ID |
Date |
Author |
Type |
Category |
Subject |
66
|
Fri Mar 1 23:52:18 2013 |
Koji | Optics | Characterization | Wedge measurement with the autocollimator and the rotation stage | Measurement:
- E1: α = 0.672 deg, β = +0.0 arcmin (0 div up)
- E2: α = 0.631 deg, β = - 0.3 arcmin (-0.15 div down)
- E3: α = 0.642 deg, β = +0.0 arcmin (0 div up)
- E4: α = 0.659 deg, β = +1.4 arcmin (0.7 div up)
- E5: α = 0.695 deg, β = +0.5 arcmin (0.5 div up)
- E6: α = 0.665 deg, β = - 0.4 arcmin (-0.2 div down)
- E7: α = 0.652 deg, β = +1.0 arcmin (0.5 div up)
- E8: α = 0.675 deg, β = +2.0 arcmin (1.0 div up)
- E9: α = 0.645 deg, β = - 2.4 arcmin (-1.2 div down)
- E10: α = 0.640 deg, β = +2.2 arcmin (1.1 div up)
- E11: α = 0.638 deg, β = +1.6 arcmin (0.8 div up)
- E12: α = 0.660 deg, β = +1.6 arcmin (0.8 div up)
- E13: α = 0.638 deg, β = +0.8 arcmin (0.4 div up)
- E14: α = 0.655 deg, β = +0.4 arcmin (0.2 div up)
- E15: α = 0.640 deg, β = +1.4 arcmin (0.7 div up)
- E16: α = 0.655 deg, β = +0.6 arcmin (0.3 div up)
- E17: α = 0.650 deg, β = +0.8 arcmin (0.4 div up)
- E18: α = 0.640 deg, β = +2.4 arcmin (1.2 div up)
Analysis:
- \theta_H = ArcSin[Sin(α) / n]
- \theta_V = ArcSin[Sin(β) / n]/2
- E1: \theta_H = 0.460 deg, \theta_V = 0.000 deg
- E2: \theta_H = 0.432 deg, \theta_V = -0.0034 deg
- E3: \theta_H = 0.439 deg, \theta_V = 0.000 deg
- E4: \theta_H = 0.451 deg, \theta_V = 0.016 deg
- E5: \theta_H = 0.475 deg, \theta_V = 0.011 deg
- E6: \theta_H = 0.455 deg, \theta_V = -0.0046 deg
- E7: \theta_H = 0.446 deg, \theta_V = 0.011 deg
- E8: \theta_H = 0.462 deg, \theta_V = 0.023 deg
- E9: \theta_H = 0.441 deg, \theta_V = -0.027 deg
- E10: \theta_H = 0.438 deg, \theta_V = 0.025 deg
- E11: \theta_H = 0.436 deg, \theta_V = 0.018 deg
- E12: \theta_H = 0.451 deg, \theta_V = 0.018 deg
- E13: \theta_H = 0.436 deg, \theta_V = 0.0091 deg
- E14: \theta_H = 0.448 deg, \theta_V = 0.0046 deg
- E15: \theta_H = 0.438 deg, \theta_V = 0.016 deg
- E16: \theta_H = 0.448 deg, \theta_V = 0.0068 deg
- E17: \theta_H = 0.444 deg, \theta_V = 0.0091 deg
- E18: \theta_H = 0.438 deg, \theta_V = 0.027 deg
|
67
|
Tue Mar 5 19:37:00 2013 |
Zach | Optics | Characterization | eLIGO OMC visibility vs. power measurement details | EDIT (ZK): Koji points out that (1 - Ti) should really be the non-resonant reflectivity of the aligned cavity, which is much closer to 1. However, it should *actually* be the non-resonant reflectivity of the entire OMC assembly, including the steering mirror (see bottom of post). The steering mirror has T ~ 0.3%, so the true results are somewhere between my numbers and those with (1 - Ti) -> 1. In practice, though, these effects are swamped by the other errors.
More information about the power-dependent visibility measurement:
As a blanket statement, this measurement was done by exact analogy to those made by Sam and Sheon during S6 (c.f. LHO iLog 11/7/2011 and technical note T1100562), since it was supposed to be a verification that this effect still remains. There are absolutely better ways to do (i.e., ways that should give lower measurement error), and these should be investigated for our characterization. Obviously, I volunteer.
All measurements were made by reading the output voltages produced by photodetectors at the REFL and TRANS ports. The REFL PD is a BBPD (DC output), and the TRANS is a PDA255. Both these PDs were calibrated using a Thorlabs power meter (Controller: PM100D; Head: S12XC series photodiode-based---not sure if X = 0,2... Si or Ge) at the lowest and highest power settings, and these results agreed to the few-percent level. This can be a major source of error.
The power was adjusted using the HWP/PBS combination towards the beginning of the experiment. For reference, an early layout of the test setup can be seen in LLO:5978 (though, as mentioned above, the REFL and TRANS PDs have been replaced since then---see LLO:5994). This may or may not be a "clean" way to change the power, but the analysis should take the effect of junk light into account.

Below is an explanation of the three traces in the plot. First:
- TRANS: TRANS signal calibrated to W
- REFL_UL: REFL signal while cavity is unlocked, calibrated to W
- REFL_L: REFL signal while cavity is locked, calibrated to W
- Psb: Sideband power (relative to carrier)
- Ti: Input mirror transmission (in power)
Now, the traces
- Raw transmission: This measurement is simple. It is just the raw throughput of the cavity, corrected for the power in the sidebands which should not get through. I had the "AM_REF" PD, which could serve as an input power monitor, but I thought it was better to just use REFL_UL as the input power monitor and not introduce the error of another PD. This means I must also correct for the reduction in the apparent input power as measured at the REFL PD due to the finite transmission of the input coupler. This was not reported by Sam and Sheon, but can be directly inferred from their data.
- trans_raw = TRANS ./ ( REFL_UL * (1 - Psb) * (1 - Ti) )
- Equivalently, trans_raw = (transmitted power) ./ (input power in carrier mode)
- Coupling: This is how much of the power incident on the cavity gets coupled into the cavity (whether it ends up in transmission or at a loss port). Sheon plots something like (1 - coupling) in his reply to the above-linked iLog post on 11/8/2011.
- coupling = ( REFL_UL * (1 - Ti) - REFL_L ) ./ ( REFL_UL * (1 - Psb) * (1 - Ti) )
- Equivalently, coupling = [ (total input power) - (total reflected power on resonance) ] ./ (input power in carrier mode)
- Visibility: How much of the light that is coupled into the cavity is emerging from the transmitted port? This is what Sam and Sheon call "throughput" or "transmission" and is what is reported in the majority of their plots.
- visibility = TRANS ./ ( REFL_UL * (1 - Ti) - REFL_L )
- Equivalently, visibility = (transmitted power) ./ [ (total input power) - (total reflected power on resonance) ]
- Also equivalently, visibility = trans_raw ./ coupling
The error bars in the measurement were dominated, roughly equally, by 1) systematic error from calibration of the PDs with the power meter, and 2) error from noise in the REFL_L measurement (since the absolute AC noise level in TRANS and REFL_L is the same, and TRANS >> REFL_L, the SNR of the latter is worse).
(1) can be helped by making ALL measurements with a single device. I recommend using something precise and portable like the power meter to make measurements at all the necessary ports. For REFL_L/UL, we can place a beam splitter before the REFL PD, and---after calibrating for the T of this splitter very well using the same power meter---both states can be measured at this port.
(2) can probably be helped by taking longer averaging, though at some point we run into the stability of the power setting itself. Something like 30-60s should be enough to remove the effects of the REFL_L noise, which is concentrated in the few-Hz region in the LLO setup.
One more thing I forgot was the finite transmission of the steering mirror at the OMC input (the transmission of this mirror goes to the QPDs). This will add a fixed error of 0.3%, and I will take it into account in the future. |
68
|
Wed Mar 6 23:24:58 2013 |
Zach | Optics | Characterization | eLIGO OMC visibility vs. power measurement details | I found that, in fact, I had lowered the modulation depth since when I measured it to be 0.45 rads --> Psb = 0.1.
Here is the sweep measurement:

This is Psb = 0.06 --> gamma = 0.35 rads.
This changes the "raw transmission" and "coupling", but not the inferred visibility:

I also measured the cavity AMTF at three powers today: 0.5 mW, 10 mW, and 45 mW input.

They look about the same. If anything, the cavity pole seems slightly lower with the higher power, which is counterintuitive. The expected shift is very small (~10%), since the decay rate is still totally dominated by the mirror transmissions even for the supposed high-loss state (Sam and Sheon estimated the roundtrip loss at high power to be ~1400 ppm, while the combined coupling mirrors' T is 1.6%). I have not been able to fit the cavity poles consistently to within this kind of error. |
74
|
Wed Mar 20 09:38:02 2013 |
Zach | Optics | Characterization | [LLO] OMC test bench modified | For various reasons, I had to switch NPROs (from the LightWave 126 to the Innolight Prometheus).
I installed the laser, realigned the polarization and modulation optics, and then began launching the beam into the fiber, though I have not coupled any light yet.
A diagram is below. Since I do not yet have the AOM, I have shown that future path with a dotted line. Since we will not need to make AMTFs and have a subcarrier at the same time, I have chosen to overload the function of the PBS using the HWP after the AEOM. We will operate in one of two modes:
- AMTF mode: The AOM path is used as a beam dump for the amplitude modulation setup. A razor dump should physically be placed somewhere in the AOM path.
- Subcarrier mode: The AEOM is turned off and the HWP after it is used to adjust the carrier/subcarrier power ratio. I chose a 70T / 30R beamsplitter for the recombining, since we want to be able to provide ~100 mW with the carrier for transmission testing, and we don't need a particularly strong subcarrier beam for probing.

One thing that concerns me slightly: the Prometheus is a dual-output (1064nm/532nm) laser, with separate ports for each. I have blocked and locked out the green path physically, but there is some residual green light visible in the IR output. Since we are planning to do the OMC transmission testing with a Si-based Thorlabs power meter---which is more sensitive to green than IR---I am somewhat worried about the ensuing systematics. I *think* we can minimize the effect by detuning the doubling crystal temperature, but this remains to be verified.
EDIT (ZK): Valera says there should be a dichroic beam splitter in the lab that I can borrow. This should be enough to selectively suppress the green. |
76
|
Sat Mar 23 02:41:00 2013 |
Koji | Optics | General | Black glass beam dumps for the first OMC | Received black glass beam dumps from MIT
- gluing by EP30-2 looks pretty fine. Enough sturdy.
- some gap visible between the glass => incident angle should be considered so that the first beam does not exit from the gap
- Dusts are visible on the glass surface. Some have a lot, the other have less. But every piece still needs to be wiped. |
77
|
Sat Mar 23 13:34:14 2013 |
Koji | Optics | General | PZT assembly prototype glued |
Prototype PZT assembly
Motivation:
Before we glue the PZT assembly, we need to build a prototype. This is to confirm the heat cure process
does not cause any cracking of the PZT or glass components. The CTE of the PZT is 2~3ppm
(depends on the direction) while the one for Fused Silica is 0.55ppm.
Materials:
- A fused silica substrate, 1/2" in dia. Supplied from Garilynn. I defined the chamfered side as the front side.
- PZT: Noliac NAC2124, serial #24, this is a spare PZT as this has the worst length to angle coupling.
- Mounting Prism: D1102069 SN22. This has the worst perpendicularity among the prisms.
- Fixtures:
D1300185 aLIGO OMC CURVED MIRROR BONDING FIXTURE ASSY
D1300186 aLIGO OMC CURVED MIRROR BONDING FIXTURE FRONT
D1300187 aLIGO OMC CURVED MIRROR BONDING FIXTURE BACK
D1300188 aLIGO OMC CURVED MIRROR BONDING FIXTURE RING

Procedure:
- Wipe all of the components with the isopropanol.
- Attach the back piece of the fixture on the Al wrapped bracket.
(The current 4-40 screws for the middle piece are too long and stick out from the back side of the back piece.
Therefore a 1/16" shim for a 1/2" rod is inserted between the bracket and the back piece)
- Brought a glue package to the lab (10:40PM)
- Loosely attach the middle piece to the back piece with four 4-40 screws.
- Insert the mounting prism in the fixture. Insert the PZT in the fixture too.
- Insert a dummy substrate in the fixture.
- Attach the front piece with spring loaded screws.
- Align the PZT and the optic in the fixture. (Basically apply downward force to them)
- Test the rigidity of the assembly (11:30PM)
- Remove the PZT and the mirror. Apply UV epoxy.
(A single dub was applied for each PZT surface of the PZT but this was too much.)
- Make sure the PZT and the optic are aligned by applying the downward force.
- Illuminate UV light from the front.
- Illuminate UV light from the back. (11:50PM)
Procedural issues:
- Long 4-40 screws (described above)
(Circumvented)
- As the PZT is not constrained with the middle piece, it tends to move vertically and rotationally
because of the wire tension. (This is not a mistake but the design so that the PZT is constrained by the optic.)
Therefore after applying glue on the PZT, the motion of the PZT spreads the glue on the back surface of
the curved mirror.
(Solution to be tried) Our solution is to glue the PZT and the mounting prism first with a dummy optics (made of SF2).
The wires should be tacked somewhere on the mount
- The amount of glue on the PZT was too much. I gave one dub of glue for each side.
As a result, excess glue leaks out along the ring.
- The front plate has a chamfered hole but this tends to slip and move the mirror vertically.
Later I used the flat side of the plate to hole the mirror.
(Circumvented) It seems that this hold the mirror in a better way as the plate can't rock
- Spring load for the front plate was too strong. This was because the natural length of the spring was too long.
(Circumvented) The spring was cut at the length of the 4-40 screw. Then attaching the screws became completely fine.

Result:

Slide show:
|
81
|
Mon Mar 25 19:31:16 2013 |
Koji | Optics | General | OMC Top-side gluing | [Koji Jeff Zach]
AAA

BBB

CCC

DDD

|
86
|
Thu Mar 28 03:37:07 2013 |
Zach | Optics | Configuration | Test setup input optics progress | [Lisa, Zach]
Last night (Tuesday), I finished setting up and aligning most of the input optics for the OMC characterization setup. See the diagram below, but the setup consists of:
- Faraday isolator/polarization definition
- HWP+PBS for power splitting into two paths:
- EOM path
- Resonant EOM for PDH sideband generation
- Broadband EOM for frequency scanning
- AOM path
- Double-passed ~200-MHz Isomet AOM for subcarrier generation. NOTE: in this case, I have chosen the m = -1 diffraction order due to the space constraints on the table.
- Recombination of paths on a 50/50 beam splitter---half of the power is lost through the unused port into a black glass dump
- Coupler for launching dual-field beam into a fiber (to OMC)

Today, we placed some lenses into the setup, in two places:
- In the roundabout section of the AOM path that leads to the recombination, to re-match the AOM-path beam to that of the EOM path
- After the recombination beam splitter, to match the combined beam mode into the fiber
We (Koji, Lisa, and myself) had significant trouble getting more than ~0.1% coupling through the fiber, and after a while we decided to go to the 40m to get the red-light fiber illuminator to help with the alignment.
Using the illuminator, we realigned the input to the coupler and eventually got much better---but still bad---coupling of ~1.2% (0.12 mW out / 10 mW in). Due to the multi-mode nature of the illuminator beam, the output cannot be used to judge the collimation of the IR beam; it can only be used to verify the alignment of the beam.
With 0.12 mW emerging from the other end of the fiber, we could see the output quite clearly on a card (see photo below). This can tell us about the required input mode. From the looks of it, our beam is actually focused too strongly. We should probably replace the 75mm lens again with a slightly longer one.
Lisa and I concurred that it felt like we had converged to the optimum alignment and polarization, which would mean that the lack of coupling is all from mode mismatch. Since the input mode is well collimated, it seems unlikely that we could be off enough to only get ~1% coupling. One possibility is that the collimator is not well attached to the fiber itself. Since the Rayleigh range within it is very small, any looseness here can be critical.

I think there are several people around here who have worked pretty extensively with fibers. So, I propose that we ask them to take a look at what we have done and see if we're doing something totally wrong. There is no reason to reinvent the wheel. |
87
|
Fri Mar 29 08:55:00 2013 |
Zach | Optics | Configuration | Beam launched into fiber |
Quote: |
Lisa and I concurred that it felt like we had converged to the optimum alignment and polarization, which would mean that the lack of coupling is all from mode mismatch. Since the input mode is well collimated, it seems unlikely that we could be off enough to only get ~1% coupling. One possibility is that the collimator is not well attached to the fiber itself. Since the Rayleigh range within it is very small, any looseness here can be critical.
|
My hypothesis about the input-side collimator turned out to be correct.
I removed the fiber from the collimator and mount at the input side, and then injected the illuminator beam from this side. Since we already saw a nice (but dim) IR beam emerging from the output side the other night, it followed that that collimator was correctly attached. With the illuminator injected from the input side, I also saw a nice, collimated red beam emerging from the output. So, the input collimator was not properly attached during our previous attempts, leading to the abysmal coupling.
The problem is that the mount does not allow you to remove and reattach the fiber while the collimator is already attached, and the dimensions make it hard to fit your fingers in to tighten the fiber to the collimator once the collimator is in the mount. I disassembled the mount and found a way to attach/reattach the fiber that preserves the tight collimator contact. I will upload a how-to shortly.
With this fix, I was able to align the input beam and get decent coupling:
EOM path: ~70%
AOM path: ~50% |
88
|
Mon Apr 1 03:13:41 2013 |
Koji | Optics | General | Failure of PZT-glass joints | [Koji, Jeff, Zach, Lisa]
We glued a test PZT-mirror assembly last week in order to make sure the heat cure of the epoxy does not make any problem
on the glass-PZT joints. The assembly was sent to Bob for the heat treatment. We received the assembly back from Bob on Wednesday.
We noticed that the assembly after the heat cure at 100degC had some voids in the epoxy layer
(looking like the fused silica surface was only 70% "wetted" by the epoxy).
The comparison of the assembly before and after the heat treatment is found in the slideshow at the bottom of the entry.
Initially our main concern was the impact to the control and noise performance.
An unexpected series resonance on the PZT transfer function and unwanted noise creation by the imperfect bonding may terribly ruin the IFO sensitivity.
In reality, after repeated poking by fingers, the PZT-prism joint was detached. This isn't good at all.
Note that there is no sign of degradation on the glass-glass joint.
We investigated the cause of this like:
- Difference of thermal expansion (3ppm/C PZT vs 0.55ppm/C fused silica)
- Insufficient curing of epoxy by UV (but this is the motivation of the heat cure)
Our resolution up to this point is to switch the glue to EP30-2. This means we will go through the heat cure test again.
Unfortunately there is no EP30-2 in stock at Caltech. We asked MIT to send us some packets of EP30-2.
Hardness of the epoxies is another concern. Through the epoxy investigation, we learned from Noliac that the glue for the PZT
should not be too hard (stiff) so as not to constrain the deformation of the PZT. EP30-2 has Shore D Hardness of 75 or more,
while Optocast UV epoxy has 88, and EPOTEK Epoxies, which Noliac suggested for gluing, has ~65. This should also be
confirmed by some measurement. We will also ask Master Bond if they have information regarding the effect of curing
temperature on the hardness of the epoxy. EP30-2 can be cured anywhere between RT and 200F (it's service range is up to 300F).
However, the entire breadboard, with the curved mirror sub-assemblies, will need to be baked at 110C to cure the UV Bond epoxy.
We hope that exposure to relatively higher temps doesn't harden the EP30-2. The EP30-2 data sheet recommends an epoxy
thickness of 80-120 microns which is much thicker than we would like.
We also don't have a way tocontrol the thickness; though we could add glass spheres to the epoxy to control the thickness.
The thickness of the EP30-2 used to bond the metal wire guide prism on the core optics is much thinner at 15-25 microns.
|
89
|
Mon Apr 1 03:23:48 2013 |
Koji | Optics | General | UV power calibration | [Koji Lisa Jeff Zach]
Eric G bought a UV power meter from American Ultraviolet.
Our UV illuminator was calibrated by this power meter.
The first blast (i.e. cold start): 3.9W/cm^2
After many blasting: 8.3W/cm^2
The spec is 20W/cm^2 |
91
|
Mon Apr 1 18:17:01 2013 |
Koji | Optics | General | Mirror curvature center test | Locations of the curvature minimum on the OMC curved mirrors have been measured.
Motivation:
When a curved mirror is misaligned, the location of the curvature center is moved.
Particularly, our OMC mirror is going to be attached on the PZT and the mounting prism with the back surface of the mirror.
This means that a curved mirror has inherent misalignment if the curvature minimum of the curved mirror is shifted from the center of the mirror.
Since we have no ability to control mirror pitch angle once it is glued on the prism, the location of the curvature minima
should be characterized so that we can oush all of the misalignment in the horizontal direction.
Measurement technique:
When a curved mirror is completely axisymmetric (in terms of the mirror shape), any rotation of the mirror does not induce change on the axis of the refected beam.
If the curvature minimum is deviated from the center of the mirror, the reflected beam suffer precession. As we want to precisely rotate the mirror, we use the gluing
fixture for the PZT assembly. In this method, the back surface of the curved mirror is pushed on the mounting prism, and the lateral position of the mirror is precisely
defined by the fixture. As you rotate the mirror in clockwise viewing from the front, the spot moves in counter clockwise on the CCD.

Setup and procedure:
The mounting prism (#21) is placed on the gluing fixture. A curved mirror under the test is loaded in the fixture with no PZT.
i.e. the back surface is aligned by the mounting prism. The fixing pressure is applied to the curved mirror by the front plate
with spring loads. The mirror needs be pushed from the top at least once to keep its defined position in the fixture.
The incident beam is slightly slated for the detection of the reflected spot. The beam is aligned and hits the center of the mirror as much as possible.

The position of the spot on the CCD (WinCamD) is recorded, while the mirror is rotated 90deg at once. The rotation of the mirror is defined as shown in the figure below.
The angle origin is defined by the arrow mark of the mirror and rotated in clockwise being viewed from the front face. The mirror is rotated 540deg (8points) to check
the reproducibility.

Measurement result:
8 point for each mirror is fitted by a circle. The fitting result provides the origin and radius of the circle, and the angle correspond to mirror angle of 0deg.

Analysis:
d: distance of the curvature minimum and the mirror center (quantity to be delived)
D: distance of the prove beam spot from the center of the mirror
R: Radius of curvature of the mirror
theta_R: angle of incidence/reflection

The interesting consequence is that precession diameter (X-X') on the CCD does not depend on the spot position on the mirror.
This ensures the precision of the measurement. In the measurement, the radius of the precession (r = (X-X')/2) is obtained.
Therefore,
d = r R / (2 L)
Mirror name, distance[mm]
C1: 0.95
C3: 1.07
C4: 1.13
C5: 0.97
C6: 0.73
C7: 1.67
C8: 2.72
C9: 1.05
C10: 0.41
C11: 0.64
C12: 0.92
C13: 0.14
Resolution:
The angle to be rotated is depicted in the following plot for each mirror.

|
93
|
Wed Apr 3 18:42:45 2013 |
Koji | Optics | General | EP30-2 gluing test | EP30-2 gluing test
|
94
|
Thu Apr 4 00:35:42 2013 |
Zach | Optics | Configuration | MMT installed on breadboard, periscope built | [Koji, Zach]
We installed the MMT that matches the fiber output to the OMC on a 6"x12" breadboard. We did this so that we can switch from the "fauxMC" (OMC mirrors arranged with standard mounts for practice locking) to the real OMC without having to rebuild the MMT.
The solution that Koji found was:
z = 0: front face of the fiber output coupler mount
z = 4.8 cm: f = 35mm lens
z = 21.6 cm: f = 125mm lens
This should place the waist at z ~ 0.8 m. Koji has the exact solution, so I will let him post that.
The lenses are on ±0.5" single-axis OptoSigma stages borrowed from the TCS lab. Unfortunately, the spacing between the two lenses is very close to a half-integer number of inches, so I had to fix one of them using dog clamps instead of the screw holes to preserve the full range.
Koji also built the periscope (which raises the beam height by +1.5") using a vertical breadboard and some secret Japanese mounts. Part of it can be seen in the upper left corner of the photo below---sorry for not getting a shot of it by itself.

|
95
|
Thu Apr 4 01:35:04 2013 |
Koji | Optics | Characterization | Mode matching to the OMC cavity | The fiber output was matched with the lenses on a small bread board.
The detailed configuration is found in the following elog link.
http://nodus.ligo.caltech.edu:8080/OMC_Lab/105 |
96
|
Thu Apr 4 01:43:06 2013 |
Koji | Optics | Characterization | Mirror T measurement | [Zach, Koji]
The measurement setup for the transmission measurement has been made at the output of the fiber.
- First, we looked at the fiber output with a PBS. It wasn't P-pol so we rotated the ourput coupler.
What we found was that it wasn't actually linearly polarized.
So the input coupler was rotated to correct it. This terribly misaligned the input coupling.
After some iteration of rotating and aligning the input/output couplers, we obtained reasonable
extiction ratio like 10mW vs 100uW (100:1) with 11mW incidence. (Where is the rest 0.9mW!?)
- The P-pol (transmission) out of PBS goes into the mirror. Here we tested mirror A1.
The mirror is mounted on the prism mount supported by a rotational stage for precise angle adjustment
We limited the input power down to 5mW so that we can remove the attenuator on the power meter.
The reading of the power meter was fluctuating, indeed depending on MY position.
So we decided to turn off the lighting of the room. This made the reading very stable.
The offset of the power meter was -0.58uW
The transmitted power for the normal incidence was 39.7uW with the incident 4.84mW.
[39.7-(-0.58)] / [4.84*1000-(-0.58)] *10^6 = 8320 ppm
The transmitted power for the 4deg incidence was 38.0uW with the incident 4.87mW.
[38.0-(-0.58)] / [4.87*1000-(-0.58)] *10^6 = 7980 ppm
cf. The specification is 7931ppm
|
97
|
Thu Apr 4 23:44:52 2013 |
Koji | Optics | Configuration | Beam launched into fiber | We had to move our flipper mirror to share the beam between Peter's setup and ours as our flipper is at the place where the ISS PD array base is supposed to be!
There was no place to insert the flipper in the setup. We (Peter and Koji) decided to move the laser back for ~2".
This entirely changed the alignment of the setup. The fiber coupler was my reference of the alignment.
Once the beam is aligned, I check the coupling to the fiber. It was 50%.
I tweaked the lens and eventually the coupling is improved to 83%. (24.7mW incident, 20.4mW obtained.)
Then, I started to check the AOM path. I noticed that the 1st (or -1st) order beam is very weak.
The deflection efficiency is ~0.1%. Something is wrong.
I checked the driver. The driver's coupler output (1:10) show the amplitude ~1V. (good)
I check the main output by reducing the offset. When the coupler output is 100mV, the main output was 1V. (good)
So is the AOM itself broken??? |
99
|
Fri Apr 5 18:18:36 2013 |
Zach | Optics | Configuration | AOM probably broken |
Quote: |
Then, I started to check the AOM path. I noticed that the 1st (or -1st) order beam is very weak.
The deflection efficiency is ~0.1%. Something is wrong.
I checked the driver. The driver's coupler output (1:10) show the amplitude ~1V. (good)
I check the main output by reducing the offset. When the coupler output is 100mV, the main output was 1V. (good)
So is the AOM itself broken???
|
As Koji noticed that the AOM efficiency was very low, I figured I would try looking at it with a fresh set of eyes. The end result is that I have to agree that the AOM appears to be broken.
First, I measured the input impedance of the AOM using the AG4395A with the impedance test kit (after calibrating). The plot is below. The spec sheet says the center frequency is 200 MHz, at which Zin should be ~50 ohms. It crosses 50 ohms somewhere near 235 MHz, which may be reasonable given that the LC circuit can be tuned by hand. However, it does surprise me that the impedance varies so much over the specified RF range of ±50 MHz. Maybe this is an indication that something is bad.

I removed the cover of the modulator (which I think Koji did, as well) and all the connections looked as I imagine they should---i.e., there was nothing obviously broken, physically.
I then tried my hand at realigning the AOM from scratch by removing and replacing it. I was not able to get better than 0.15%, which is roughly what Koji got.
So, perhaps our best course of action is to decide what we expect the Zin spectrum to look like, and whether that agrees with the above measurement. |
100
|
Mon Apr 8 11:11:37 2013 |
Koji | Optics | Characterization | More Mirror T measurement | More Ts of the mirrors were measured.
A mirror specification:
Request: 8300+/-800 ppm
Data sheet: 7931ppm
C mirror specification:
Request: 50+/-10 ppm
Data sheet: 51.48ppm or 46.40ppm
Mirror | P_Incident P_Trans P_Offset | T_trans
| [mW] [uW] [uW] | [ppm]
-------+------------------------------+---------
A1 | 10.28 82.9 -0.205 | 8.08e3
A2 | ----- ----- ------ | ------
A3 | 10.00 83.2 -0.205 | 8.34e3
A4 | 10.05 80.7 -0.205 | 8.05e3
A5 | 9.94 81.3 -0.205 | 8.20e3
A6 | 10.35 78.1 -0.205 | 7.57e3
A7 | 10.35 77.8 -0.205 | 7.54e3
A8 | 10.30 78.0 -0.205 | 7.60e3
A9 | 10.41 84.1 -0.205 | 8.10e3
A10 | 10.35 77.3 -0.205 | 7.49e3
A11 | 10.33 77.9 -0.205 | 7.56e3
A12 | 10.34 78.7 -0.205 | 7.63e3
A13 | 10.41 85.4 -0.205 | 8.22e3
A14 | 10.34 84.4 -0.205 | 8.18e3
-------+------------------------------+---------
C1 | 10.30 0.279 -0.225 | 48.9
C2 | ----- ----- ------ | ------
C3 | 10.37 0.240 -0.191 | 41.6
C4 | 10.35 0.278 -0.235 | 49.6
C5 | 10.40 0.138 -0.235 | 35.9 => PZT assembly #2
C6 | 10.34 0.137 -0.235 | 36.0 => PZT assembly #1
C7 | 10.37 0.143 -0.229 | 35.9
C8 | 10.41 0.224 -0.237 | 44.3
C9 | 10.36 0.338 -0.230 | 54.8
C10 | 10.39 0.368 -0.228 | 57.4
C11 | 10.38 0.379 -0.209 | 56.6
C12 | 10.28 0.228 -0.238 | 45.3
C13 | 10.36 0.178 -0.234 | 39.8
-------+------------------------------+---------
|
101
|
Mon Apr 8 11:29:08 2013 |
Koji | Optics | Characterization | Mirror/PZT Characterization links | |
103
|
Mon Apr 8 20:56:52 2013 |
Koji | Optics | Configuration | PZT & Curverd Mirror arrangement | Assembly #1:
Mounting Prism #16
PZT #26
Mirror C6
Assembly #2:
Mounting Prism #20
PZT #23
Mirror C5 |
104
|
Mon Apr 8 21:11:14 2013 |
Koji | Optics | General | PZT assembly gluing | [Jeff, Zach, Koji]
PZT assembly gluing
Glue gun -> to be returned to MIT
Fixtures x2
Al bases, spacers
spare screws
mirrors / prisms / PZTs
IPA bottle
clean tools x2
first contact kit
gloves (7.5)
|
105
|
Mon Apr 8 23:42:33 2013 |
Koji | Optics | Configuration | Fake OMC roughly aligned | Mode matching:
|
106
|
Tue Apr 9 13:56:09 2013 |
Koji | Optics | General | PZT assembly post gluing / pre baking pictures |
|
107
|
Wed Apr 10 00:40:30 2013 |
Zach | Optics | Configuration | fauxMC locked | [Koji, Zach]
Tonight, we locked the "fauxMC". We obtained a visibility of >99%.
Koji had aligned it roughly last night, but we wanted to have a couple steering mirrors in the path for this practice cavity (the periscope mirrors will serve this function in the real setup), so we marked the alignment with irises and installed two extra mirrors.
After obtaining flashes with the WinCam placed at the output coupler, we removed the WinCam and put a CCD camera at one of the curved mirror transmissions and used this to get a strong TEM00 flash. Then, we installed the REFL PD/CCD, swept the laser PZT and optimized the alignment by minimizing the REFL dips. Finally, we connected the RF electronics and locked the cavity with the LB box. We used whatever cables we had around to trim the RF phase, and then Koji made some nice SMA cables at the 40m.
One thing we noticed was that we don't have enough actuation range to keep the cavity locked for very long---even with the HV amp (100V). We are going to offload to the NPRO temperature using an SR560 or pomona box circuit. We may also make an enclosure for the cavity to protect it from the HEPA blasting.
Tomorrow, after we do the above things, we will practice measuring the transmission, length (FSR) and mode spectrum of the cavity before moving on to the real McCoy.

|
109
|
Fri Apr 12 09:25:31 2013 |
Koji | Optics | Characterization | Alignment of the OMC (without glue) | [Zach Koji]
The first attempt not to touch the curved mirrors did not work. (Not surprising)
The eigenmode is not found on the mirror surface.
We decided to touch the micrometers and immediately found the resonance.
Then the cavity alignment was optimized by the input steering mirrors.
We got the cavity length L and f_TMS/f_FSR (say gamma, = gouy phase / (2 pi) ) as
L=1.1347 m (1.132m nominal)
gamma_V = 0.219176 (0.21879 nominal)
gamma_H = 0.219418 (0.21939 nominal)
This was already sufficiently good:
- the 9th modes of the carrier is away from the resonance 10-11 times
of the line width (LW)
- the 13th modes of the lower f2 sideband are 9-10 LW away
But
- the 19th modes of the upper f2 sideband are 1-3 LW away
This seems to be the most dangerous ones.
and
- The beam spots on the curved mirrors are too marginal
So we decided to shorten the cavity round-trip 2.7mm (= 0.675mm for each micrometer)
and also use the curved mirrors to move the eigenmode toward the center of the curved mirrors.
After the movement the new cavity length was 1.13209 m.
The spot positions on the curved mirrors are ~1mm too close to the outside of the cavity.
So we shortened the outer micrometers by 8um (0.8 div).
This made the spot positions perfect. We took the photos of the spots with a IR sensor card.
The measured cavity geometry is (no data electrically recorded)
L=1.13207 m (1.132m nominal, FSR 264.8175MHz)
gamma_V = 0.218547 (0.21879 nominal, 57.8750MHz)
gamma_H = 0.219066 (0.21939 nominal, 58.0125MHz)
- the 9th modes of the carrier is 11-13 LW away
- the 13th modes of the lower f2 sideband are 5-8 LW away
- the 19th modes of the upper f2 sideband are 4-8 LW away
The raw transmission is 94.4%. If we subtract the sidebands and
the junk light contribution, the estimated transmission is 97.6%.
Note:
Even if a mirror is touched (i.e. misaligned), we can recover the good alignment by pushing the mirror
onto the fixture. The fixture works pretty well!
|
110
|
Sat Apr 13 21:06:02 2013 |
Koji | Optics | General | OMC Bottom-side: cavity glued | [Jeff, Zach, Lisa, Koji]
Gluing of the cavity mirrors went very well!!!
Preparation
- Checked if the cavity is still resonating. => Yes.
- Checked the FSR: 264.251MHz => 1.1345m
2.5mm too long => Move each micrometer by 0.625mm backward
- FSR&TMS (I)
Aligned the cavity again and checked the FSR: 264.8485MHz => 1.13194m
TMS(V): 58.0875MHz => gamma_V = 0.219324
TMS(H): 58.1413MHz => gamma_H = 0.219526
the 9th modes of the carrier is 9.7-10.4 line width (LW) away from the carrier resonance
the 13th modes of the lower f2 sideband are 9.2-10.2 LW away
the 19th modes of the upper f2 sideband are 0.3-1.8 LW away
We found that this coincidence of the resonance can be corrected by shortening the cavity round-trip by 0.5mm
- Spot positions (I)
The spots on the curved mirrors were ~1mm too much inside (FM side). In order to translate the cavity axis,
MM2 and MM4 were pushed by θ
θ/2.575 = 1mm ==> θ = 2.6 mrad
The separation of the micrometers are ~20mm
d/20mm = 2.6mrad ==> d = 52um
1div of the micrometer corresponds to 10um => 5div = 50um
- Move the micrometers and adjusted the input steering to recover the alignment.
- In any case we were confident to adjust the FSR/TMS/spot positions only with the micrometers
BS1/FM1/FM2 gluing
- Aligned the cavity
- Glued BS1/FM1/FM2 one by one while the cavity resonance was maintained.
FM2 was slipping as the table is not leveled well and the fixture was not supporting the optic.
- FSR&TMS (II)
FSR: 264.964875MHz => 1.13144m (Exactly 0.5mm shorter!)
TMS(V): 58.0225MHz => gamma_V = 0.218982
TMS(H): 58.1225MHz => gamma_H = 0.219359
the 9th modes of the carrier is 10.3~11.7 LW away
the 13th modes of the lower f2 sideband are 7.4~9.3 LW away
the 19th modes of the upper f2 sideband are 1.5~4.4 LW away
- Spot positions (II)
Looked OK.
CM2 gluing
- Glued CM2. The mirror was supported from the back with allen keys.
- FSR&TMS (III)
FSR: 264.9665625MHz => 1.13144m
TMS(V): 58.1275MHz => gamma_V = 0.219377
TMS(H): 58.0813MHz => gamma_H = 0.219202
the 9th modes of the carrier is 10.2~10.9 LW away
the 13th modes of the lower f2 sideband are 8.5~9.4 LW away
the 19th modes of the upper f2 sideband are 1.4~2.7 LW away
- Spot positions (III)
Looked slightly off at CM2. Pushed MM2 by 4um.
CM1 gluing
- Glued CM1.
- FSR&TMS (IV)
FSR: 264.964875MHz => 1.13144m
TMS(V): 58.06625MHz => gamma_V = 0.219145
TMS(H): 58.08625MHz => gamma_H = 0.219220
the 9th modes of the carrier is 10.8~11.1 LW away
the 13th modes of the lower f2 sideband are 8.2~8.6 LW away
the 19th modes of the upper f2 sideband are 2.6~3.2 LW away
- Spot positions (final confirmation)
Looked OK.
Final measurement
- After everything was finished, more detailed measurement has been done.
- FSR&TMS (final)
FSR: 264.963MHz => 1.13145m
TMS(V): 58.0177MHz => gamma_V = 0.218966
TMS(H): 58.0857MHz => gamma_H = 0.219221
the 9th modes of the carrier is 10.8~11.7 LW away
the 13th modes of the lower f2 sideband are 7.3~8.6 LW away
the 19th modes of the upper f2 sideband are 2.6~4.5 LW away
Final values for the micrometers
- MM1: The one closest to the input mirror (CM1) 0.78mm
- MM2: The other one on CM1 0.89
- MM3: The one closest to the output mirror (CM2) 0.90
- MM4: The other one on CM2 0.90
/------------\
0.90 0.78
\------------/
0.90 0.89
|
111
|
Tue Apr 16 00:40:45 2013 |
Koji | Optics | General | PD/QPD path gluing ~ preparation | [Jeff Koji]
- Placed the optics on the PD/QPD path
- Checked the alignment of the beam on the dummy PD/QPD mounts
- There is a bit of (~0.5mm) shift of the spot position from the center. Mainly downward. This is well within a ball park of the PD mounts.
- The PD/QPD path gluing will take place tomorrow.
- Went to the 40m and received the DCPDs from Bob's lab.
- Took six ISC QPDs for the sake of the OMCs.
- They are now in the OMC lab.
- Measured the B mirror / E mirror R&Ts.
- Found anomalously high loss (3%) for the B mirrors (BSs)
- Went through the all mirrors. Some mirrors (3 or 4) seemed less lossy (<~1%). They will be used for the DCPD BS. |
112
|
Tue Apr 16 08:12:14 2013 |
Koji | Optics | Characterization | Further More Mirror T measurement | T&Rs of the B mirrors and some of the E mirrors are measured.
I found that these BSs have high loss (1%~3%) . As this loss will impact the performance of the squeezer
we should pick the best ones for the DCPD path. B5, B6, and B12 seems the best ones.
Mirror | P_Incident P_Trans P_Refl | T R loss |
| [mW] [mW] [mW] | |
-------+--------------------------------------+-------------------------------------------+
B1 | 13.80+/-0.05 7.10+/-0.05 6.30+/-0.05 | 0.514+/-0.004 0.457+/-0.004 0.029+/-0.005 |
B2 | 14.10+/-0.05 6.50+/-0.05 7.15+/-0.05 | 0.461+/-0.004 0.507+/-0.004 0.032+/-0.005 |
B3 | 13.87+/-0.05 7.05+/-0.05 6.55+/-0.05 | 0.508+/-0.004 0.472+/-0.004 0.019+/-0.005 |
B4 | 13.85+/-0.05 6.78+/-0.05 6.70+/-0.05 | 0.490+/-0.004 0.484+/-0.004 0.027+/-0.005 |
B5 | 13.65+/-0.05 6.93+/-0.05 6.67+/-0.05 | 0.508+/-0.004 0.489+/-0.004 0.004+/-0.005 |
B6 | 13.75+/-0.05 6.70+/-0.05 6.92+/-0.05 | 0.487+/-0.004 0.503+/-0.004 0.009+/-0.005 |
B7 | 13.83+/-0.05 7.00+/-0.05 6.60+/-0.05 | 0.506+/-0.004 0.477+/-0.004 0.017+/-0.005 |
B8 | 13.90+/-0.05 6.95+/-0.05 6.68+/-0.05 | 0.500+/-0.004 0.481+/-0.004 0.019+/-0.005 |
B9 | 13.84+/-0.05 6.95+/-0.05 6.70+/-0.05 | 0.502+/-0.004 0.484+/-0.004 0.014+/-0.005 |
B10 | 13.97+/-0.05 6.98+/-0.05 6.72+/-0.05 | 0.500+/-0.004 0.481+/-0.004 0.019+/-0.005 |
B11 | 13.90+/-0.05 7.05+/-0.05 6.70+/-0.05 | 0.507+/-0.004 0.482+/-0.004 0.011+/-0.005 |
B12 | 13.90+/-0.05 6.98+/-0.05 6.78+/-0.05 | 0.502+/-0.004 0.488+/-0.004 0.010+/-0.005 |
-------+--------------------------------------+-------------------------------------------+
Mirror | P_Incident P_Trans P_Refl | T R loss |
| [mW] [uW] [mW] | [ppm] |
-------+-------------------------------------------+------------------------------------------+
E4 | 13.65+/-0.05 0.0915+/-0.0005 13.50+/-0.05 | 6703+/-44ppm 0.989+/-0.005 0.004+/-0.005 |
E12 | 13.75+/-0.05 0.0978+/-0.0005 13.65+/-0.05 | 7113+/-45 0.993+/-0.005 0.000+/-0.005 |
E16 | 13.90+/-0.05 0.0975+/-0.0005 13.30+/-0.05 | 7014+/-44 0.957+/-0.005 0.036+/-0.005 |
-------+-------------------------------------------+------------------------------------------+
|
113
|
Tue Apr 16 09:43:58 2013 |
Koji | Optics | Configuration | Mirror list for L1OMC | L1 OMC
Cavity Mirrors
FM1 (input coupler): A8
FM2 (output coupler): A7
CM1 (curved mirror close to FM1): C6
CM2 (curved mirror close to FM2): C5
DCPD path
BS3 (BS for DCPDs): B5 B7
QPD path
BS1 (input steering): E10
SM1 (steering mirror next to BS1): E12
BS2 (BS for QPD path): B3
SM2 (steering mirror next to BS2): E4
SM3 (steering mirror next to SM2): E16

|
114
|
Tue Apr 16 23:26:51 2013 |
Koji | Optics | Characterization | Further More Mirror T measurement | Since the previous measurement showed too high loss, the optical setup was checked.
It seemed that a PBS right before the T&R measurement setup was creating a lot of scattering (halo) visible with a sensor card.
This PBS was placed to confirm the output polarization from the fiber, so it was ok to remove it.
After the removal, the R&T measurement was redone.
This time the loss distributed from 0.2% to 0.8% except for the one with 1.3%. Basically 0.25% is the quantization unit due to the lack of resolution.
At least B7, B10, B12 seems the good candidate for the DCPD BS.
The AR reflection was also measured. There was a strong halo from the main reflection with an iris and sense the power at ~.5mm distance to separate the AR reflection from anything else. Now they are all somewhat realistic. I'll elog the measurement tonight.
33.6 +/- 0.2 uW out of 39.10+/-0.05 mW was observed. The offset was -0.236uW.
This gives us the AR reflectivity of 865+/-5ppm . This meets the spec R<0.1%
Mirror | P_Incident P_Trans P_Refl | T R loss |
| [mW] [mW] [mW] | |
---------------------------------------------------------------------------------------------
B1 | 39.10+/-0.05 19.65+/-0.05 19.25+/-0.05 | 0.503+/-0.001 0.492+/-0.001 0.005+/-0.002 |
B2 | 39.80+/-0.05 19.90+/-0.05 19.70+/-0.05 | 0.500+/-0.001 0.495+/-0.001 0.005+/-0.002 |
B4 | 39.50+/-0.05 19.70+/-0.05 19.30+/-0.05 | 0.499+/-0.001 0.489+/-0.001 0.013+/-0.002 |
B5 | 39.50+/-0.05 19.70+/-0.05 19.50+/-0.05 | 0.499+/-0.001 0.494+/-0.001 0.008+/-0.002 |
B6 | 39.55+/-0.05 19.50+/-0.05 19.95+/-0.05 | 0.493+/-0.001 0.504+/-0.001 0.003+/-0.002 |
B7 | 40.10+/-0.05 19.80+/-0.05 20.20+/-0.05 | 0.494+/-0.001 0.504+/-0.001 0.002+/-0.002 |
B8 | 40.15+/-0.05 19.80+/-0.05 20.20+/-0.05 | 0.493+/-0.001 0.503+/-0.001 0.004+/-0.002 |
B9 | 40.10+/-0.05 19.90+/-0.05 19.90+/-0.05 | 0.496+/-0.001 0.496+/-0.001 0.008+/-0.002 |
B10 | 40.10+/-0.05 19.70+/-0.05 20.30+/-0.05 | 0.491+/-0.001 0.506+/-0.001 0.002+/-0.002 |
B11 | 40.20+/-0.05 19.80+/-0.05 20.20+/-0.05 | 0.493+/-0.001 0.502+/-0.001 0.005+/-0.002 |
B12 | 40.20+/-0.05 19.90+/-0.05 20.20+/-0.05 | 0.495+/-0.001 0.502+/-0.001 0.002+/-0.002 |
---------------------------------------------------------------------------------------------
|
115
|
Wed Apr 17 07:30:04 2013 |
Koji | Optics | General | QPD path glued | Yesterday, all of the glass components for the QPD path were glued.
- Check the alignment of the beam with the cavity.
- Placed the prisms
- Placed the QPD mount for the gluing test. An alignment disk instead of a diode was placed on the mount.
- Checked the spot positions at the QPDs. A CCD camera with a lens was used to find the spot.
The spots were ~0.5mm lower on the QPD1, and ~1mm lower on the QPD2.
- Glued the first steering mirror while the spot position was continuously monitored.
- Glued the BS in the QPD path while the spot position was monitored.
- FInally a glass bracket was glued.
- The spot on QPD2 was too low to absorb by the QPD shim.
- Once the steering mirror was clamped by a cantilever spring (to prevent slipping), the spot moved up a bit.
(Or, we should say, the cantilever misaligned the optics a bit in pitch in a preferrable direction.)
- The other steering mirror is clamped by a cantilever spring (to prevent slipping), the spot moved up a bit.
Or, we should say, the cantilever misaligned the optics a bit in pitch in a preferrable direction.)
- The last steering mirrors was also glued in a same way. As a result the spot is 0.5mm below the center of the alignment disk.
- Once the PD mounting brackets were glued, we can't place the QPD mount on it as the PEEK bar can't be inserted without moving the gluing template.
- The QPD mount with out the glass bracket was used to check the alignment of the beam dumps.
As the beam dumps have a wide aperture and the yaw alignment of the QPD is big, we could accommodate the beams in the dumps easily.
- The dumps were glued. |
120
|
Mon May 6 19:31:51 2013 |
Koji | Optics | Characterization | Spot position measurement on the diode mounts | Measurement Order: DCPD2->DCPD1->QPD1->QPD2
DCPD1: 1.50mm+0.085mm => Beam 0.027mm too low
DCPD2: 1.75mm+0.085mm => Beam 0.051mm too high (...less confident)
QPD1: 1.25mm+0.085mm => Beam 0.077mm too low
QPD2: 1.25mm+0.085mm => Beam 0.134mm too low
or 1.00mm+0.085mm => Beam 0.116mm too high
|
121
|
Wed May 8 15:08:57 2013 |
Koji | Optics | Characterization | Spot position measurement on the diode mounts | Remeasured the spot positions:
DCPD1: 1.50mm+0.085mm => Beam 0.084mm too high
DCPD2: 1.50mm+0.085mm => Beam 0.023mm too high
QPD1: 1.25mm+0.085mm => Beam 0.001mm too low
QPD2: 1.25mm+0.085mm => Beam 0.155mm too low
|
132
|
Thu May 30 15:00:28 2013 |
Koji | Optics | General | QPD alignment | The QPD alignment was adjusted using the aligned beam to the cavity and the 4ch transimpedance amplifier.
As I have a test cable for the QPD, I attached a DB9 connector on it so that I can use the QPD transimpedance
amplifier to read the photocurrent. The transimpedance of the circuit is 1kV/A.
As this board (D1001974) does not have X/Y/SUM output, I quickly made the summing circuit on a universal
board I took from Japan a while ago.
The spot on the QPD1 (shorter arm side) seems too low by ~0.64mm. It seems that the QPD is linearly responding
to the input misalignment, so there is no optical or electrical problem.
As I wonder how much I can improve the situation by replacing the diodes, I swapped the diodes between QPD1 and QPD2.
Now QPD1 and QPD2 have the diode #43 and #38, respectively. It improved the situation a llitle (about 60um).
But the beam is still 0.58mm too low. 95% of the power is on the upper two elements.
Of course this is at the edge of the linear range.
I confirmed we still can observe the cavity is fringing even with the beam is aligned on this QPD. So this may be
sufficient for the initial alignment.
The QPD2 was in a better situation. The spot is about 100um too low but this is still well with in the linear range.
The incident powers on the diodes were also measured. The estimated responsivities and Q.E.s are listed below.
The reflection from the diode is adjusted to hit the beam dump properly.
Here are the raw numbers
QPD# QPD1 QPD2
Diode# #43 #38
-------------------------------------
Power Incident 118.8 uW 115.7uW
Sum Out 78.8 mV 84.6 mV
Vertical Out 69.1 mV 11.9 mV
Horizontal Out 9.8 mV -1.6 mV
SEG1 -1.90 mV -17.8 mV
SEG2 -2.18 mV -17.5 mV
SEG3 -32.0 mV -25.3 mV
SEG4 -42.0 mV -23.8 mV
-------------------------------------
Responsivity[A/W] 0.66 0.73
Q.E. 0.77 0.85
-------------------------------------
Arrangement of the segments
View from the beam
/ 2 | 1 X
|---+---|
\ 3 | 4 /
|
133
|
Fri May 31 05:46:54 2013 |
Koji | Optics | General | QPD alignment | Peter F suggested to check the bottom surface of the PD housings if there is any protrusion/interference/whatever.
And that was true! It was found that the front side of QPD1 (Left) was lifted by a machining burr.
It seems that this burr consistently exists as the other one also have it (see QPD2 picture (right)) although it is not too terrible compared to the one in QPD1.

Once these burrs were removed, the spots were found on the right position of each diode.
From the measurement of the power on each segment, the positions of the spots were estimated. (listed in the table)
They indicate that the spots are within 0.1mm from the center. This is good enough.
The quantum efficiency was measured from the incident power and the sum output. It seems that there are
some difference between the diodes. The numbers are consistent with the measurement the other day.
QPD# QPD1 QPD2
Diode# #43 #38
-------------------------------------
Power Incident 84.7 uW 86.2 uW
Sum Out 56 mV 61 mV
Vertical Out -6.8 mV 10 mV
Horizontal Out 4.2 mV 8.8 mV
SEG1 -17 mV -15 mV
SEG2 -14.5 mV -11 mV
SEG3 -11 mV -15 mV
SEG4 -13 mV -20 mV
-------------------------------------
Spot position X +25 um +46 um (positive = more power on SEG1 and SEG4)
Spot position Y -42 um +46 um (positive = more power on SEG3 and SEG4)
-------------------------------------
Responsivity[A/W] 0.66 0.71
Q.E. 0.77 0.82
-------------------------------------
Arrangement of the segments
View from the beam
/ 2 | 1 X
|---+---|
\ 3 | 4 /
---------------
I(w,x,y) = Exp[-2 (x^2 + y^2)/w^2]/(Pi w^2/2)
(SEG_A+SEG_B-SEG_C-SEG_D)/(SEG_A+SEG_B+SEG_C+SEG_D) = Erf[sqrt(2) d/w]
d: distance of the spot from the center
w: beam width
|
134
|
Fri May 31 14:07:54 2013 |
Koji | Optics | Characterization | Transverse Mode Spacing measurement afte the baking | Measurement for pitch
Free Spectral Range (FSR): 264.9703 +/− 0.0007 MHz
Cavity roundtrip length: 1.131419 +/− 0.000003 m
Transverse mode spacing (TMS): 57.9396 +/− 0.0002 MHz
TMS/FSR: 0.218664 +/− 0.000001
Assuming the line width of the cavity 1/400 of the FSR...
- the 9th modes of the carrier is 12.8 line width (LW) away from the carrier resonance
- the 13th modes of the lower f2 sideband are 5.7 LW away
- the 19th modes of the upper f2 sideband are -6.8 LW away
Measurement for yaw
Free Spectral Range (FSR): 264.9696 +/− 0.0004 MHz
Cavity roundtrip length: 1.131422 +/− 0.000002 m
Transverse mode spacing (TMS): 58.0479 +/− 0.0002 MHz
TMS/FSR: 0.219074 +/− 0.000001
- the 9th modes of the carrier is 11.3 line width (LW) away from the carrier resonance
- the 13th modes of the lower f2 sideband are 7.8 LW away
- the 19th modes of the upper f2 sideband are -3.7 LW away
The followings are the previous values before the bake
[from this entry]
- After everything was finished, more detailed measurement has been done.
- FSR&TMS (final)
FSR: 264.963MHz => 1.13145m
TMS(V): 58.0177MHz => gamma_V = 0.218966
TMS(H): 58.0857MHz => gamma_H = 0.219221
the 9th modes of the carrier is 10.8~11.7 LW away
the 13th modes of the lower f2 sideband are 7.3~8.6 LW away
the 19th modes of the upper f2 sideband are 2.6~4.5 LW away |
135
|
Mon Jun 3 18:58:08 2013 |
Koji | Optics | Configuration | OMC final tests | - QPD mount aligned, QPD output checked
The spots are with 100um from the center of the diodes. [ELOG Entry (2nd photo)]
- TMS/FSR dependence on the PZT V
Shows significant dependence on the PZT voltages
It seems that the curvartures get longer when the voltages are applied to the PZTs.
The effect on these two PZTs are very similar. The dependence is something like
(TMS/FSR) ~ 0.219 - 1e-5 V
May cause resonance of the higher-order modes (like 13th order of the 45MHz sidebands) at a specific range of the PZTs.
We can't change anything any more, but the impact needs to be assessed
- DC response of the PZTs [ELOG Entry]
PZT voltages were swept. Observed multiple fringes during the sweep.
The data to be analyzed.
- AC response of the PZTs [ELOG Entry]
PZT1 and PZT2 well matched. The first resonance at 10kHz.
- Open loop TF of the servo
The UGF more than ~30kHz.
- Cleaning of the main optics with First Contact
Done. Visible scattering seen with an IR was reduced, but still exist.
All four cavity mirrors have about the same level of scattering.
Each scattering is a group of large or small bright spots.
It's actually a bit difficult to resolve the bright spots with the IR viewer.
- Raw transmission: i.e. Ratio between the sum of the DCPD paths and the incident power
May 8th (before the baking): 0.918
May 8th (First Contact applied): 0.940 (improved)
Jun 2nd (after the baking): 0.927 (worse)
Jun 2nd (First Cotact applied): 0.964 (improved)
Date |
2013/6/2 |
2013/6/2 |
2013/6/2 |
Condition |
Before the cleaning |
After the FC cleaning |
After drag wiping |
Input Power [mW] |
39.8 |
38.4 |
38.4 |
REFLPD dark offset [V] |
-0.0080 |
-0.0080 |
-0.0080 |
REFLPD locked [V] |
0.048 |
0.0437 |
0.046 |
REFLPD unlocked [V] |
6.41 |
6.39 |
6.37 |
|
|
|
|
Transmitted Power to DCPD1 (T) [mW] |
18.8 |
18.8 |
18.8 |
Transmitted Power to DCPD2 (R) [mW] |
18.1 |
18.2 |
18.2 |
FM2 transmission [mW] |
- |
- |
- |
CM1 transmission [mW] |
0.200 |
0.193 |
0.198 |
CM2 transmission [mW] |
0.204 |
0.204 |
0.205 |
Input BS transmission [mW] |
0.260 |
0.228 |
0.245 |
|
|
|
|
Cavity Finesse |
396.9 |
403.79 |
403.79 |
|
|
|
|
Junk Light Power (Pjunk) [mW] |
0.303 |
0.302 |
0.317 |
Coupled beam power (Pcouple) [mW] |
39.50 |
38.10 |
38.08 |
Mode Matching (Pcouple/Pin) [mW] |
0.992 |
0.992 |
0.992 |
Cavity reflectivity in power |
0.00112 |
0.000211 |
0.000206 |
Loss per mirror [ppm] |
111 |
35.9 |
34.8 |
Cavity transmission for TEM00 carrier
|
0.934 |
0.971 |
0.972 |
- TMS/FSR/Finesse change before/after cleaning [ELOG Entry]
Just a small change from the parameters before the bake.
No quantitative difference.
Method:
BB EOM produces the AM sidebands together with the PM sidebands.
Ideally, the PM sidebands does not produce the signal at the transmission, the output is dominated by the AM component.
This is only true when there is no lock offset. In reality the curve is contaminated by the PM-AM conversion by the
static offset or dynamic deviation of the locking point. So I had to take the central part of the TF and check the
dependence of the fit region and the finesse.
Before the cleaning: Finesse 396.9
After the cleaning: Finesse 403.8
To Do
- Placement of the DCPD housings
- Through-put test with DCPDs
- Transmission dependence on the incident power
(although the max incident is limited to ~35mW)
- Application of the first contact for the surface protection |
145
|
Tue Jun 18 10:01:11 2013 |
Koji | Optics | Characterization | Cavity Finesse analysis | This is the analysis of the cavity finesse data taken on Apr/13/2013 (before baking), May/30/2013 (after baking), and Jun/02/2013 (after cleaning).
If we believe this result, baking contaminated the cavity, and the first contact removed it. That agrees with the power measurement of the transmitted light. |
151
|
Fri Aug 16 15:31:17 2013 |
Koji | Optics | Configuration | Mirror list for OMC(002) | OMC(002)
Cavity Mirrors
FM1 (input coupler): A9
FM2 (output coupler): A13
CM1 (curved mirror close to FM1): C9 (PZT ASSY #6 / M6 /PZT21/C9)
CM2 (curved mirror close to FM2): C4 (PZT ASSY #4 / M11/PZT25/C4)
DCPD path
BS3 (BS for DCPDs): B10
QPD path
BS1 (input steering): E3
SM1 (steering mirror next to BS1): E5
BS2 (BS for QPD path): B9
SM2 (steering mirror next to BS2): E1
SM3 (steering mirror next to SM2): E2

|
152
|
Fri Aug 16 16:36:19 2013 |
Koji | Optics | General | Optics List | Link to the "Mirror/PZT Characterization links"
Breadboard
BB1 OMC(001) OMC
BB2 OMC(002) OMC
BB3 -
BB4 OMC(003) OMC
BB5 -
BB6 -
Mounting Prisms:
M01
M02
M06 OMC(002) CM1 (PZT ASSY #6)
M07
M10 OMC(003) CM1 (PZT ASSY #5)
M11 OMC(002) CM2 (PZT ASSY #4)
M12
M13 OMC(003) CM2 (PZT ASSY #3)
M14
M15
M16 OMC(001) CM1 (PZT ASSY #1)
M17
M20 OMC(001) CM2 (PZT ASSY #2)
M21
M22
Mirror A:
A1 fOMC FM1
A2 Fullerton for the scattering measurement
A3 fOMC FM2
A4
A5
A6 OMC(003) FM2
A7 OMC(001) FM2
A8 OMC(001) FM1
A9 OMC(002) FM1
A10
A11
A12 OMC(003) FM1
A13 OMC(002) FM2
A14
Mirror B:
B1
B2
B3 OMC(001) BS2 (QPD)
B4
B5 OMC(003) BS2 (QPD)
B6
B7 OMC(001) BS3 (DCPD)
B8
B9 OMC(002) BS2 (QPD)
B10 OMC(002) BS3 (DCPD)
B11
B12 OMC(003) BS3 (DCPD)
Mirror C:
C1 OMC(003) CM1 (PZT ASSY #5)
C2 Fullerton for the scattering measurement
C3 OMC(003) CM2 (PZT ASSY #3)
C4 OMC(002) CM2 (PZT ASSY #4)
C5 OMC(001) CM2 (PZT ASSY #2)
C6 OMC(001)
CM1 (PZT ASSY #1)
C7 fOMC CM1
C8 fOMC CM2 -> OMC(002) CM1 (PZT ASSY #6)
C9 OMC(002) CM1 (PZT ASSY #6) -> BURNT
C10 (Liyuan tested)
C11 (Liyuan tested)
C12 curvature untested, faux OMC CM2
C13 curvature untested
Mirror E:
E1 OMC(002) SM2
E2 OMC(002) SM3
E3 OMC(002) BS1
E4 OMC(001) SM2
E5 OMC(002) SM1
E6
E7 OMC(003) BS1
E8 OMC(003) SM1
E9
E10 OMC(001) BS1
E11
E12 OMC(001) SM1
E13 OMC(003) SM2
E14
E15
E16 OMC(001) SM3
E17 OMC(003) SM3
E18
PZT:
PZT11
PZT12
PZT13
PZT14 OMC(003) CM1 (PZT ASSY #5)
PZT15 OMC(003) CM2 (PZT ASSY #3)
PZT21 OMC(002) CM1 (PZT ASSY #6)
PZT22
PZT23 OMC(001) CM2 (PZT ASSY #2)
PZT24
PZT25 OMC(002) CM2 (PZT ASSY #4)
PZT26 OMC(001) CM1 (PZT ASSY #1)
|
154
|
Wed Aug 21 08:31:21 2013 |
Koji | Optics | Characterization | H1 OMC cavity alignment | Alignment of the H1 OMC cavity mirrors
- The cavity mirrors as well as the first steering mirror were aligned on the cavity side template.
- The locking of the cavity was not so stable as before. Some high freq (several hundreds Hz) disturbance makes the cavity
deviate from the linear range. This can be mitigated by turning off the HEPA units but this is not an ideal condition.
- FSR and TMS were measured.
FSR: 264.305MHz
TMS(V): 58.057MHz
TMS(H): 58.275MHz
These suggest the cavity length L and f_TMS/f_FSR (say gamma, = gouy phase / (2 pi) ) as
L=1.1343 m (1.132m nominal)
gamma_V = 0.219659 (0.21879 nominal)
gamma_H = 0.220484 (0.21939 nominal)
- the 9th modes of the carrier is away from the resonance 6-9 times of the line width (LW)
- the 13th modes of the lower f2 sideband are 11-15 LW away
- the 19th modes of the upper f2 sideband are 0.6-7 LW away
We still need precise adjustment of the gouy phase / cavity length, this was enough for the gluing of the flat mirrors |
155
|
Thu Aug 22 15:34:03 2013 |
Koji | Optics | General | OMC Cavity side gluing | [Koji Jeff]
o BS1, FM1, FM2 prisms were glued
=> This fixed the unstability of the OMC locking
o Checked the spot position on the curved mirrors.
The height of the template was measured to be 6.16mm.
Using a sensor card, the heights of the spots on the curved mirrors were measured to be 7.4mm (CM1) and 7.9mm (CM2).
This means that the beam is ~1.5mm too low.
When the post clamps were applied to the PZT assemblies, the spot positions moved up a little bit (7.9mm - CM1, 8.2mm - CM2).
This is still ~1mm too low.
We can accommodate this level of shift by the curved mirror and the prisms.
We'll try other PZT assemblies to see if we can raise the beam height. |
159
|
Thu Aug 29 02:52:50 2013 |
Koji | Optics | Characterization | H1OMC Curved Mirror Alignment | Cavity parameter was measured with 50V bias on PZT1 (CM1)
- PZT combination was changed: PZT1 #21 (PZT ASSY#6) / PZT2 #25 (PZT ASSY #4)
- 19th HOMs of the USB makes accidental resonance with the nominal cavity length.
Because of the mirror astigmatism, HOMs spreads more than the design.
In order to avoid these modes, the cavity length had to be moved from the nominal value (1.134m).
- The clearance between the fixture and the prism was limited. This prevents to shorten the cav length.
The cavity length was made longer about 10mm.
-----
Cavity parameter obtained from the pitch misalignment
Free Spectral Range (FSR): 261.777947 +/− 0.000299 MHz
Cavity roundtrip length: 1.145217 +/− 0.000001 m
Lock offset: 1.636183 +/− 0.238442 kHz
Transverse mode spacing (TMS): 57.581950 +/− 0.000163 MHz
TMS/FSR: 0.219965 +/− 0.000001
Cavity pole (1st order modes, avg and stddev): 353.465396 +/− 0.657630 kHz
Finesse (1st order modes, avg and stddev): 370.302940 +/− 0.688585
Carrier 9th-order HOM: -8.1 line width away
Upper Sideband 13th-order HOM: 13.3 LW away
Lower Sideband 19th-order HOM: 2.2 LW away
-----
Cavity parameter obtained from the pitch misalignment
Free Spectral Range (FSR): 261.777106 +/− 0.000226 MHz
Cavity roundtrip length: 1.145220 +/− 0.000001 m
Lock offset: 0.215937 +/− 0.183434 kHz
Transverse mode spacing (TMS): 57.875622 +/− 0.000116 MHz
TMS/FSR: 0.221087 +/− 0.000000
Cavity pole (1st order modes, avg and stddev): 356.862001 +/− 0.448102 kHz
Finesse (1st order modes, avg and stddev): 366.776766 +/− 0.460598
Carrier 9th-order HOM: -4.1 line width away
Upper Sideband 13th-order HOM: 19.1 LW away
Lower Sideband 19th-order HOM: 10.8 LW away
-----
We could avoid hitting the 19th modes of the 45MHz sidebands.
First accidental hit is the 28th order modes of the lower sideband.
Red: Carrier
Blue: Upper sideband (45MHz)
Green: Lower sideband (45MHz)

|
161
|
Fri Aug 30 12:14:50 2013 |
Koji | Optics | General | H1 OMC Cavity length adjustment | Short conclusion:
The roundtrip cavity length for the H1 OMC was adjusted to be 1.145m
instead of 1.132m such that the 19th HOMs of the lower sideband do not get resonant together with the carrier.
Background:
The purpose of the OMC is to transmit the carrier TEM00 mode while anything else is rejected.
As the optical cavity has infinite numbers of resonant modes, what we practically do is to select
the roundtrip accumulated gouy phase so that low order higher order modes for the carrier
as well as the sidebands (including the TEM00 modes).
The nominal round trip length of the OMC is 1.132m. The curvature of the mirror is 2.575m.
The nominal ratio between the TMS and FSR is 0.218791 and 0.219385 (TMS_V/TMS_H= 0.9973)
for the vertical and horizontal modes. This split comes from the non-zero angle (~4deg) of incidence on the curved mirrors.
In reality, the TMS/FSR ratio depends on the true curvature of the mirror. More importantly, astigmatism
of the mirror changes the difference of the ratios for the vertical and horizontal modes.
The mirror astigmatism can either reduce or increase the split. between the TMSs. For example,
the L1 OMC showed the TMS/FSR ratio of (0.218822, 0.219218) for the vertical and horizontal modes.
TMS_V/TMS_H is 0.9982 which is 0.18% from the unity. This suggests, roughly to say, that 0.27% of the
astigmatism coming from the AOI of 4deg was partially compensated by the mirror astigmatism. This was lucky.
Something unlucky happened to the case for the first choice of the H1OMC curved mirrors.
TMS_V/TMS_H is 0.990 which is indeed 1% away from the unity. This actually caused some problem:
As the modes spreads too wide, the 19th modes became unavoidable. (see the picture below)

Red - carrier, Blue - upper sideband (+45MHz), Green - lower sideband
After the replacing one of the PZT assembly with another one, 1-TMS_V/TMS_H went down to 6%.
But still the 19th mode is on resonance. In order to shift the 19th mode from the resonance, the cavity length
had to be changed more than the range of the micrometer.
Simple simulation:
Attached Mathematica file calculates expected mode structure when the curved mirror position is
moved by DL (then the total roudtrip length changes 4*DL). This tells us that the 19th mode is
moved from the resonance by giving DL=-0.003 or DL=0.0025.
It was impossible to make the cavity short enough as the gluing fixture interferes with the curved mirror.
In fact, it was also impossible to make the cavity long enough as it was. Therefore PEEK shims with
the thickness of 1.5mm was inserted.

Result:
The FSR and TMS were measured with the longer cavity. 50V was applied to PZT1.
FSR: 261.775MHz
TMS_V: 57.575MHz
TMS_H: 57.880MHz
=> Cavity round trip length of 1.1452m
=> TMS/FSR = {0.219941, 0.221106}
The 19th modes for the lower sidebands are successfully moved from the carrier resonance.
The first accidental resonance is the lower sideband at the 28th order modes.

|
162
|
Fri Aug 30 12:22:56 2013 |
Koji | Optics | General | H1 OMC Cavity side UV gluing | H1 OMC Cavity side optics was glued on the breadboard
Curved mirror gluing
- Applied the UV glues to CM1/CM2 prisms.
- Checked the spot positions on the curved mirrors
- Apply 50V to CM1
- Measure the FSR and TMS while the cavity was locked.
FSR: 261.70925MHz
TMS_V: 57.60500MHz
TMS_H: 57.94125MHz
=> Cavity round trip length of 1.1455m
=> TMS/FSR = {0.220111, 0.221395}
First accidental resonance is the lower sideband at 28th order modes.

Carrier 9th-order HOM: 2.9~7.6 line width away
Upper Sideband 13th-order HOM: 14.1-20.7 LW away
Lower Sideband 19th-order HOM: 3.3-13.1 LW away
- As this result was satisfactory, the UV illumination was zapped. It did not change the alignment. The cavity was kept locked during the illumination.
Peripheral optics gluing
- QPD path BS/Steering Mirrors were glued
- DCPD path BS was glued
The UV glue was applied to the optics.
Then the optics were placed on the breadboard along with the fixture.
Placed the dummy QPD/DCPD mount with the alignment disks.
The horizontal positions of the spots were well with in the horizontal range of the mounts.
The UV illumination was zapped. Checked the alignment again and no problem was found. |
163
|
Fri Aug 30 12:24:28 2013 |
Koji | Optics | Characterization | H1OMC Spot positions | Beam heights on the diodes
DCPD1: 14.459mm -> With 1.5mm shim, the beam will be 0.038mm too low.
DCPD2: 14.221mm -> With 1.25mm shim, the beam will be 0.026mm too low.
QPD1: 14.691mm -> With 1.75mm shim, the beam will be 0.056mm too low.
QPD2: 14.379mm -> With 1.5mm shim, the beam will be 0.118mm too low. |
169
|
Mon Oct 14 13:40:16 2013 |
Koji | Optics | Characterization | H1 OMC Optical testing | Since the middle of September, the optical tests of H1 OMC were took place.
Here is summary of the progress.
TEST1: FSR/FINESSE measurement before applying First Contact
TEST2: Power budget
MIrror cleaning with First Contact
TEST3: FSR/FINESSE measurement after First Contact application
TEST4: Power budget
TEST5: N/A
TEST6: HOM measurement @PZT V=0
TEST7: HOM measurement @PZT V=0-200
TEST8: DC response of the PZT
TEST9: AC response of the PZT
TEST10: PD/QPD alignment / output check
|
170
|
Mon Oct 14 15:50:55 2013 |
Koji | Optics | Characterization | H1 OMC Power budget | LHO OMC power budget
Date |
2013/9/17 |
2013/9/17 |
2013/10/16 |
2013/10/22 |
Condition |
Before the cleaning |
After the cleaning |
Confirmation |
Confirmation |
Input Power [mW] |
35.2 |
35.4 |
34.54 |
34.9 |
REFLPD dark offset [V] |
-0.00763 |
-0.00763 |
-0.00772 |
-0.000759 |
REFLPD unlocked [V] |
0.0749 +/- 0.0005 |
0.067+/- 0.0005 |
0.0640+/-0.0005 |
0.0530+/-0.0001 |
REFLPD locked [V] |
5.49 +/- 0.01 |
5.55+/-0.01 |
5.28+/-0.01 |
5.26+/-0.01 |
|
|
|
|
|
Transmitted Power to DCPD1 (T) [mW] |
16.5 |
16.4 |
16.1 |
16.0 |
Transmitted Power to DCPD2 (R) [mW] |
15.9 |
16.2 |
15.55 |
15.55 |
FM2 transmission [mW] |
32.4 |
32.9+/-0.1 |
- |
- |
CM1 transmission [mW] |
0.166 |
0.169 |
0.164 |
0.165 |
CM2 transmission [mW] |
0.165 |
0.169 |
0.158 |
0.162 |
Input BS transmission [mW] |
0.234 |
0.218 |
0.230 |
0.227 |
|
|
|
|
|
Cavity Finesse |
373.114 |
373.114 |
373.114 |
373.114 |
|
|
|
|
|
Junk Light Power (Pjunk) [mW] |
0.489 |
0.434 |
0.422 |
0.332 |
Coupled beam power (Pcouple) [mW] |
34.71 |
34.97 |
34.12 |
34.57 |
Mode Matching (Pcouple/Pin) [mW] |
0.986 |
0.988 |
0.988 |
0.990 |
Cavity reflectivity in power |
0.00115 |
0.00119 |
0.00136 |
0.00199 |
Loss per mirror [ppm] |
122 |
124 |
134 |
167 |
Cavity transmission for TEM00 carrier
|
0.933 |
0.932 |
0.927 |
0.913 |
|
171
|
Tue Oct 15 18:50:08 2013 |
Koji | Optics | Characterization | QPD alignment | 1) Deburr the bottom surfaces of the QPD housings
2) Aligned the QPDs
QPD# QPD1 QPD2
Housing# #004 #008
Diode# #44 #46
Shim 1.75mm 001 1.25mm 001
-------------------------------------
Power Incident 125.7 uW 126.4 uW
Sum Out 80.1 mV 78.9 mV
Vertical Out + 3.4 mV 0 mV
Horizontal Out -23.7 mV -26 mV
SEG1 -15.6 mV -13.2 mV
SEG2 -13.1 mV -13.3 mV
SEG3 -29.0 mV -26.4 mV
SEG4 -23.2 mV -26.3 mV
-------------------------------------
Spot position X -13 um - 0.8 um (positive = more power on SEG1 and SEG4)
Spot position Y +93 um +107 um (positive = more power on SEG3 and SEG4)
-------------------------------------
Responsivity[A/W] 0.64 0.62
Q.E. 0.74 0.73
-------------------------------------
Arrangement of the segments
View from the beam
/ 2 | 1 X
|---+---|
\ 3 | 4 /
---------------
I(w,x,y) = Exp[-2 (x^2 + y^2)/w^2]/(Pi w^2/2)
(SEG_A+SEG_B-SEG_C-SEG_D)/(SEG_A+SEG_B+SEG_C+SEG_D) = Erf[sqrt(2) d/w]
d: distance of the spot from the center
w: beam width
|
|