40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 9 of 10  Not logged in ELOG logo
ID Date Author Typedown Category Subject
  443   Wed Aug 24 03:20:59 2022 KojiGeneralGeneralOMC #002 Delamination repair Part2 (2)

Bonding

Attachment 1: IMG_1182.JPG
IMG_1182.JPG
Attachment 2: IMG_1183.JPG
IMG_1183.JPG
Attachment 3: IMG_1184.JPG
IMG_1184.JPG
Attachment 4: IMG_1185.JPG
IMG_1185.JPG
Attachment 5: IMG_1186.JPG
IMG_1186.JPG
Attachment 6: IMG_1187.JPG
IMG_1187.JPG
Attachment 7: IMG_1188.JPG
IMG_1188.JPG
Attachment 8: IMG_1189.JPG
IMG_1189.JPG
Attachment 9: IMG_1190.JPG
IMG_1190.JPG
Attachment 10: IMG_1191.JPG
IMG_1191.JPG
Attachment 11: IMG_1193.JPG
IMG_1193.JPG
  444   Wed Aug 24 03:26:43 2022 KojiGeneralGeneralOMC #002 Delamination repair Part2 (3)

Inspection

 

Attachment 1: IMG_1199.JPG
IMG_1199.JPG
Attachment 2: IMG_1200.JPG
IMG_1200.JPG
Attachment 3: IMG_1201.JPG
IMG_1201.JPG
Attachment 4: IMG_1202.JPG
IMG_1202.JPG
Attachment 5: IMG_1203.JPG
IMG_1203.JPG
Attachment 6: IMG_1204.JPG
IMG_1204.JPG
Attachment 7: IMG_1205.JPG
IMG_1205.JPG
Attachment 8: IMG_1206.JPG
IMG_1206.JPG
  445   Wed Aug 24 11:29:47 2022 KojiGeneralGeneralOMC #002 ready for shipment

[Stephen Koji]

The OMC #002 is ready for shipment.

Attachment 1: Work done on Sept 19, 2022

Other attachments: Putting the OMC in the pelican case.

Attachment 1: IMG_1207.JPG
IMG_1207.JPG
Attachment 2: PXL_20220825_004259850.jpg
PXL_20220825_004259850.jpg
Attachment 3: PXL_20220825_004307204.jpg
PXL_20220825_004307204.jpg
Attachment 4: PXL_20220825_005423342.jpg
PXL_20220825_005423342.jpg
Attachment 5: PXL_20220825_005549985.jpg
PXL_20220825_005549985.jpg
  446   Thu Aug 25 14:22:08 2022 KojiGeneralGeneralLLO OMC #001 Ballast Mass investigation

Inspected the past LLO add-on mass configuration.

There are unknown masses at the DCPD side. It looks like a small SS mass with an estimated mass of 5g. But the DCC number is unknown.

We are going to add 10g on each corner as well as the damping aterial. We should be able to figure out the fastener / mass configuration.

Attachment 1: DSCN0917.JPG
DSCN0917.JPG
Attachment 2: DSCN0922.JPG
DSCN0922.JPG
Attachment 3: P6108705.JPG
P6108705.JPG
Attachment 4: P6108707.JPG
P6108707.JPG
Attachment 5: P6108706.JPG
P6108706.JPG
  447   Thu Aug 25 20:05:00 2022 KojiGeneralGeneralLLO OMC #001 Ballast Mass investigation

Here is the balance mass info for the LLO OMC#001 analyzed from the photographs

  • Added masses are: 50+10g, 50+20, 10+20+5, and 20+20+10 for the mass right above FM1/CM1/FM2 and CM2, respectively.
  • The length of the 1/4-20 screws seem L=3/4"~1"

If we attach the additional mass, longer 1/4-20 screws (1", 1" 1/8, 1" 1/4) are going to be used.

Attachment 1: balance_mass_config_LLO.pdf
balance_mass_config_LLO.pdf
  448   Fri Aug 26 22:29:02 2022 KojiGeneralGeneralTool Shipping Prep

Shipping preparation for the LLO trip

Started July 15, 2022 and finished Aug 30. So it took ~1.5 months (with a couple weeks of break)


Class B special tools

  • Screw Drivers 1
    • https://www.steritool.com/
    • https://www.steritool.com/precision-screwdrivers-mini.aspx
  • Screw Drivers 2
    • What I have seems S555Z-7
    • https://www.starrett.com/
    • https://www.starrett.com/dms/flipbooks/Cat-33/index.html?page=354
  • Allen Wrenches
    • Bondhus: These are not made of SS, but of so called protanium steel. I have a chrome finish one (BriteGuard) and K14 gold finish one (goldguard).
    • https://intl.bondhus.com/pages/goldguard-ball-end
    • https://intl.bondhus.com/pages/briteguard-ball-end
  • Scissors
    • VWR - Stainless Steel
    • Unknown PN /  probably this?
    • https://us.vwr.com/store/product/4527635/vwr-dissecting-scissors-sharp-blunt-tip
  • Forceps
    • VWR - Stainless Steel
    • https://us.vwr.com/store/product/4531765/vwr-hemostatic-forceps
  • Wire cutters
    • Looks like they are orthodontic wire cutters. One has the marking "Orthomechanic Stainless Steel" but the company does not sell cutters anymore. The other has a marking "333" but the company is unknown. Similar products can be found on Amazon
  • Long nose pliers - straight stainless steel
    • https://www.aventools.com/
    • https://www.aventools.com/long-nose-pliers-stainless-steel-6-2
  • Bent nose pliers - stainless steel
    • unknown 
  • Tweezers
    • Excelta 
    • The short one is 20A-S-SE. The longer one is 24-SA-PI, maybe?
    • https://www.excelta.com/
    • https://www.excelta.com/straight-laboratory-instruments-forceps
    • https://www.excelta.com/style-24-24-6-sa
  • Mighty-Mouse spanner
  • 2x driver bits for the digital torque wrench

First Contact Kit

  • FC bottole / PEEK mesh

Bonding kit (excl EP30-2 bond)

  • reinforcement bars (4 types)
  • bonding liner powder
  • tools: spatula / bond applying rod

Power meters (excl Power meter controller)

  • Thorlabs Thermal
  • Thorlabs Photodiode
  • Thorlabs Integrating Sphere

Electronics

  • preamp + power cable
  • PD testing kit (PD connector / DB9 break out / grabber-BNC)
  • Nitrile gloves

Cable bracket replacement kit

  • PEEK cable bracket (Helicoiled)
  • Cable pegs (x4 salvaged / spare)
  • fastners
  • kapton sheet
  • cable ties

Optics / Optomechanics

  • Optical fiber / spare fiber
  • OMC transport feet
  • OMC backscatter inspection prisms

Misc tools

  • digital torque wrench

=== Action done on Aug 30 ===

Fiber MM setup / Fiber coupler mount
Glass Beamdumps (for optical testing)
Flipper mirror
Thorlabs fiber coupler tool
General bent nose plier for fiber
Thorlabs collimator tiny allen
Spare High QE PDs

Spare OMC bags / Zip bags

Balance Mass 10g Qty 8 (Different Type D11*** 1.25" dia), 20g Qty 10 / Mass damper D1700301 -04 / Mass damper screws SHCS 1/4-20 x 1.25 Qty 25 / 1" screws and 1 1/8" screws

Shipping request: https://services1.ligo-la.caltech.edu/FRS/show_bug.cgi?id=25002


=== Low supply! ===

  • Masks
  • 7.0 gloves supply low
  • 7.5 glove completely gone
  • Wet vectra cloth
  • Dry vectra cloth
Attachment 1: PXL_20220831_025623318.jpg
PXL_20220831_025623318.jpg
Attachment 2: PXL_20220831_024518032.jpg
PXL_20220831_024518032.jpg
Attachment 3: PXL_20220831_030234581.jpg
PXL_20220831_030234581.jpg
  449   Tue Sep 20 08:54:33 2022 KojiGeneralGeneralPD cage arrangement

Upon the LLO work, the current PD arrangement in the cages are:
CAGE B
B1 OMC1 PDT (A1-23)
B2 OMC1 PDR (A1-25)
B3 original (C1-03)
B4 OMC2 PDT (B1-22)

CAGE C
C1 OMC2 PDR (B1-23)
C2 original (C1-08)
C3 original (C1-09)
C4 original (C1-10)

  450   Mon Sep 26 14:27:49 2022 KojiGeneralGeneralLLO OMC ICS work

OMC #001

OMC #002

  461   Fri Nov 18 18:41:05 2022 Camille MakaremGeneralGeneral2nd deep cleaning of OMC #1

The four cavity mirrors in OMC #1 were each scrubbed using acetone and a cotton swab.
Then, the four mirrors were painted with First Contact (picture attached). The First Contact was allowed to dry for 20 minutes, then removed while using the top gun.

Attachment 1: PXL_20221118_213955948.jpg
PXL_20221118_213955948.jpg
  462   Mon Nov 21 19:13:35 2022 KojiGeneralGeneralTransmission measurement (2nd deep cleaning of OMC #1)

OMC Transmission measurement after the 2nd deep cleaning

The 2nd deep cleaning didn't improve the transmission. (See Attachment 2)
The measured loss was 0.044+/-0.002

 

Attachment 1: PXL_20221122_030736513.jpg
PXL_20221122_030736513.jpg
Attachment 2: OMC_loss.pdf
OMC_loss.pdf
  463   Tue Nov 29 15:54:47 2022 KojiGeneralConfigurationWindows laptop for WincamD Beam'R2 recovery

Aaron took the set to Cryo lab

 

  473   Wed Jan 25 23:51:04 2023 KojiGeneralGeneralThe items packed for Downs

Qty1 1/2 mounts
Qty2 prism mounts
Qty6 gluing fixures
Qty1 Rotary stage
Qty1 2" AL mirror
Qty1 Base for the AL mirror

=> Handed to Stephen -> Camille on Jan 27, 2023.

Attachment 1: PXL_20230127_055920944.jpg
PXL_20230127_055920944.jpg
  482   Wed Feb 1 01:44:14 2023 KojiGeneralGeneralOMC (004) plan

2/1 2:30PM~ Bonding reinforcement (Last EP30-2 gluing)

2/2 1:00PM~ Peripheral attachment / Optical testing setup

  3   Wed Jun 20 00:10:53 2012 KojiFacilityGeneralHole on the wall was patched

P6191706.jpg

  14   Wed Aug 1 19:35:00 2012 KojiFacilityGeneralFloor cleaned / Workbench being built / Table top defect

- The floor of the room was cleaned and waxed!

- Sticky mats are placed! Now we require shoe covers!

P8011949.JPG

- Work benches are being built. One unit is done.

P8011948.JPG

- The other is half done because the table top has chippings.

P8011947.JPG

  15   Sat Aug 11 00:59:14 2012 KojiFacilityGeneralLaser Safety Barrier

It seemed that a laser safety barrier was installed today!?

P8131960.JPG

 

  19   Wed Aug 22 20:16:43 2012 KojiFacilityGeneralWorkbenches have been installed / Clean room stools

Last Friday, new workbenches were installed. Vladimir got a new table and a cleanroom stool.

P8171968.jpg

The other two workbenches were also nicely set.

P8171969.jpg

  46   Wed Dec 26 14:33:33 2012 KojiFacilityGeneralLase Interlock wired

Two switches are connected in series.

Attachment 1: PC263073.jpg
PC263073.jpg
Attachment 2: PC263074.jpg
PC263074.jpg
Attachment 3: PC263075.jpg
PC263075.jpg
  57   Tue Jan 22 11:10:25 2013 KojiFacilityGeneralEyeware storage and hooks for the face shields are installed

A carpenter has come to install the eyeware storage and hooks for the face shields.

Attachment 1: P1223116.JPG
P1223116.JPG
  75   Sat Mar 23 02:32:23 2013 KojiFacilityGeneralN2 cylinder delivered

Preparation for ionized N2 blow

- 99.9998% N2 cylinder delivered (ALPHAGAZ 2 grade by AIR LIQUIDE) ALPHAGAZ 2 [PDF]

- Filter and Arcing module already in the lab

- A brass regulator to be installed (Done - March 24)

- 50 ft air line already in the lab / needs to be wiped/rinsed (Done - March 24)

- Air line and filter installed (Done - March 24)

Attachment 1: P3233349.jpg
P3233349.jpg
  288   Fri Sep 8 15:14:05 2017 KojiFacilityGeneralPreparation for the plumbing work

[Steve, Aaron, Koji]

We've finished the preparation for the forthcoming plumbing work on (nominally) Sept 16th Saturday.
We've covered most of the west side of the OMC lab with plastic sheets and wraps.

Some tips:

  • The plastic sheets Eric gave us were a bit too thin and pron to got torn. Thicker sheets are preferable.
  • The blue tape that Eric gave us was very useful.
  • The stretch wrap film, which I bought long time ago, was so useful. Office Depot "Office Depot(R) Brand Stretch Wrap Film, 20 x 1000 Roll, Clear" PN: 445013
  • We also used patches of Kitchen Trash Bags to cover some small opening of the large sheets. Office Depot "Glad(R) Tall Kitchen Trash Bags, 13 Gallon, White, Box Of 28" PN 269268
Attachment 1: DSC_0405.jpg
DSC_0405.jpg
Attachment 2: DSC_0406.jpg
DSC_0406.jpg
Attachment 3: DSC_0407.jpg
DSC_0407.jpg
Attachment 4: DSC_0408.jpg
DSC_0408.jpg
Attachment 5: DSC_0409.jpg
DSC_0409.jpg
Attachment 6: DSC_0410.jpg
DSC_0410.jpg
Attachment 7: DSC_0411.jpg
DSC_0411.jpg
  391   Mon Aug 10 15:34:04 2020 KojiFacilityLoan / LendingGlue bake oven

Black and Decker Glue Baking Oven came back to the OMC lab on Aug 10, 2020, Georgia had lent the unit for the SAMS assembly/testing.

  412   Thu Jun 23 21:03:33 2022 KojiFacilityGeneralMoving the small optical table to CAML (TCS Lab)

I've cleared the small optical table and wondered how to move it out of the room. Fortunately, the north side of the big table had wide enough clearance and let the 36" wide table go through. This was easy without moving other heavy stuff.

From here to the door, a bit of work is required. A possibility is to roll the laser blocking wall to the south side of the big table. This will require moving the shelving in the entrance area but it's not a lot of work compared to disassembling a part of the wall.

If this does not work somehow, we will consider removing the last panel of the wall and it will definitely allow the table to get out from the door.

Attachment 1: PXL_20220624_035628602.jpg
PXL_20220624_035628602.jpg
  25   Tue Oct 9 05:03:15 2012 KojiElectronicsGeneralOMC Test Electronics Setup

electronics_setup.png

Attachment 2: electronics_setup.pdf
electronics_setup.pdf
  36   Thu Nov 8 19:47:55 2012 KojiElectronicsConfigurationSolder for PZTs

Rich saids:

I have ordered a small roll of solder for the OMC piezos. 
The alloy is: Sn96.5 Ag3.0 Cu0.5

  72   Fri Mar 15 02:15:45 2013 KojiElectronicsCharacterizationDiode testing

Diode testing

o Purpose of the measurement

- Test Si QPDs (C30845EH) for ISC QPDs Qty 30 (i.e. 120 elements)

- Test InGaAs PDs (C30665GH) for OMC Qty 10 (i.e. 10 elements)

o Measurement Kit

- Inherited from Frank.

- Has relays in it.

- D0 and D1 switches the measurement instrument connected to an element

- D2 and D3 switches the element of the QPDs

- Digital switch summary

d0 d1 0 0 - ln preamp
d0 d1 1 0 - dark c
d0 d1 0 1 - omc preamp
d0 d1 1 1 - impedance

d2 d3 0 0 - A x x x
d2 d3 1 0 - C x o x
d2 d3 0 1 - B o x o
d2 d3 1 1 - D o o o

- The universal board in the box is currently configured for C30845.
  Pin1 - Elem A. Pin3 - B, Pin7 - C, Pin9 - D, Pin 12 - Case&Bias

o Labview interface

- Controls NI-USB-6009 USB DAQ interface and Agilent 82357B USB-GPIB interface

o Dark current measurement

- Borrowed Peter's source meter KEITHLEY 2635A

- For C30845GH the maxmum reverse bias is set to -20V. This drops the voltage of the each element to the bias voltage.

o Spectrum measurement

- The elements are connected to FEMTO LN current amp DLPCA-200.

- Bias voltage is set to +10V. This lifts up the outside of the amplifier input to +10V.

 

o Impedance measurement

- Agilent 4395A at PSL lab with impedance measurement kit

- For C30845GH the maxmum reverse bias is set to -15V. This drops the voltage of the each element to the bias voltage.

- Calibration: open - unplug the diode from the socket, short - use a piece of resister lead, 50Ohm - a thin metal resister 51Ohm

- Freq range: 30-50MHz where the response of the cables in the setup is mostly flat.

- Labview VI is configured to read the equivalent circuit parameters in the configuration "D" (series LCR).

- Labview fails to read the series resistance. This was solved by first read the equiv circuit param and then read it with Sim F-CHRST.
  F-CHRST does nothing on the parameters so the second request successfully acquires the first ones.

 

Attachment 1: QPD_GR_TEST_130316.pdf
QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf
  73   Sun Mar 17 21:59:47 2013 KojiElectronicsCharacterizationDiode testing ~ DCPD

- For the dark noise measurement, the lid of the die-cast case should also contact to the box for better shielding. This made the 60Hz lines almost completely removed, although unknown 1kHz harmonics remains.

- The precise impedance of the setup can not be obtained from the measurement box; the cable in between is too long. The diode impedance should be measured with the impedance measurement kit.

- With the impedance measurement kit, the bias voltage of +5V should be used, in stead of -5V.

- diode characteristics measured at 10-100MHz

- Typical impedance characteristics of the diodes

Excelitas (Perkin-Elmer) C30665GH Rs=9Ohm, Cd=220pF, L=0~1nH (Vr=5V)

Excelitas (Perkin-Elmer) C30642G Rs=12Ohm, Cd=100pF, L=~5nH (Vr=5V) longer thin wire in a can?

Excelitas (Perkin-Elmer) C30641GH Rs=8Ohm, Cd=26pF, L=12nH (Vr=5V) leg inductance? (leg ~30mm)

- PD serial

C30665GH, Ls ~ 1nH

  1 - 0782 from PK, Rs=8.3Ohm, Cd=219.9pF
  2 - 1139 from PK, Rs=9.9Ohm, Cd=214.3pF
  3 - 0793 from PK, Rs=8.5Ohm, Cd=212.8pF
  4 - 0732 from PK, Rs=7.4Ohm, Cd=214.1pF
  5 - 0791 from PK, Rs=8.4Ohm, Cd=209.9pF
  6 - 0792 from PK, Rs=8.0Ohm, Cd=219.0pF
  7 - 0787 from PK, Rs=9.0Ohm, Cd=197.1pF
  8 - 0790 from PK, Rs=8.4Ohm, Cd=213.1pF
  9 - 0781 from PK, Rs=8.2Ohm, Cd=216.9pF
10 - 0784 from PK, Rs=8.2Ohm, Cd=220.0pF
11 - 1213 from the 40m, Rs=10.0Ohm, Cd=212.9pF
12 - 1208 from the 40m, Rs=9.9Ohm, Cd=216.8pF
13 - 1209 from the 40m, Rs=10.0Ohm, Cd=217.5pF

C30642G, Ls ~ 12nH

20 - 2484 from the 40m EG&G, Rs=12.0Ohm, Cd=99.1pF
21 - 2487 from the 40m EG&G, Rs=14.2Ohm, Cd=109.1pF
22 - 2475 from the 40m EG&G glass crack, Rs=13.5Ohm, Cd=91.6pF
23 - 6367 from the 40m ?, Rs=9.99Ohm, Cd=134.7pF
24 - 1559 from the 40m Perkin-Elmer GH, Rs=8.37Ohm, Cd=94.5pF
25 - 1564 from the 40m Perkin-Elmer GH, Rs=7.73Ohm, Cd=94.5pF
26 - 1565 from the 40m Perkin-Elmer GH, Rs=8.22Ohm, Cd=95.6pF
27 - 1566 from the 40m Perkin-Elmer GH, Rs=8.25Ohm, Cd=94.9pF
28 - 1568 from the 40m Perkin-Elmer GH, Rs=7.83Ohm, Cd=94.9pF
29 - 1575 from the 40m Perkin-Elmer GH, Rs=8.32Ohm, Cd=100.5pF

C30641GH, Perkin Elmer, Ls ~ 12nH

30 - 8983 from the 40m Perkin-Elmer, Rs=8.19Ohm, Cd=25.8pF
31 - 8984 from the 40m Perkin-Elmer, Rs=8.39Ohm, Cd=25.7pF
32 - 8985 from the 40m Perkin-Elmer, Rs=8.60Ohm, Cd=25.2pF
33 - 8996 from the 40m Perkin-Elmer, Rs=8.02Ohm, Cd=25.7pF
34 - 8997 from the 40m Perkin-Elmer, Rs=8.35Ohm, Cd=25.8pF
35 - 8998 from the 40m Perkin-Elmer, Rs=7.89Ohm, Cd=25.5pF
36 - 9000 from the 40m Perkin-Elmer, Rs=8.17Ohm, Cd=25.7pF

 

Note:
  1mm Au wire with dia. 10um -> 1nH, 0.3 Ohm
20mm BeCu wire with dia. 460um -> 18nH, 0.01 Ohm

Attachment 1: OMCPD_TEST_130317.pdf
OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf
  78   Sat Mar 23 16:36:15 2013 KojiElectronicsCharacterizationDiode QE measurement

Quantum efficiencies of the C30665GH diodes were measured. 

- The diode was biased by the FEMTO preamplifier.

- Diode Pin 1 Signal, Pin 2 +5V, Pin 3 open

- Preamp gain 10^3 V/A

- Beam power was measured by the thorlabs power meter.

 

PD #1
Incident: 12.82 +/- 0.02 mW
Vout: 9.161 +/- 0.0005 V
PD Reflection (Prompt): 0.404 mW
PD Reflection (Total): 1.168 mW

PD #2
Incident: 12.73 +/- 0.02 mW
Vout: 9.457 +/- 0.0005 V
PD Reflection (Prompt): 0.364 mW
PD Reflection (Total): 0.937 mW

PD #3
Incident: 12.67 +/- 0.02 mW
Vout: 9.1139 +/- 0.01 V
PD Reflection (Prompt): 0.383 mW
PD Reflection (Total): 1.272 mW

PD #4
Incident: 12.71 +/- 0.02 mW
Vout: 9.3065 +/- 0.0005 V
PD Reflection (Prompt): 0.393 mW
PD Reflection (Total): 1.033 mW

PD #5
Incident: 12.69 +/- 0.02 mW
Vout: 9.1071 +/- 0.005 V
PD Reflection (Prompt): 0.401 mW
PD Reflection (Total): 1.183 mW

PD #6
Incident: 12.65 +/- 0.02 mW
Vout: 9.0310 +/- 0.01 V
PD Reflection (Prompt): 0.395 mW
PD Reflection (Total): 1.306 mW

PD #7
Incident: 12.67 +/- 0.02 mW
Vout: 9.0590 +/- 0.0005 V
PD Reflection (Prompt): 0.411 mW
PD Reflection (Total): 1.376 mW

PD #8
Incident: 12.63 +/- 0.01 mW
Vout: 9.0790 +/- 0.0005 V
PD Reflection (Prompt): 0.420 mW
PD Reflection (Total): 1.295 mW

PD #9
Incident: 12.67 +/- 0.02 mW
Vout: 9.2075 +/- 0.0005 V
PD Reflection (Prompt): 0.384 mW
PD Reflection (Total): 1.091 mW

PD #10
Incident: 12.70 +/- 0.01 mW
Vout: 9.0880 +/- 0.001 V
PD Reflection (Prompt): 0.414 mW
PD Reflection (Total): 1.304 mW

PD #11
Incident: 12.64 +/- 0.01 mW
Vout: 9.2861 +/- 0.0005 V
PD Reflection (Prompt): 0.416 mW
PD Reflection (Total): 1.152 mW

PD #12
Incident: 12.68 +/- 0.02 mW
Vout: 9.3650 +/- 0.001 V
PD Reflection (Prompt): 0.419 mW
PD Reflection (Total): 1.057 mW

PD #13
Incident: 12.89 +/- 0.01 mW
Vout: 9.3861 +/- 0.001 V
PD Reflection (Prompt): 0.410 mW
PD Reflection (Total): 1.047 mW

 

PD serial number
 1 - 0782
 2 - 1139
 3 - 0793
 4 - 0732
 5 - 0791
 6 - 0792
 7 - 0787
 8 - 0790
 9 - 0781
10 - 0784
11 - 1213
12 - 1208
13 - 1209

 

{
  {1, 12.82, 9.161, 0.404, 1.168},
  {2, 12.73 , 9.457, 0.364 , 0.937} ,
  {3, 12.67 , 9.1139, 0.383 , 1.272 },
  {4, 12.71 , 9.3065, 0.393 , 1.033 },
  {5, 12.69, 9.1071, 0.401 , 1.183 },
  {6, 12.65, 9.0310, 0.395 , 1.306} ,
  {7, 12.67, 9.0590, 0.411 , 1.376} ,
  {8, 12.63 , 9.0790, 0.420 , 1.295} ,
  {9, 12.67 , 9.2075, 0.384 , 1.091} ,
  {10, 12.70, 9.0880, 0.414 , 1.304 },
  {11, 12.64 , 9.2861, 0.416 , 1.152} ,
  {12, 12.68 , 9.3650, 0.419 , 1.057} ,
  {13, 12.89 , 9.3861, 0.410 , 1.047}
};

Attachment 1: P3213308.JPG
P3213308.JPG
Attachment 2: P3213310.JPG
P3213310.JPG
  131   Thu May 30 14:38:42 2013 KojiElectronicsGeneralCable fitting

Yesterday Jeff and Chub worked on the cabling of the OMC. It turned out that the gender of the cable connectors
going from the cavity side to the connector bracket on top of the OMC were opposite from what is needed. 
This way, the connectors can't fixed on the cable harness, thus they are free during the shipping.

We considered several ideas to mitigate this issue and decided to swap the gender of the Mighty Mouse connectors.

In order to check this operation may cause the shortage of the cable length, we made the fitting of the cables.
They seem all long enough for Chub to replace the Mighty Mouse connectors with the proper gender. 

We also checked the polarity of the PZT wires. We marked the positive side of the PZT by a knot at the wire end.

  156   Thu Aug 22 15:40:15 2013 KojiElectronicsConfigurationPZT endurance test

[Koji, Jeff]

Background

In response to the failure of one of the PZTs on L1OMC (LLO:8366), we have been taking place an endurance test of
the four PZT sub-assemblies in prior to their being glued on the glass breadboard.

According to the technical note by Noliac, the common mode of PZT failure is degradation of the impedance
due to cyclic actuation (like 10^7 times) with over voltage. Therefore our procedure of the test to actuate the PZTs
at least 10^7 times with half voltage of the nominal operating voltage (i.e. nominal 200V) and check the degradation
of the impedance.

Driving signal

For the driving of the PZT, a thorlabs HV amp is used. A source signal of 3.5Vpp with an offset of 1.7V is produced
by DS345 function generator. This signal turns to a sinusoidal signal between 0 and 100V in conjunction with the gain
of 15 at the HV amp.

The maximum driving frequency is determined by the current supply limit of the HV amp (60mA). The capacitance
of each PZT is 0.47uF. If we decide to cycle the signal for 4 PZTs in parallel, the maximum frequency achievable
without inducing voltage drop is 100Hz. This yields the test period of 28hours in order to achive 10^7 cycles.

P8214340.jpg

Initial impedance diagnosis

To check the initial state of the PZTs, a DC voltage of 100V was applied via 1kOhm output resistance.
(Note that this output resistance is used only for the impedance test.)
For each PZTs, both side of the resister showed 99.1V for all measurement by a digital multimeter.
Assuming the minimum resolution (0.1V) of the multimeter, the resistance of each PZT was more than 1MOhm before
the cycling test.

Failure detection

In order to detect any impedance drop of the PZTs, the driving signal is monitored on the oscilloscope via a 1:10 probe.
If there is any significant impedance drop, the driver can't provide the driving current correctly. This can be found
by the deviation of the driving voltage from the reference trace on the oscilloscope (below).

P8214337.jpg

Temperature rise

Because of the loss angle of the PZT capacitance, heating of the PZTs is expected. In order to check the temperature rise,
an IR Viewer (FLIR) was used. We did not take care of careful calibration for the PZT emissibity as what we want was a
rough estimation of the temperature.

Before the driving (LEFT) and at the equilibrium (RIGHT)
IR_0457.jpg
IR_0461.jpg

The temperature change of the PZT was tracked for an hour (below). Fitting of the points indicated that the temperature rise is 2.3degC and the
time constant of 446 sec. This level of temperature rise is totally OK. (Note that the fitting function was T = 27.55 - 2.31 Exp[-t/446.])

 

Results

DAY1:

Start driving
20:27 25.2 degC, status OK
20:33 26.7 degC, status OK
20:41 26.9 degC, status OK
20:48 27.6 degC, status OK
20:54 27.4 degC, status OK
21:10 27.4 degC, status OK
21:37 status OK
Stop driving

70 minutes of driving (i.e. 4.2x10^5 cycles) => no sign of degradation

DAY2:

Start driving
14:15, 24.5 degC, status OK
14:17, 26.0 degC, status OK
14:24, 27.0 degC, status OK
14:40, 26.8 degC, status OK
14:50, 26.8 degC, status OK
15:30, 26.8 degC, status OK
15:55 status OK
17:40 status OK
21:00 status OK (2.43Mcycles + 0.42Mcycles = 2.85Mcycles)
1d+12:00 status OK (7.83Mcycles + 0.42Mcycles = 8.25Mcycles)
1d+15:00 status OK (8.91Mcycles + 0.42Mcycles = 9.33Mcycles)
1d+18:40 status OK (10.23Mcycles + 0.42Mcycles = 10.65Mcycles)
Stop Driving

After 10.65Mcycles no sign of degradationwas found.

  157   Fri Aug 23 19:24:32 2013 KojiElectronicsConfigurationPZT endurance test (II)

The PZT tests were finished with the conclusion that the PZT won't be damaged with our expected usage.


This is another test of the PZTs to make sure small (~10V) reverse voltage does not break the PZTs.

Background

At the site, we decided to use one of the PZT, which is still alive, for the HV and LV actuation.
The HV actuation is limited to 0 to 100V while the LV actuation is 10Vdc with 1Vpp fast dithering.
This means that a reverse voltage upto 10.5V will be applied to the PZT at the worst case.

From the technical note this level of reverse voltage does not induce polarization of the PZT.
The test is to ensure the PZT is not damaged or degraded by this small reverse voltage.

Method

HV drive: Thorlabs HV amp (G=15) driven with DS345 function generator (3.5Vpp+1.7Vdc, 0.1Hz)
=> 0-100V @0.1Hz
=> The hot side of the potential is connected to the positive side of the PZT

LV drive: Phillips function generator (1Vpp+9.5Vdc@1kHz)
The driving frequency is limited by the current output of the function generator.
=> The hot side of the potential is connected to the negative side of the PZT

These drives shares the common ground.

Tests

Testing with spare PZTs 

Started @19:23 (Aug 23)
Stopped @20:15+2d (Aug 25, duration 48h52m)
17600cycles for the 0.1Hz drive.
176Mcycles for the 1kHz drive.

Checked the impedances of PZT1 and PZT2.

Apply 100Vdc via a 1kOhm resister, 0V detected across the 1kOhm resister
This is equivalent to the resistance of 1MOhm.

 

Testing with the PZT subassemblies

Started shaking of the four PZT assemblies @20:20 (Aug 25)
No impedance change observed @11:10+1d
No impedance change observed @15:30+1d
Stopped shaking of the four PZT assemblies @XXXX (Aug 26)

 

Wiring for the test

PZT_shaking.png

 

 

  203   Thu Jul 10 01:39:38 2014 KojiElectronicsGeneralPZT wire

Rich came to the OMC lab. Pins for the mighty mouse connector were crimped on the 4 PZT wires.
We found the male 4pin mighty mouse connector in the C&B area.

The cable inventory was checked with ICS/DCC combo. It turned out that most of the on-board cables
are at LHO. We decided to send the OMC there and then the cables are installed at the site.

Attachment 1: P7096669.JPG
P7096669.JPG
  224   Wed Jul 15 22:23:17 2015 KojiElectronicsAM Stabilized EOM DriverE1400445 first look

This is not an OMC related and even not happening in the OMC lab (happening at the 40m), but I needed somewhere to elog...


E1400445 first look

LIGO DCC E1400445

Attachment 1: Record of the original state

Attachment 2: Found one of the SMA cable has no shield soldering

Attachment 1: IMG_20150714_195534852.jpg
IMG_20150714_195534852.jpg
Attachment 2: IMG_20150714_195227746_HDR.jpg
IMG_20150714_195227746_HDR.jpg
  225   Sat Jul 18 11:37:21 2015 KojiElectronicsAM Stabilized EOM DriverD0900848 power board ~ oscillation issue solved

Power Supply Board D0900848 was oscillating. Here is the procedure how the issue was fixed.

PCB schematic: LIGO DCC D0900848

0. Extracting the power board.

The top lid and the front panel were removed. Top two modules were removed from the inter-board connection.
Some of the SMA cables were necessary to be removed to allow me to access to the botttom power board.

1. D1~D4 protection diodes

Daniel asked me to remove D1, D2, D3, D4 as the power supply sequence is controlled by the relays.
This was done.

2. Power supply oscillation
Since the power supply systems are entagnled, the oscillation of the transister boosted amps had to be checked one by one.

2.1 VREFP (U5)

First of all, the buffering stage of the positive voltage reference (U5) was oscillating. Attachment 1 is the observed voltage at "VREFP" at D13.
The oscillation was at 580kHz with 400mVpp. This was solved by replacing C20 with 1.2nF. (0805 SMD Cap)

2.2 VREFN (U6)

Then the buffering stage of the negative voltage reference (U6) was checked. Attachment 2 is the observed voltage at "VREFN" at D16.
The oscillation was at 26MHz with 400mVpp. This seemed to have a different mechanism from the U5 oscillation. This oscillation frequency is
higher than the GBW of OP27. So there must be some spurious path to the transister stage. This amplifier stage is a bit unique.
The input is VREFP, but the positive supply is also VREFP. And the feedback path between R31 and C24 is very long. I was afraid that this oscillation
was caused by some combination of L and stray C by the long feedback path and the output to power VREFP coupling, although I could not reproduce
the oscillation on LTSpice. 

After some struggles, adding a 100pF cap between the output of U6 op27 (PIN6) and VREFP (PIN7) stopped the oscillation.
I think this changes the loop function and fullfills the stability condition. I confirmed by a LTSpice model that additional cap does not
screw up the original function of the stage at audio frequencies when everything is functioning as designed.

2.3 Positive supply systems (U10, U11, U12)

Even after fixing the oscillations of U5 and U6, I kept observing the oscllative component of ~600kHz at U10 (+21V), U11 (+15V), and U12 (+5V) stages.
Among them, U11 had the biggest oscillation of 400mVpp at the opamp out (Attachment 3). The other two had small oscillation like 20mVpp at the opamp outputs.
The solution was the same as 2.1. C50, C51, and C52 were replaced to 1.2nF. After the modification I still had the 600kHz component with 2mVpp.
I wanted to check other channels and come back to this.

2.3 Negative supply systems (U7, U8, U9)

Similarly the outputs of U7, U8, and U9 had the oscillation at 600kHz with 40~80mVpp. Once C35, C36, and C37 were replaced with 1.2nF,
I no longer could see any 600kHz anywhere, including U10~U12.

2.4 -24V system (U13)

Last modification was U13. It had a noise of 50mVpp due to piled-up random pulses (Attachment 4). I just tried to replace C63 with 1.2nF
and remove a soldering jumber of W1
. There still looks random glitches there. But it's no longer the round shaped pulses but a sharp gliches
and the amplitude is 20mV each (Attachment 5). In fact, later I noticed that Q9 is not stuffed and W2 is closed. This means that the +24V external supply is
directly connected to +24AMP. Therefore U13 has no effect to the 24V suppy system.

3. Restoring all connections / final check of the voltages

Restore the middle and top PCBs to the intra-PCB connector board. Attach the front panel. Restore the SMA connections.

The missing soldering of the SMA cable (reported in the previous entry) was soldered.

Once all the circuits are connected again, the power supply voltages were checked again. There was no sign of oscillation.

All the above modifications are depicted in Attachment 6.

Attachment 1: IMG_20150715_215516907.jpg
IMG_20150715_215516907.jpg
Attachment 2: IMG_20150715_215706039.jpg
IMG_20150715_215706039.jpg
Attachment 3: IMG_20150714_203246414.jpg
IMG_20150714_203246414.jpg
Attachment 4: IMG_20150717_215132303.jpg
IMG_20150717_215132303.jpg
Attachment 5: IMG_20150717_220919527.jpg
IMG_20150717_220919527.jpg
Attachment 6: D0900848_modifications.jpg
D0900848_modifications.jpg
  227   Wed Jul 22 09:43:01 2015 KojiElectronicsAM Stabilized EOM DriverPower supply test of the EOM/AOM Driver

Serial Number of the unit: S1500117
Tester: Koji Arai
Test Date: Jul 22, 2015

1) Verify the proper current draw with the output switch off:

+24 Volt current: 0.08 A Nom.
-24 Volt current: 0.07 A Nom.
+18 Volt current: 0.29 A Nom.
-18 Volt current: 0.24 A Nom.

2) Verify the proper current draw with the output switch on:
+24 Volt current: 0.53 A Nom.
-24 Volt current: 0.07 A Nom.
+18 Volt current: 0.21 A Nom.
-18  Volt current: 0.26 A Nom.

3) Verify the internal supply voltages:

All look good.

TP13 -5.001V
TP12 -15.00
TP11 -21.05
TP10 -10.00
TP5  -18.19
TP6  -24.22
TP2  +24.15
TP3  +18.22
TP9  + 9.99
TP17 +24.15
TP14 +21.04
TP15 +15.00
TP16 + 4.998

4) Verify supply OK logic:
All look good. This required re-disassembling of the PCBs...

Check then pin 5 on U1 (connected to R11) and U4 (connected to R23):

U1 3.68V (=Logic high)
U4 3.68V (=Logic high)

5) Verify the relays for the power supply sequencing: OK

Turn off +/-24 V. Confirm Pin 5 of K1 and K2 are not energized to +/-18V. => OK
Turn on +/-24 V again. Confirm Pin 5 of K1 and K2 are now energized to +/-18V. => OK

6) Verify noise levels of the internal power supply voltages:

TP13 (- 5V) 13nV/rtHz@140Hz
TP12 (-15V) 22
nV/rtHz@140Hz
TP11 (-21V) 32
nV/rtHz@140Hz
TP10 (-10V) 16nV/rtHz@140Hz
TP9  (+10V)  9
nV/rtHz@140Hz
TP14 (+21V) 21nV/rtHz@140Hz
TP15 (+15V) 13nV/rtHz@140Hz
TP16 (+ 5V) 11nV/rtHz@140Hz

 

Note that the input noise of SR785 is 9~10nV/rtHz@140Hz with -50dBbpk input (AC)

 

  228   Wed Jul 22 10:15:14 2015 KojiElectronicsAM Stabilized EOM DriverRF test of the EOM/AOM Driver S1500117

7) Make sure the on/off RF button works,
=> OK

8) Make sure the power output doesn't oscillate,

Connect the RF output to an oscilloscope (50Ohm)
=> RF output: there is no obvious oscillation

Connect the TP1 connector to an oscilloscope
=> check the oscillation with an oscilloscope and SR785 => OK

Connect the CTRL connector to an oscilloscope
=> check the oscillation with an oscilloscope and SR785 => OK

9) EXC check
Connect a function generator to the exc port.
Set the FG output to 1kHz 2Vpk. Check the signal TP1
Turn off the exc switch -> no output
Turn on the exc switch -> nominally 200mVpk

=> OK

10) Openloop transfer function

Connect SR785 FG->EXC TP2->CHA TP1->CHB
EXC 300mV 100Hz-100kHz 200 line

Network Analyzer (AG4395A)
EXC 0dBm TP1->CHA TP2->CHB, measure A/B
801 line
CHA: 0dBatt CHB: 0dBatt
1kHz~2MHz
UGF 133kHz, phase -133.19deg = PM 47deg

11) Calibrate the output with the trimmer on the front panel

13dB setting -> 12.89dBm (maximum setting)

12) Check MON, BIAS and CTRL outputs,
CTRL:    2.95V
MON(L):    6.5mV
BIAS(L):    1.81V
MON(R):    10.7mV
BIAS(R):    1.85V

13) Output check
4+0dB    3.99dBm
6    5.89
8    7.87
10    9.87
12    11.88
14    13.89
16    15.89
18    17.92
20    19.94
22    21.95
24    24.00
26    26.06

4dB+
0.0    3.99
0.2    4.17
0.4    4.36
0.6    4.56
0.8    4.75
1.0    4.94
1.2    5.13
1.4    5.32
1.6    5.53
1.8    5.73
2.0    5.92
2.2    6.10

16dB+
0.0    15.82
0.2    16.11
0.4    16.31
0.6    16.51
0.8    16.72
1.0    16.92
1.2    17.12
1.4    17.32
1.6    17.53
1.8    17.72
2.0    17.92
2.2    18.13

26dB+
0.0    26.06
0.2    26.27
0.4    26.46
0.6    26.58
0.8    26.68
1.0    26.69
1.2    26.70
1.4    3.98
1.6    3.99
1.8    3.99
2.0    3.99
2.2    3.99

 

 

 

  229   Sat Jul 25 17:24:11 2015 KojiElectronicsAM Stabilized EOM DriverRF test of the EOM/AOM Driver S1500117

(Calibration for Attachment 5 corrected Aug 27, 2015)


Now the test procedure fo the unit is written in the document https://dcc.ligo.org/LIGO-T1500404

And the test result of the first unit (S1500117) has also been uploaded to DCC https://dcc.ligo.org/LIGO-S1500117

Here are some supplimental information with plots

Attachment 1: OLTF of the AM amplitude stabilization servo.

Attachment 2: CLTF/OLTF of the 2nd AM detector self bias adj servo

The secondary RF AM detector provides us the out-of-loop measurement. The secondary loop has an internal control loop to adjust the DC bias.
This loop supresses the RF AM error signal below the control bandwidth. This has been tested by injecting the random noise to the exc and taking
the transfer function between the primary RF AM detector error (MON1) and the secondary one (MON2).

Then the closed loop TF was converted to open loop TF to see where the UGF is. The UGF is 1Hz and the phase margin is 60deg.

Above 10Hz, the residual control gain is <3%. Therefore we practically don't need any compensation of MON2 output above 10Hz.

Attachment 3: Comparison between the power setting and the output power

Attachment 4: Raw power spectra of the monitor channels

Attachment 5: Calibrated in-loop and out-of-loop AM noise spectra

Attachment 6: TFs between BNC monitor ports and DAQ differential signals

BIAS2 and CTRL look just fine. BIAS2 has a gain of two due to the differential output. The TF for CTRL has a HPF shape, but in fact the DC gain is two.
This frequency response comesfro that the actual CTRLis taken after the final stage that has LPF feature while the CTRL DAQ was taken before this final stage.

MON1 and MON2 have some riddle. I could not justify why they have the gain of 10 instead of 20. I looked into the issue (next entry)

Attachment 7: TF between the signals for the CTRL monitor (main unit) and the CTRL monitor on the remote control test rig

The CTRL monitor for the test rig is taken from the CTRL SLOW signal. There fore there is a LPF feature together with the HPF feature described above.
This TF can be used as a reference.

 

Attachment 1: EOM_Driver_AM_servo_OLTF.pdf
EOM_Driver_AM_servo_OLTF.pdf
Attachment 2: EOM_Driver_2ndAMdet_CLOLTF.pdf
EOM_Driver_2ndAMdet_CLOLTF.pdf
Attachment 3: EOM_Driver_Output_Power.pdf
EOM_Driver_Output_Power.pdf
Attachment 4: EOM_Driver_Mon_PSD.pdf
EOM_Driver_Mon_PSD.pdf
Attachment 5: EOM_Driver_AM_PSD.pdf
EOM_Driver_AM_PSD.pdf
Attachment 6: EOM_Driver_DAQ_TF_test.pdf
EOM_Driver_DAQ_TF_test.pdf
Attachment 7: EOM_Driver_CTRL_TESTRIG_TF.pdf
EOM_Driver_CTRL_TESTRIG_TF.pdf
  230   Tue Jul 28 18:36:50 2015 KojiElectronicsAM Stabilized EOM DriverRF test of the EOM/AOM Driver S1500117

Final Test Result of S1500117: https://dcc.ligo.org/LIGO-S1500117


After some staring the schematic and checking some TFs, I found that the DAQ channels for MON2 have a mistake in the circuit.
Differential driver U14 and U15 of D0900848 are intended to have the gain of +10 and -10 for the pos and neg outputs.
However, the positive output has the gain of +1.

Daniel suggested to shift R66 and R68 by one pad, replace with them by ~5.5K and add a small wire from the now "in air" pad to
the GND near pad 4.

The actual modification can be seen on Attachment 1. The resulting gain was +10.1 as the resisters of 5.49k were used.

The resulting transfer function is found in the Attachment 2. ow the nominal magnitude is ~x20.

You may wonder why the transfer function for MON1 is noisy and lower at low freq (f<1kHz). This is because the input noise of the FFT analizer
contributed to the BNC MON1 signal. High frequency part dominated the RMS of the signal and the FFT analyzer could not have proper range
for the floor noise. The actual voltage noise comparison between the BNC and DAQ signals for MON1 and MON2 can be found in Attachment 3.
 

Attachment 1: IMG_20150727_214536773_HDR.jpg
IMG_20150727_214536773_HDR.jpg
Attachment 2: EOM_Driver_DAQ_TF_test.pdf
EOM_Driver_DAQ_TF_test.pdf
Attachment 3: EOM_Driver_Mon_PSD.pdf
EOM_Driver_Mon_PSD.pdf
  231   Mon Aug 10 02:11:47 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

This is an entry for the work on Aug 3rd.

LIGO DCC E1500151

Power supply check

- Removed the RF AM detector board and exposed the D0900848 power board. The board revision is Rev. A.

- The power supply voltage of +30.2V and -30.5V were connected as +/-31V supplies. These were the maximum I could produce with the bench power supply I had. +17.2V and -17.1V were supplied as +/-17V supplies.

- Voltage reference: The reference voltages were not +/-10V but +/-17V. The cause was tracked down to the voltage reference chip LT1021-10. It was found that the chip was mechanically destroyed (Attachment 1, the legs were cut by me) and unluckily producing +17V. The chip was removed from the board. Since I didn't have any spare LT1021-10, a 8pin DIP socket and an AD587 was used instead. Indeed AD587 has similar performance or even better in some aspects. This fixed the reference voltage.

- -5V supply: After the fix of the reference voltage, I still did not have correct the output voltage of -5V at TP12. It was found that the backpanel had some mechanical stress and caused a leg of the current boost transister cut and a peeling of the PCB pattern on the component lalyer (Attachment 2). I could find some spare of the transister at the 40m. The transister was replaced, and the pattern was fixed by a wire. This fixed the DC values of the power supply voltages. In fact, +/-24V pins had +/-23.7V. But this was as expected. (1+2.74k/2k)*10V = 23.7V .

- VREFP Oscillation: Similarly to the EOM/AOM driver power supply board (http://nodus.ligo.caltech.edu:8080/OMC_Lab/225), the buffer stage for the +10V has an oscillation at 762kHz with 400mVpp at VREFP. This was fixed by replacing C20 (100pF) with 1.2nF. The cap of 680pF was tried at first, but this was not enough to completely elliminate the oscilation.

- VREFN Oscillation: Then, similarly to the EOM/AOM driver power supply board (http://nodus.ligo.caltech.edu:8080/OMC_Lab/225), the amplifier and buffer stage for the -10V has an oscillation at 18MHz with 60mVpp at VREFN. This was fixed by soldering 100pF between pin6 and pin7 of U6.

- Voltage "OK" signal: Checked the voltage of pin5 of U1 and U4 (they are connected). Nominally the OK voltage had +2.78V. The OK voltage turned to "Low (~0V)" when:
The +31V were lowered below +27.5V.
The +31V were lowered below -25.2V.
The +17V were lowered below +15.2V.
The +17V were lowered below -15.4V.

- Current draw: The voltage and current supply on the bench top supplies are listed below

+30.2V 0.09A, -30.5V 0.08A, +17.2V 0.21A, -17.1V 0.10A

- Testpoint voltages:

TP12(-5V) -5.00V
TP11(-15) -14.99V
TP10(-24V) -23.69V
TP9(-10V) -9.99V
TP5(-17V) -17.15V
TP6(-31V) -30.69

TP2(+31V) +30.37V
TP3(+17V) +17.24V
TP8(+10V) +10.00V
TP16(+28V) +28.00V
TP13(+24V) +23.70V
TP14(+15V) +15.00V
TP15(+5V) +5.00V

 

Attachment 1: IMG_20150803_223403975.jpg
IMG_20150803_223403975.jpg
Attachment 2: IMG_20150803_221210816_HDR.jpg
IMG_20150803_221210816_HDR.jpg
Attachment 3: IMG_20150803_223420267.jpg
IMG_20150803_223420267.jpg
  232   Mon Aug 10 11:39:40 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Entry for Aug 6th, 2015

I faced with difficulties to operate the RF AM detectors.

I tried to operate the RF AM detector. In short I could not as I could not remove the saturation of the MON outputs, no matter how jiggle the power select rotary switches. The input power was 10~15dBm.

D0900761 Rev.A
https://dcc.ligo.org/LIGO-D0900761-v1

I've measured the bias voltage at TP1. Is the bias such high? And does it show this inversion of the slope at high dBm settings?

Setting Vbias
 [dBm]   [V]

   0    21.4
   2    21.0
   4    20.5
   6    19.8
   8    18.8
  10    17.7
  12    16.3
  14    14.2
  16    11.9
  18    10.6
  20    11.8
  22    15.0


The SURF report (https://dcc.ligo.org/LIGO-T1000574) shows monotonic dependence of Vbias from 0.6V to 10V (That is supposed to be the half of the voltage at TP1). 
I wonder I need to reprogram FPGA?

But if this is the issue, the second detector should still work as it has the internal loop to adjust the bias by itself.
TP3 (Page 1 of D0900761 Rev.A) was railed. But still MON2 was saturated.
I didn't see TP2 was also railed. It was ~1V (not sure any more about the polarity). But TP2 should also railed.

Needs further investigation

  233   Mon Aug 10 11:57:17 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Spending some days to figure out how to program CPLD (Xilinx CoolRunner II XC2C384).

I learned that the JTAG cable which Daniel sent to me (Altium JTAG USB adapter) was not compatible with Xilinx ISE's iMPACT.

I need to use Altium to program the CPLD. However I'm stuck there. Altium recognizes the JTAG cable but does not see CPLD. (Attachment 1)

Upon the trials, I followed the instruction on awiki as Daniel suggested.
http://here https://awiki.ligo-wa.caltech.edu/aLIGO/TimingFpgaCode

Altium version is 15.1. Xilinx ISE Version is 14.7

Attachment 1: screen_shot.png
screen_shot.png
  234   Mon Aug 10 12:09:49 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Still suffering from a power supply issue!

I have been tracking the issues I'm having with the RF AM detector board.

I found that the -5V test point did not show -5V but ~+5V! It seemed that this pin was not connected to -5V but was passive.

I removed the RF AM detector board and exposed the power board again. Pin 11 of P3 interboard connector indeed was not connected to TP12 (-5V). What the hell?

As seen in the attached photo, the PCB pattern for the Pin 11 is missing at the label "!?" and not driven. I soldered a piece of wire there and now Pin11 is at -5V.


This fix actually changed several things. Now the bias setting by the rotary switches works.

Setting BIAS1
 [dBm]   [V]

   0    0.585
   2    0.720
   4    0.897
   6    1.12
   8    1.42
  10    1.79
  12    2.25
  14    2.84
  16    3.60
  18    4.56
  20    5.75
  22    7.37

This allows me to elliminate the saturation of MON1 of the first RF AM detector. I can go ahead to the next step for the first channel.

Now the bias feedback of the second detector is also behaving better. Now TP2 is railing.

Still MON2 is saturated. So, the behavior of the peak detectors needs to be reviewed.

Attachment 1: IMG_20150809_215628585_HDR.jpg
IMG_20150809_215628585_HDR.jpg
  235   Thu Aug 20 01:35:01 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

We wanted to know the  transimpedance of the OMC DCPD at high frequency (1M~10M).
For this purpose, the OMC DCPD chain was built at the 40m. The measurement setup is shown in Attachment 1.

- As the preamp box has the differential output (pin1 and pin6 of the last DB9), pomona clips were used to measure the transfer functions for the pos and neg outputs individually.

- In order to calibrate the measurements into transimpedances, New Focus 1611 is used. The output of this PD is AC coupled below 30kHz.
This cutoff was calibrated using another broadband PD (Thorlabs PDA255 ~50MHz).

Result: Attachment 2
- Up to 1MHz, the transimpedance matched well with the expected AF transfer function. At 1MHz the transimpedance is 400.

- Above 1MHz, sharp cut off at 3MHz was found. This is consistent with the openloop TF of LT1128.

 

Attachment 1: OMC_DCPD_Chain.pdf
OMC_DCPD_Chain.pdf
Attachment 2: OMC_DCPD_Transimpedance.pdf
OMC_DCPD_Transimpedance.pdf
  236   Wed Aug 26 11:31:33 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

The noise levels of the output pins (pin1/pin6) are measured. Note that the measurement is done with SE. i.e. There was no common mode noise rejection.

Attachment 1: OMC_DCPD_OutputNoise.pdf
OMC_DCPD_OutputNoise.pdf
  237   Fri Aug 28 01:08:14 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ Calibration

Worked on the calibration of the RF AM Measurement Unit.

The calibration concept is as follows:

  • Generate AM modulated RF output
  • Measure sideband amplitude using a network anayzer (HP4395A). This gives us the SSB carrier-sideband ratio in dBc.
  • Measure the output of the RF AM measurement unit with the same RF signal
  • Determine the relationship between dBc(SSB) and the output Vrms.

The AM modulated signal is produced using DS345 function generator. This FG allows us to modulate
the output by giving an external modulation signal from the rear panel. In the calibration, a 1kHz signal with
the DC offset of 3V was given as the external modulation source. The output frequency and output power of
DS345 was set to be 30.2MHz (maximum of the unit) and 14.6dBm. This actually imposed the output
power of 10.346dBm. Here is the result with the modulation amplitude varied

                 RF Power measured             Monitor output
Modulation       with HP4395A (dBm)           Measure with SR785 (mVrms)
1kHz (mVpk)   Carrier    USB      LSB          MON1       MON2
   0.5        9.841    -72.621  -73.325          8.832      8.800
   1          9.99     -65.89   -65.975         17.59      17.52
   2          9.948    -60.056  -59.747         35.26      35.07
   3          9.90     -56.278  -56.33          53.04      52.9
   5          9.906    -51.798  -51.797         88.83      88.57
  10          9.892    -45.823  -45.831        177.6      177.1
  20          9.870    -39.814  -39.823        355.3      354.4
  30          9.8574   -36.294  -36.307        532.1      531.1
  50          9.8698   -31.86   -31.867        886.8      885.2
 100          9.8735   -25.843  -25.847       1772       1769
 150          9.8734   -22.316  -22.32        2656       2652
 200          9.8665   -19.819  -19.826       3542       3539
 300          9.8744   -16.295  -16.301       5313       5308

The SSB carrier sideband ratio is derived by SSB[dBc] = (USB[dBm]+LSB[dBm])/2 - Carrier[dBm]

This measurement suggests that 10^(dBc/20) and Vrms has a linear relationship. (Attachment 1)
The data points were fitted by the function y= a x.

=> 10^dBc(SSB)/20 = 108*Vrms (@10.346dBm input)


Now we want to confirm this calibration.

DS345 @30.2MHz was modulated with the DC offset + random noise. The resulting AM modulated RF was checked with the network analyzer and the RFAM detector
in order to compare the calibrated dBc/Hz curves.

A) SR785 was set to produce random noise
B) Brought 2nd DS345 just to produce the DC offset of -2.52V (Offset display -1.26V)
Those two are added (A-B) by an SR560 (DC coupling, G=+1, 50 Ohm out).
The output was fed to Ext AM in DS345(#1)

DS345(#1) was set to 30.2MHz 16dBm => The measured output power was 10.3dBm.

On the network analyzer the carrier power at 30.2MHz was 9.89dBm

Measurement 1) SR785     1.6kHz span 30mV random noise (observed flat AM noise)
Measurement 2) SR785   12.8kHz span 100mV random noise (observed flat AM noise)
Measurement 3) SR785 102.4kHz span 300mV random noise (observed cut off of the AM modulation due to the BW of DS345)

The comparison plot is attached as Attachment 2. Note that those three measurements are independent and are not supposed to match each other.
The network analyzer result and RFAM measurement unit output should agree if the calibration is correct. In fact they do agree well.

 

Attachment 1: RFAM_detector_calib.pdf
RFAM_detector_calib.pdf
Attachment 2: RFAM_detector_calib_spectra.pdf
RFAM_detector_calib_spectra.pdf
  238   Fri Aug 28 02:14:53 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ 37MHz OCXO AM measurement

In order to check the noise level of the RFAM detector, the power and cross spectra for the same signal source
were simultaneously measured with the two RFAM detectors.


As a signal source, 37MHz OCXO using a wenzel oscillator was used. The output from the signal source
was equaly splitted by a power splitter and fed to the RFAM detector CHB(Mon1) and CHA(Mon2).

The error signal for CHB (Mon1) were monitored by an oscilloscope to find an appropriate bias value.
The bias for CHA are adjusted automatically by the slow bias servo.

The spectra were measured with two different power settings:

Low Power setting: The signal source with 6+5dB attenuation was used. This yielded 10.3dBm at the each unit input.
The calibration of the low power setting is dBc = 20*log10(Vrms/108). (See previous elog entry)

High Power setting: The signal source was used without any attenuation. This yielded 22.4dBm at the each unit input.
The calibration for the high power setting was measured upon the measurement.
SR785 was set to have 1kHz sinusoidal output with the amplitude of 10mVpk and the offset of 4.1V.
This modulation signal was fed to DS345 at 30.2MHz with 24.00dBm
The network analyzer measured the carrier and sideband power levels
30.2MHz 21.865dBm
USB    -37.047dBm
LSB    -37.080dBm  ==> -58.9285 dBc (= 0.0011313)

The RF signal was fed to the input and the signal amplitude at Mon1 and Mon2 were measured
MON1 => 505   mVrms => 446.392 Vrms/ratio
MON2 => 505.7 mVrms => 447.011 Vrms/ratio
dBc = 20*log10(Vrms/446.5).


Using the cross specrum (or coherence)of the two signals, we can infer the noise level of the detector.

Suppose there are two time-series x(t) and y(t) that contain the same signal s(t) and independent but same size of noise n(t) and m(t)

x(t) = n(t) + s(t)
y(t) = m(t) + s(t)

Since n, m, s are not correlated, PSDs of x and y are

Pxx = Pnn + Pss
Pyy = Pmm+Pss = Pnn+Pss

The coherence between x(t) and y(t) is defined by

Cxy = |Pxy|^2/Pxx/Pyy = |Pxy|^2/Pxx^2

In fact |Pxy| = Pss. Therefore

sqrt(Cxy) = Pss/Pxx

What we want to know is Pnn

Pnn = Pxx - Pss = Pxx[1 - sqrt(Cxy)]
=> Snn = sqrt(Pnn) = Sxx * sqrt[1 - sqrt(Cxy)]

This is slightly different from the case where you don't have the noise in one of the time series (e.g. feedforward cancellation or bruco)


Measurement results

 

Power spectra:
Mon1 and Mon2 for both input power levels exhibited the same PSD between 10Hz to 1kHz. This basically supports that the calibration for the 22dBm input (at least relative to the calibration for 10dBm input) was corrected. Abobe 1kHz and below 10Hz, some reduction of the noise by the increase of the input power was observed. From the coherence analysis, the floor level for the 10dBm input was -178, -175, -155dBc/Hz at 1kHz, 100Hz, and 10Hz, respectively. For the 22dBm input, they are improved down to -188, -182, and -167dBc/Hz at 1kHz, 100Hz, and 10Hz, respectively.

 

Attachment 1: OCXO_AM_noise.pdf
OCXO_AM_noise.pdf
  239   Sun Sep 6 16:50:51 2015 KojiElectronicsGeneralUnit test of the EOM/AOM Driver S1500118

TEST Result: S1500118

Additional notes

- Checked the power supply. All voltages look quiet and stationary.

- Checked the internal RF cables too see if there is any missing shield soldering => Looked fine

- Noticed that the RFAM detector board has +/-21V for the +/-24V lines => It seems that this is nominal according to the schematic

- Noticed that the RFAM detector sensitivity were doubled fomr the other unit.
  => This is reated to the modification (E1500353) of  "Controller Board D0900761-B Change 1" (doubling the monitor output gain)

- Noticed that the transfer function of the CTRL signal on the BNC and the DAQ output.
  => This is reated to the modification (E1500353) of  "Servo Board D0900847-B Change 1"  (servo transfer function chage)
  => The measured transfer function did not agree with the prediction from the circuit constants in this document
  => From the observation of the servo board it was found that R69 was not 200Ohm but 66.5 Ohm (See attachment 1).
       This explained the measured transfer function. The actuator TF has: P 2.36, Z 120., K -1@DC (0.020@HF)

- Similarly, the TF between the CTRL port on the unit and the CTRL port on the test rig was also modified.

Noise level

Attachment 2

- The amplitude noise in dBc (SSB) was measured at the output of 27dBm. From the test sheet, the noise level with 13dBm output was also referred. From the coherence of the MON1 and MON2, the noise level was inferred. It suggests that the floor level is better than 180dBc/Hz. However, there is a 1/f like noise below 1k and is dominating the actual noise level of the RF output. Daniel suggested that we should check nonlinear downconversion from the high frequency noise due to the noise attenuator. This will be check with the coming units.

Attachment 1: P9037810.JPG
P9037810.JPG
Attachment 2: RF_AM_spectra.pdf
RF_AM_spectra.pdf
  240   Tue Sep 8 10:55:31 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ 37MHz OCXO AM measurement

Test sheet: https://dcc.ligo.org/LIGO-E1400445

Test Result (S1500114): https://dcc.ligo.org/S1500114

  245   Tue Dec 15 13:38:34 2015 KojiElectronicsCharacterizationEOM Driver linearity check

Linearity of the EOM driver was tested. This test has been done on Nov 10, 2015.

- Attachment 1: Output power vs requested power. The output start to deviate from the request above 22dBm request.

- Attachment 2: Ctrl and Bias voltages vs requested power. This bias was measured with the out-of-loop channel.
The variable attenuator has the voltage range of 0~15V for 50dB~2dB attenuation.

Therefore this means that:

- The power setting gives a voltage logarithmically increased as the requested power increases. And the two power detectors are watching similar voltages.

- And the servo is properly working. The control is with in the range.

- Even when the given RF power is low, the power detectors are reporting high value. Is there any mechanism to realize such a condition???

Attachment 1: Output_linearity.pdf
Output_linearity.pdf
Attachment 2: Ctrl_Bias.pdf
Ctrl_Bias.pdf
  246   Tue Dec 15 13:39:13 2015 KojiElectronicsCharacterizationPhase noise measurement of aLIGO EOM drivers

This measurement has been done on Dec 1st, 2015.


The phase noise added by the EOM driver was tested.

The test setup is depicted in the attached PDF. The phase of the RF detector was set so that the output is close to zero crossing as much as possible with the precision of 0.5ns using a switchable delay line box. The phase to voltage conversion was checked by changing the delayline by 1ns. This gave me somewhat larger conversion factor compared to the sine wave test using an independent signal generator. This was due to the saturation of the phase detector as the LO and RF both have similar high RF level for the frequency mixer used.

The measurement has done with 1) no EOM driver involved, 2) one EOM driver inserted in the RF path, and 3) EOM drivers inserted in both the LO and RF paths.

I could not understand why the measurement limit is so high. Also the case 2 seems too low comsidering the noise level for 1) and 3).

At least we could see clear increase of the noise between the case 1) and 3). Therefore, we can infer the phase noise added by the EOM driver from the measurements.

Note: The additional phase noise could be associated with the original amplitude noise of the oscillator and the amplitude-to-phase conversion by the variable attenuator. This means that the noise could be corellated between two EOM drivers. The true test could be done using a PLL with a quiet VCO. Unfortuantely I don't have a good oscillator sufficient for this measurement.

Attachment 1: phase_noise.pdf
phase_noise.pdf phase_noise.pdf phase_noise.pdf
Attachment 2: phase_noise_9MHz.pdf
phase_noise_9MHz.pdf
ELOG V3.1.3-