the cabinet in Adaptive optics lab.
  • Took some other optics parts like pedestals, posts, lens mount etc.

See SUS_Lab/1877

  2533   Wed Mar 3 16:14:18 2021 AidanUpdate2um PhotodiodesBringing 2um PD testing back online

I ran the bright PD test on the photodiode currenlty in the vacuum chamber. The test was run at air and room temperature. I aligned the 2um laser onto the PD using the piezo mirror and the readout from the preamp. I then switched to the Keithley and ran the bright scan with the "runsweep.py" script. I actually ran the scan at multiple laser diode current settings by varying the control voltage into the diode driver. The change in response wrt control voltage looks linear but I need to run an analysis on it.

The data is stored in /home/controls/JPL_PD/data/20210303_bright_scans

 

 

Attachment 1: Screen_Shot_2021-03-03_at_4.11.47_PM.png
Screen_Shot_2021-03-03_at_4.11.47_PM.png
  2534   Thu Mar 4 13:37:51 2021 AidanUpdate2um PhotodiodesReference PD reading vs Power incident on viewport

I measured the power incident on the cryo chamber viewport and the reference PD reading to calibrate the incident power. Data is attached. Power meter head = S148C.

 

Attachment 1: POW_IN_vs_REF_PD.csv
´╗┐LD,REFPD,POWER
-0.4,0.207,0.314
-0.3,0.263,0.452
-0.2,0.32,0.589
-0.1,0.373,0.719
0,0.432,0.865
0.1,0.486,0.99
0.2,0.534,1.106
0.3,0.585,1.238
0.4,0.64,1.363
... 5 more lines ...
Attachment 2: IMG_1107.jpg
IMG_1107.jpg
  2536   Wed Mar 10 17:20:26 2021 AidanUpdate2um PhotodiodesPumped chamber down briefly - connected vacuum gauge to the computer
  • I updated the SR560 settings for the AC Photodiode readout going into the ADC. They're now: AC coupled input, 2000x gain, low noise, 10kHz pole
  • Updated the "undoSR560" filterbank for the FM31 input channel to undo the SR560 settings (zpk([0.15], [0], 7.5E-5)
  • Unhooked oscilloscope from AC channel and switched SR560 to battery mode - no change in recorded spectra. I think I need to run the FEMTO preamp from a battery pack
  • Hooked up the pumping station to the chamber and went through the pumping cycle described below. No major issues.
  • Turned on the MKS vacuum gauge and hooked it into the serial port of QIL-WS1 to readback the vacuum pressure onto the DAQ. I want to transfer this across to QIl-NFS but there are no serial ports on that machine - will have to get a USB-Serial converter.
Attachment 1: IMG_1204.jpg
IMG_1204.jpg
Attachment 2: IMG_1200.jpg
IMG_1200.jpg
Attachment 3: IMG_1191.jpg
IMG_1191.jpg
Attachment 4: IMG_1190.jpg
IMG_1190.jpg
Attachment 5: IMG_1199.jpg
IMG_1199.jpg
  2538   Fri Mar 12 16:29:36 2021 AidanUpdate2um PhotodiodesVacuum needs leak checking

I pumped the small vacuum volume down but the pressure started rising as soon as I turned off the vacuum pump. Closing the main valve to the pump and the valve to the chamber did little to change the leak rate. So the main leak seems to be from the volume around the pressure gauge - best guess, the section and O-ring that I connected to the chamber yesterday.

Vacuum pressure was recorded from vacuum gauge to text file in Python (using pyserial). Haven't got this into EPICS just yet. 

Attachment 1: Screen_Shot_2021-03-12_at_4.28.54_PM.png
Screen_Shot_2021-03-12_at_4.28.54_PM.png
ELOG V3.1.3-