40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 9 of 9  Not logged in ELOG logo
ID Date Author Type Category Subjectdown
  369   Mon Jul 1 12:38:49 2019 KojiOpticsCharacterizationA and M prisms perpendicularity measurement

[Stephen, Koji]

The perpendicularity of some of the A and M prisms were tested.

Results

- The measurement results are listed as Attachment 1 and 2 together with the comparisons to the measurement in 2013 and the spec provided from the vendor.
- Here, the positive number means that the front side of the prism has larger angle than 90deg for the air side. (i.e. positive number = facing up)
- The RoC of the curved mirrors is 2.5m. Therefore, roughly speaking, 83arcsec corresponds to ~1mm beam spot shift. The requirement is 30 arcsec.
- The A prisms tend to have positive and small angle deviations while the M prisms to have negative and large (~50arcsec) angle deviations.
- The consistency: The measurements in 2013 and 2019 have some descrepancy but not too big. This variation tells us the reliability of the measurements, say +/-30arcsec.

Setup

- The photos of the setup is shown as Attachments 3/4/5. Basically this follows the procedure described in Sec 2.2.2 of T1500060.
- The autocollimator (AC) is held with the V holders + posts.
- The periscope post for the turning Al mirror was brought from Downs by Stephen.
- The turning mirror is a 2" Al mirror. The alignment of the turning mirror was initially aligned using the retroreflection to the AC. Then the pitching of the holder was rotated by 22.5deg so that the AC beam goes down to the prism.
- The prism is held on a Al mirror using the post taken from a prism mount.
- If the maximum illumination (8V) is used, the greenish light becomes visible and the alignment becomes easier.
- There are two reflections 1) The beam which hits the prism first, and then the bottom mirror second, 2) The beam which hits the bottom mirror first and then the prism second. Each beam gains 2 theta compared to the perfect retroreflection case. Therefore the two beams have 4 theta of their relative angle difference. The AC is calibrated to detect 2 theta and tells you theta (1div = 1 arcmin = 60 arcsec). So just read the angle defferencein the AC and divide the number by 2 (not 4).

Attachment 1: A_prism.png
A_prism.png
Attachment 2: M_prism.png
M_prism.png
Attachment 3: P_20190627_222658.jpg
P_20190627_222658.jpg
Attachment 4: setup2.JPG
setup2.JPG
Attachment 5: M01_1_id.JPG
M01_1_id.JPG
Attachment 6: A14_meas.JPG
A14_meas.JPG
  303   Thu Jul 26 20:57:07 2018 KojiElectronicsCharacterization9MHz port tuned impedance

[Rich Koji]

The 9MHz port was tuned and the impedance was measured.

Attachment 1: impedance_eom.pdf
impedance_eom.pdf
Attachment 2: eom9.pdf
eom9.pdf
Attachment 3: eom_models_9MHz.pdf
eom_models_9MHz.pdf
  400   Mon Nov 9 22:06:18 2020 KojiMechanicsGeneral5th OMC Transport Fixture

I helped to complete the 5th OMC Transport Fixture. It was built at the 40m clean room and brought to the OMC lab. The fixture hardware (~screws) were also brought there.

Attachment 1: IMG_0211.jpg
IMG_0211.jpg
Attachment 2: IMG_0221.jpg
IMG_0221.jpg
  219   Sat Jan 17 11:40:04 2015 KojiGeneralGeneral3rd OMC completed

Jan 15, 2015 3rd OMC completed

The face caps of the DCPD/QPD cables were installed (Helicoils inserted)
PD7&10 swapped with PD11(for DCPD T) and PD12(DCPD R).
Firct Contact coating removed

Note on the 3rd OMC

Before the 3rdOMC is actually used,

- First Contact should be applied again for preventing contamination during the installation

- DCPD glass windows should be removed

  297   Wed May 30 17:44:23 2018 KojiOpticsCharacterization3IFO EOM surface check

3IFO EOM dark microscope images courtesy by GariLynn and Rich

Attachment1/2: Hole #1
Attachment3/4: Hole #2
Attachment5: Hole #2

Attachment 1: IMG_5756.JPG
IMG_5756.JPG
Attachment 2: IMG_5757.JPG
IMG_5757.JPG
Attachment 3: IMG_5758.JPG
IMG_5758.JPG
Attachment 4: IMG_5759.JPG
IMG_5759.JPG
Attachment 5: Looking_at_Hole2.png
Looking_at_Hole2.png
  298   Mon Jul 2 11:30:22 2018 KojiElectronicsCharacterization3IFO EOM impedance measurement

[Rich Koji]

3IFO EOM (before any modification) was tested to measure the impedance of each port.

The impedance plot and the impedance data (triplets of freq, reZ, imZ) were attached to this entry.

Attachment 1: impedance_eom.pdf
impedance_eom.pdf
Attachment 2: EOM_Z_DATA.zip
  294   Sat May 5 22:51:04 2018 KojiOpticsGeneral3IFO EOM Optical test

The 3IFO EOM test performed at the 40m. Result: 40m ELOG 13819

  250   Thu Feb 18 21:08:32 2016 KojiGeneralLoan / Lending(all returned) Antonio loan

Antonio borrowed: Rich's PD cutter (returned), Ohir power meter(returned), Thorlabs power meter head, Chopper

  379   Tue Sep 24 12:19:20 2019 StephenGeneralGeneral Dirty ABO test run prior to PZT Subassembly Bonding

The 40m Bake Lab's Dirty ABO's OMEGA PID controller was borrowed for another oven in the Bake Lab (sound familiar? OMC elog 377), so I have had to play with the tuning and parameters to recover. This bake seemed to inadequately match the intended temperature profile for some reason (intended profile is shown by plotting prior qualifying bake for comparison).

The parameters utilized here are exactly matching the prior qualifying bake, except that the autotuning may have settled on different parameters.

Options to proceed, as I see them, are as follows:

  1. reposition the oven's driving thermocouple closer to the load and attempt to qualify the oven again overnight
  2. retune the controller and attempt to qualify the oven again overnight
  3. proceed with current bake profile, except monitor the soak temperature via data logger thermocouple and intervene if temperature is too high by manually changing the setpoint.

 

Attachment 1: image_showing_20190923_abo_qualifying_bake.png
image_showing_20190923_abo_qualifying_bake.png
  318   Sat Feb 2 20:35:02 2019 KojiOpticsCharacterization Summary: OMC(002) HOM structure recalculation (after mirror replacement)

OMC (002) after repair
History:
Mirror replacement after the damage at H1. Measurement date 2019/1/10

Attachment 1: OMC_HOM_190110.pdf
OMC_HOM_190110.pdf
Attachment 2: HOM_PZTV.pdf
HOM_PZTV.pdf
Attachment 3: HOM_plot_PZT0_0.pdf
HOM_plot_PZT0_0.pdf
Attachment 4: Cav_scan_response_PZT.pdf
Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf Cav_scan_response_PZT.pdf
ELOG V3.1.3-